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We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polar-

itons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level �-type

atoms and are the basis of phenomena such as electromagnetically induced transparency, ultraslow, and

stored light. They have long intrinsic lifetimes and in a stationary setup, a 3D quadratic dispersion profile

with variable effective mass. Since DSPs are bosons, they can undergo a Bose-Einstein condensation at a

critical temperature which can be many orders of magnitude larger than that of atoms. We show that

thermalization of polaritons can occur via elastic collisions mediated by a resonantly enhanced optical

Kerr nonlinearity on a time scale short compared to the decay time. Finally, condensation can be observed

by turning stationary into propagating polaritons and monitoring the emitted light.
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Since the critical temperature of Bose-Einstein conden-
sation (BEC) [1,2] is inversely proportional to the mass of
the particles, already early on in the history of the field,
quasiparticles were considered as candidates for conden-
sation at high temperatures [3]. Very recently, this subject
regained a lot of attention triggered by experimental break-
throughs in microcavity exciton-polaritons [4–6] and thin-
film magnons [7]. Yet a major drawback of these systems is
the rather short lifetime of the quasiparticles. In addition,
the exciton-polariton and magnon systems are two dimen-
sional. In 2D, there is no true long-range off-diagonal order
[8], and only quasicondensation can be achieved in a finite
system. We here propose a mechanism for true condensa-
tion in three spatial dimensions employing a different kind
of polaritonic quasiparticles, called dark-state polaritons
(DSP) [9]. DSPs [10] emerge in the Raman interaction of
lasers with 3-level quantum systems and are the basis of
ultraslow [11], stopped [12,13], and stationary light [14].
They are bosons [10] and have considerably longer deco-
herence times than excitons, exciton polaritons, or mag-
nons, ranging from tens of microseconds in alkali vapors in
magneto-optical traps [15], and several milliseconds in
condensed atomic gases [13] to seconds in doped glasses
[16,17]. Furthermore, they provide a 3D quadratic disper-
sion with variable mass and have very high condensation
temperatures. DSPs can easily be created and thermaliza-
tion can be achieved on a time scale much shorter than their
lifetime. Finally, condensation can easily be observed by
transforming stationary DSPs into light pulses. Because of
their properties, such as variable mass and long lifetime,
DSPs may provide an interesting new approach to many-
particle phenomena with quasiparticles [18], BEC being
one of the simplest.

If an optically thick ensemble of 3-level quantum sys-
tems is irradiated by a coherent coupling laser, it can
become transparent for a probe field within a certain
frequency range close to the two-photon Raman resonance.

Associated with this electromagnetically induced transpar-
ency (EIT) [19,20] is the formation of polaritonic eigen-
solutions, called dark-state polaritons [10], which are
superpositions of the probe field and a collective Raman
excitation. The mixing angle can be changed by varying
the strength of the control laser. At the transparency fre-
quency, the dispersion of DSPs is linear with a slope
determined by the mixing angle. This situation changes if
two counter-propagating control lasers with comparable
intensities are used. The two control lasers lead to a quasi-
stationary probe-field pattern, known as stationary light
[14,21]. We show that the dark polaritons of stationary
light [9] behave like massive particles in 3D and can
undergo Bose-condensation at high temperatures.
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FIG. 1 (color online). (a) Raman interaction of two counter-
propagating control lasers �� with opposite circular polariza-
tion coupling jsi � je�i transitions of a double � system
generates stationary light of Stokes fields E�. The stationary
DSPs formed by this do not decay radiatively and have a 3D
quadratic dispersion profile. (b) Off-resonant coupling of Stokes
fields E� with other excited states leads to ac-Stark shift of jsi
resulting in a resonantly enhanced Kerr-type self-interaction of
E�.
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We here consider a generalization of the original
stationary-light scheme [14], which is shown in Fig. 1(a).
It involves two parallel � transitions consisting of the
common ground levels jgi and jsi and the excited states
je�i, coupled to opposite circular polarizations of quan-

tized probe fields Ê� and control lasers described by Rabi-
frequencies �� [9]. Both � schemes are in two-photon
resonance which guarantees EIT. For the present discus-
sion, we will assume that the control fields are homoge-
neous and constant in time and thus set �� ¼ ���. The
single-photon detunings of the upper states are denoted as

�þ and ��, respectively. The fields Êþ ðÊ�Þ and �þ
(��) propagate in the þz (�z) direction with wave num-
bers kp (�kp), and kc (�kc).

We introduce normalized field amplitudes Ê� that vary

slowly in space and time via Ê�ðr; tÞ ¼
ffiffiffiffiffiffi
@!
2"0

q
fÊ�ðr; tÞ �

exp½�ið!pt� kpzÞ� þ H:a:g, and continuous atomic-flip

operators �̂��ðr; tÞ ¼ 1
�N

P
j2�VðrÞ�̂

j
��, with �̂j

�� �
j�ijjh�j being the flip operator of the jth atom. The sum

is taken over a small volume �V around r containing �N
atoms.

Assuming that in the absence of the probe fields all
population is in the ground state jgi, the dynamical equa-
tions read in the linear response limit, i.e., for a small probe
intensity
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Here, n is the atom number density, and g ¼ }
@

ffiffiffiffiffiffi
@!
2"0

q
is the

common coupling constant of both probe fields with }
denoting the dipole matrix element. �� ¼ �þ i��, where
� is the transverse decay rate of the transitions je�i � jgi
and kp ¼ !p=c, is the carrier wave number of the probe

field. If the characteristic time- and length-scales of the
probe fields T and L are sufficiently large, such that the
adiabaticity conditions T � fLabs=c; �

�1g and L 	 Labs

hold, where Labs � �c=ðg2nÞ defines the resonant absorp-
tion length, the system can be described by polariton-like
quasiparticles [9]. One of these solutions, called DSP, does
not involve excited states and is thus immune to sponta-
neous emission.

