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We show that a pair of quantized modes interacting with a spectrally broadened ensemble of �-type

atoms is analogous to an ensemble of two-level systems coupled to a bosonic reservoir. This enables an

irreversible photon transfer between photon modes. The reservoir can be engineered which allows the

observation of effects such as the Zeno and anti-Zeno effect, the destructive interference of decay

channels, and the decay in a squeezed vacuum. We also consider a photon diode, i.e., a device which

directs a single photon from any one of two input ports to a common output port.
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In the present Letter we propose a photonic analogue of
the irreversible decay of an ensemble of two-level systems
coupled to a bosonic reservoir [1]. In particular, we con-
sider a pair of quantized cavity modes interacting with a
spectrally broadened ensemble of �-type atoms. The two
cavity modes replace the collective states of the ensemble
of two-level systems and the�-type atoms form the modes
of the reservoir. In contrast, e.g., to the radiation field as a
reservoir, the atomic ensemble can be easily modified and
controlled dynamically, which can be used for reservoir
engineering [2]. E.g., the density of states of the reservoir
can be tailored by application of magnetic or electric fields
and thus it should be possible to implement, e.g., the
quantum Zeno [3] and anti-Zeno [4–6] effects, which are
otherwise difficult to realize. Moreover the reservoir of �
atoms can be prepared in different initial states. E.g.,
coherent ensemble states can be created by using electro-
magnetically induced transparency [7] or methods of adia-
batic population transfer [8]. Also nonclassical states can
be prepared [9–12] which can be used to simulate a
squeezed-vacuum reservoir [13–15]. If the atomic en-
semble is prepared in only one internal state, serving as
the vacuum of reservoir excitations, the analogue of spon-
taneous decay can be observed, where the photons of one
cavity mode are transferred irreversibly, i.e., nonunitarily,
to the second mode. This effect can have a variety of
applications: e.g., the creation of new quantum states,
transfer of photons of optical frequency to the microwave
domain and vice versa, or a photon diode, i.e., a device
where a single photon injected into anyone of two inputs
ports leads to a single-photon emission from the same
output port. The system considered here can easily be
constructed with current technology and is available in
several labs. E.g., strong coupling of a cavity mode with
a Bose-Einstein condensate of atoms [16–18] or a cold
atomic cloud [19,20] was achieved. We emphasize that as
the two modes one can use orthogonal polarizations of the
same frequency and the required spectral broadening of the

atomic ensemble can be achieved, e.g., by application of an
inhomogeneous magnetic field.
Let us consider the interaction of two light modes de-

scribed by the annihilation operators â1 and â2 with an
ensemble of three-level � atoms (see Fig. 1). â1 and â2
couple the ground state jgi, respectively, a metastable
lower state jsi to a common excited state jei in a Raman
transition. The two-photon transition between jgi and jsi
shall be inhomogeneously broadened, as indicated in
Fig. 1. For simplicity we assume a discrete spectrum con-
sisting of f energy levels. In each spectral class there are N
atoms, so that the total number of atoms is fN.
To describe the quantum properties of the medium, we

use collective atomic operators for each spectral compo-

FIG. 1 (color online). (a) Schematic setup: Two quantized
cavity modes â1 and â2 interact with an ensemble of three-level
� type atoms with inhomogeneously broadened two-photon
transition jgi � jsi. (b) For a large number of three-level atoms
and a sufficiently large spectral width of the Raman transition the
system resembles a collection of two-level systems coupled to a
bosonic reservoir.
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nent �̂l
ij ¼ 1ffiffiffi

N
p P

N
k¼1 jiillkkhjj, where i, j 2 e, g, s, and k

labels the atom. The dynamics of the system is then gov-
erned by the Hamiltonian

Ĥ ¼ @
ffiffiffiffi
N

p Xf
l¼1

½��̂l
ee þ "l�̂

l
ss

þ ðg1�̂l
egâ1 þ g2�̂

l
esâ2 þ H:c:Þ�; (1)

where � is the one-photon detuning of â1, and "l is the
two-photon detuning of the lth spectral class. g1;2 are the

coupling strength of both modes, which are assumed to be

the same for all spectral components. The factor
ffiffiffiffi
N

p
is due

to the collective coupling of the atoms of each spectral
class to the cavity modes [21,22]. If the vacuum Rabi
frequencies g1;2 and the two-photon detunings "l are sig-

nificantly smaller than �, we can adiabatically eliminate
the upper level jei. Let us further assume that the atomic
ensemble is prepared in a state which is close to the
collective ground state and that the total number of photons
is much less than the total number of atoms. Then the
population of jsi remains small and the atomic operators
�̂l

gs and �̂l
sg obey approximately bosonic commutation

relations ½�̂l
sg; �̂

p
sg� � 0, ½�̂l

gs; �̂
p
sg� � �l;p; i.e., we can

set �̂l
gs ¼ �̂l, �̂

l
sg ¼ �̂y

l . Thus passing to an interaction

picture we arrive at an effective Hamiltonian

Ĥ eff ¼ �@
ffiffiffiffi
N

p Xf
l¼1

f��̂lâ
y
1 â2e

i!lt þ H:c:g; (2)

where � ¼ ðg1Þ�g2=� and !l ¼ "l þ jg1j2=� is an effec-
tive detuning containing ac-Stark shift contributions.

Ĥeff is similar to the Hamiltonian that describes the
interaction of an ensemble of two-level systems consisting

of states j1i and j2i with a reservoir of bosonic modes �̂l.

ây1 â2 destroys an ’’atom’’ in state j2i and creates an
’’atom’’ in state j1i.

The dynamics of a two-level system that interacts with a
reservoir becomes irreversible when the number of modes
of the bath tends to infinity. A well-known consequence
of this is spontaneous decay and a similar dynamics can
be obtained here for photons. To see this we derive an
effective equation of motion for the photon modes by
tracing out the atomic degrees of freedom using second
order perturbation theory. This yields for the density op-

erator �̂ of the photon modes _̂�ðtÞ ¼ �R
t
0 d�gðt� �Þ�

½ây1 ðtÞâ2ðtÞâ1ð�Þây2 ð�Þ�̂ð�Þ � â1ð�Þây2 ð�Þ�̂ð�Þây1 ðtÞâ2ðtÞ� þ
H:c:, where gðtÞ ¼ N

Pf
l¼1 j�j2ei!lt. The behavior of the

system depends on the reservoir response function gðtÞ
which is determined by the effective light-field coupling
constants � and the resonance frequencies!l of the atomic
ensemble [23]. We assume f to be large enough so that
recurrence can be disregarded. For simplicity we also
assume that the ensemble has equidistant spectral lines
with!l ¼ "maxð2l� 1� fÞ=f, where 2"max is the spectral

width of the atomic ensemble. Under these conditions, gðtÞ
can be approximated as a delta function gðtÞ �
�ðNf="maxÞ�ðtÞj�j2, which constitutes the Born-Markov
approximation. Note that we assumed that the spectrum of
the reservoir is symmetric and thus the imaginary part of
gðtÞ vanishes. In this limit we obtain

@�̂

@t
¼ ��

2
ðây1 â1â2ây2 �̂þ �̂ây1 â1â2â

y
2 � 2â1â

y
2 �̂â

y
1 â2Þ;

(3)

with � ¼ �Nfj�j2=ð"maxÞ. Note furthermore that similar
results could be obtained using a continuous unstructured
reservoir spectrum.
The Lindblad equation (3) describes the irreversible

transfer of excitations from mode 1 to 2 with rate �. If
there are many photons in the system the decay will be
enhanced due to stimulated Raman emission into mode 2.
The atomic analogue of this process is the collective decay
of atoms (superfluorescence) [22].
(i) Irreversible photon transfer.—Let us first consider the

irreversible transfer of photons from mode 1 to mode 2. We

assume an initially mixed state of both modes �̂0 ¼P
m;m0;n;n0A

n;n0
m;m0 jni11hn0j � jmi22hm0j. In this case the final

state reads �̂fin ¼
P

p;p0Bp;p0 j0i11h0j � jpi22hp0j where

Bp;p0 ¼ P
q¼0A

q;q
p�q;p0�q

. This state is a pure state j	i2 ¼P
m�mjmi2 if Bp;p0 ¼ ��

p�p0 . This implies that all initial

states with Am;m0
n;n0 ¼ �mþn�

�
m0þn
n�n;n0 , where 
n is an

arbitrary function of n, evolve into a pure state. E.g.,
assume that is completely mixed and contains only one
photon �̂0 ¼ 1

2 j1i11h1j � j0i22h0j þ 1
2 j0i11h0j � j1i22h1j.

Then the final state will be a pure single-photon state
�̂fin ¼ j0i11h0j � j1i22h1j. I.e., an initially mixed states of
light can be purified with conservation of photon number.
Another related example is the case when initially we have
�̂0 ¼ jni11hnj � jmi22hmj. The final state is again a pure
Fock state �̂fin ¼ j0i11h0j � jnþmi22hnþmj, that con-
tains the sum of initial photon numbers. The latter process
can be realized also by unitary operations, but for that it is
necessary to know the exact number of photons in each
mode [24,25].
(ii) Reservoir engineering.—As originally formulated by

Mishra and Sudarshan a decaying quantum system that is
continuously observed in a specific state does not decay,
which they called the quantum Zeno effect [3]. In practice
a continuous observation is approximated by a periodic
sequence of measurements. In order to observe the decay
suppression the period of the repeated projections has to be
shorter than a characteristic time determined by the spec-
tral structure of the reservoir coupling. The latter makes the
observation of the effect in the decay of a two-level atom to
the free-space electromagnetic vacuum rather difficult. In
this case the spectrum of the reservoir coupling is flat and
the frequency of measurements has to be comparable to the
transition frequency in order to see the quantum Zeno
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suppression of decay. If the reservoir spectrum is structured
also the opposite effect, called anti-Zeno effect is possible
[4,6]. The periodic interaction between system and mea-
surement device shifts the effective resonance frequency of
the system and moves it to a different part of the reservoir
spectrum. This can increase (decrease) the system-
reservoir coupling, and thus lead to an increase (decrease)
of the decay rate. Similar effects can be observed by keep-
ing the resonant frequency of the system unperturbed but
shifting the spectrum of the reservoir. The latter can be
realized by a measurement of the reservoir [5,6]. In our
system the reservoir is atomic; thus, one can easily tailor
the reservoir spectrum and measure it by application of an
electromagnetic field. Depending on the reservoir response
function fðtÞ the measurement will either accelerate (anti-
Zeno effect) or slow down (Zeno effect) the spontaneous
photon transfer from one mode into another.

Another potential application of reservoir engineering is
the possibility to prepare the reservoir in a certain quantum
state, e.g., in multimode squeezed states [9–12]. With this
it should be possible to study the decay in a squeezed
vacuum [13–15]. The latter has been proposed and ana-
lyzed theoretically for atoms coupled to a squeezed reser-
voir of radiation modes. An experimental verification is,
however, extremely difficult due to the requirement of a
broad-band and isotropic squeezed-vacuum radiation field.

(iii) Photon diode.—In the last part of this Letter we
discuss an interesting application of the irreversible photon
transfer, a diode for photons, i.e., a four-port device where
single-photon pulses injected into any of the two input
ports will be directed to the same output port. To model
the input-output processes we introduce a continuum of

free-space modes with field operators b̂1q and b̂2q which

are coupled to the cavity modes â1 and â2, respectively. For
simplicity we assume that the coupling constants �1 and �2

are the same for all relevant modes. The corresponding
interaction is described by the following Hamiltonians
(m ¼ 1, 2)

V̂ m ¼ @�m

X
q

ðâymb̂mq þ H:c:Þ þX
q

@�q
mb̂

y
mqb̂mq:

Here �q
m are the detunings of free-field modes from the

cavity resonance. Let us consider input fields in a single-

photon state jc inim ¼ P
qP

in
q ðtÞb̂ymqj0i. All properties of

the fields are then described by the single-photon wave

function �m
inðz; tÞ ¼

P
qh0jb̂mqe

iqzjc inim. Since all atoms

of the atomic ensemble are initially in the ground state, the
field in state jc ini2 sees an empty cavity and will be
reflected from it with some time delay. In the following
wewant to prove that jc ini1 is transferred to jc outi2, i.e., to
a state where the excitation is in the orthogonal output
channel. In general the state of the system can be written in
the following form

jc ðtÞi ¼
�X

q

PqðtÞb̂y1q þQðtÞây1 þXf
l¼1

RlðtÞây2 �̂y
l

þXf
l¼1

X
q

SqlðtÞb̂y2q�̂y
l Þjgsi;

with jgsi denoting the ground state of the atomic ensemble,
where all atoms are in state jgi. Since initially only mode 1
is excited and all atoms are in the ground state QðtÞ ¼
RlðtÞ ¼ SqlðtÞ ¼ 0 if t < 0, where t ¼ 0 is the beginning of

interaction. The evolution of the system is described by the
Schrödinger equation

_P qðtÞ ¼ �i�q
1PqðtÞ � i�1QðtÞ; (4)

_QðtÞ ¼ �i�1

X
q

PqðtÞ þ i�
ffiffiffiffi
N

p Xf
l¼1

ei!ltRlðtÞ; (5)

_R lðtÞ ¼ i�� ffiffiffiffi
N

p
e�i!ltQðtÞ � i�2

X
q

SqlðtÞ; (6)

_S qlðtÞ ¼ �i�q
2SqlðtÞ � i�2RlðtÞ: (7)

Substituting the formal solution of Eq. (7) into (6) and
assuming the Markov limit yields

_R lðtÞ ¼ i�� ffiffiffiffi
N

p
e�i!ltQðtÞ � �2

2
RlðtÞ; (8)

where �2 ¼ �2
2L=c is the cavity loss rate of mode 2 and L

is the quantization length of b̂ modes. (Note that �m �
1=

ffiffiffiffi
L

p
, so that the dependence on L drops.) Furthermore

substituting the formal solutions of Eqs. (4) and (8) into (5)
we find again using the Markov approximation

_QðtÞ ¼ � ð�þ �1Þ
2

QðtÞ � i�1

X
q

Pqð0Þe�i�q
1
t; (9)

where we have used the photon decay rate � and intro-
duced the cavity loss rate of mode 1, �1 ¼ �2

1L=c. Upon
integrating Eq. (9) we finally find the input-output relation

for port 1, i.e., for the modes b̂q1 .

�1
outðtÞ ¼ �1

inðtÞ � �1FðtÞ; (10)

where FðtÞ ¼ R
t
0 d��

1
inð�Þe�ðð�þ�1Þ=2Þðt��Þ. In order to

achieve a maximum transfer of free-field photons into the
cavity, the outgoing component should be minimized.
According to Eq. (10) this can be realized by requiring
impedance matching. If �1 ¼ � and the pulse is much
longer than the relaxation rates, the two terms on the
right-hand side of Eq. (10) cancel each other and there is

no output into the modes b̂1q.

Because of the dissipative nature of the coupling be-
tween the two cavity modes the output field will be in
general in a mixed state when tracing out the degrees of
freedom of the atomic ensemble. Only if the input is an
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eigenstate of the total excitation number, the cavity output
can be in a pure state. We will show now that in this case
the final state indeed factorizes into a single photon dis-

tributed over many modes b̂2q and a single collective

excitations of the atoms. Following similar steps as above

we find for the output wave function for the modes b̂2q
when the atomic excitation is in mode l, �2;l

out �P
qh0jh1ljb̂2qjc iout where j1li denotes a single excitation

in the lth spectral class of the atomic ensemble, reads

�2;l
outðtÞ ¼ �i

�1

�2

�2�
� ffiffiffiffi

N
p Z t

0
d�1e

�i!l�1e�ð�2=2Þðt��1ÞFð�1Þ:

Thus the probability of having a photon in output port 2,
obtained by tracing out the atomic part, reads

�outðtÞ ¼
X
l

j�2;l
outj2 ¼ �1�2�

Z t

0
d�1e

��2ðt��1ÞjFð�1Þj2:

If the cavity decay rate of mode 2, �2, is much larger than �
and �1, the integral over �1 can easily be evaluated. In this
case �out can be expressed as a product of two single-
photon wave packets �outðtÞ ¼ j�2

outðtÞj2, where
�2

outðtÞ ¼ ffiffiffiffiffiffiffiffiffi
�1�

p
FðtÞ:

Thus indeed a single-photon input wave packet results into
an asymptotic final state which is a product of a collective
atomic excitation and a single-photon wave packet in the
output mode 2. It should be noted that since the physical
mechanism that leads to the diode function is irreversible,
input superposition states will in general not be mapped to
pure output states. In conclusion we have shown that a two-
mode system interacting with a spectrally broadened en-
semble of �-type atoms behaves as a collection of two-
level systems interacting with a bosonic reservoir. The
analogy between these two systems allows the observation
and simulations of several interesting phenomena of dis-
sipative processes in engineered reservoirs. In particular
we have shown that similarly to spontaneous decay of
atoms one can irreversibly transfer photons from one
mode to another. The possibility to tailor the reservoir
spectrum and to prepare collective quantum states of the
ensemble of � atoms can be used to observe the quantum
Zeno- and anti-Zeno effects, to study the decay in a
squeezed reservoir and to observe destructive interference
of spontaneous decay channels. As a particular application
we have discussed in more detail a photon diode, i.e., a
device where a single-photon input in any of the two input

ports is always emitted in only one of the two outputs.
Besides being interesting in its own right the diode may be
used for the implementation of a classical logical OR.
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