�̂ðr; tÞ ¼ ðcos�Þ½ðcos�ÞÊþðr; tÞ þ ðsin�ÞÊ�ðr; tÞ�
� ðsin�ÞŜðr; tÞ (4)

where Ŝ � ffiffiffi
n

p
�̂gsðr; tÞ and the mixing angles are defined

by tan2� ¼ g2n=�2 with �2 ¼ �2þ þ�2�, and tan2� ¼
�2�=�2þ. The longitudinal dispersion relation of the sta-

tionary DSPs is plotted in Fig. 2 for tan� ¼ 1 (centermost
line). Also shown are the energies of the other eigensolu-
tions. It proves useful to introduce superpositions of these

eigensolution termed bright-state polaritons, �̂1ðr; tÞ ¼
�ðsin�ÞÊþðr; tÞ þ ðcos�ÞÊ�ðr; tÞ, and �̂2ðr; tÞ ¼
�ðsin�Þ½ðcos�ÞÊþðr; tÞ þ ðsin�ÞÊ�ðr; tÞ� � ðcos�ÞŜðr; tÞ.
It is easy to derive the equation of motion of the DSP up

to second order including the transverse directions. One
finds for �� ¼ � and � ¼ �=4�
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�

�
@2

@z2
� i
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2kp
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�
�̂ðr; tÞ ¼ 0; (5)

where vgr ¼ ccos2� is the group velocity of the polari-

ton in the slow-light case, i.e., if only one of the two
coupling fields is present. As opposed to microcavity
exciton-polaritons, stationary DSPs behave as free, mas-
sive Schrödinger particles in all three spatial directions
with a tensorial mass, m? ¼ mvrec=vgr, m�1

k ¼
m�1

? 2kpLabsð�=�þ iÞ. Here, we have introduced the re-

coil velocity of the atom at the probe frequency vrec ¼
@kp=m and the mass of the atoms m as comparative scales.

The effective mass can be varied via the strength of the
control laser, i.e., via the mixing angle �, and is typically
several orders of magnitude smaller than the mass of the
atoms. The longitudinal mass mk is again smaller than the

transverse mass by the ratio of resonant wavelength to
absorption length and the inverse normalized detuning
�=�. It also has a small imaginary component, which
describes the absorption of high-k components well known
from EIT [20]. As can be seen from Fig. 2, the quadratic
dispersion of the dark-state polariton saturates at higher

FIG. 2 (color online). Dispersion of stationary DSP (center-
most line) and other quasiparticle solutions in propagation
direction for �þ ¼ �� ¼ �, and �þ ¼ �� ¼ �, tan� ¼
tan� ¼ 1, �=� ¼ 2. Since only the real parts of the eigenvalues
are of interest here, we set � ¼ 0. One clearly recognizes a
quadratic profile for the dark polariton around k ¼ 0. It should
be noted that the polariton is defined by the slowly varying
envelopes of field and matter variables and k refers to spatial
modulations of the slowly varying amplitudes.
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frequencies giving rise to a finite band whose width is of
the order of the single-photon detuning � for j�j 	 �, �.

Using the well known expression for the critical tem-
perature of condensation for a homogeneous, ideal gas and
expressing the polariton mass in terms of the mass of the
atoms, one finds

Tc ¼ Tatom
c

�
�DSP

n

�
2=3 vgr

vrec

�
2kpLabs

�

�

�
1=3

: (6)

Here, we have introduced the critical temperature of the

atoms kBT
atom
c ¼ 2�n2=3=½	ð3=2Þ2=3m� as a comparative

scale. �DSP is the density of dark-state polaritons, which
has to be smaller than the atomic density n in order to stay
within the linear response limit. Since the group velocity
vgr can be orders of magnitude larger than the recoil

velocity of atoms vrec and since kpLabs 	 1, the critical

temperature can be much larger than that of the atoms.
E.g., for �DSP=n ¼ 10�1, vgr ¼ 1 km=s, vrec ¼ 5 cm=s,

Labs ¼ 1 cm, �=� ¼ 10, and kp ¼ 2�=500 nm yields:

Tc=T
atom
c 
 6� 105, i.e., a value in the mK regime. On

the other hand, the finite frequency window of EIT at large
detuning limits the maximum allowed temperature where
losses are small to kBTEIT 
 @�, i.e., to the regime of 0.1–
1 mK. The losses outside the EIT transparency window
reflected in the imaginary part of the polariton mass may be
used for evaporative cooling of polaritons, which is how-
ever outside the scope of this Letter [17].

Condensation is achieved differently from atoms or ex-
citon polaritons. Instead of changing the temperature or the
density, one can dynamically change the critical tempera-
ture of condensation by varying the effective mass. Initial
preparation of low-energy DSPs can be realized in various
ways [17]. Spontaneous Raman scattering cannot be used
since it results in too high polariton momenta on the order
of the recoil momentum corresponding to polariton tem-

peratures on the order of Trecm=ðm2=3
? m1=3

k Þ. Direct RF

coupling or storage of a coherent light pulse yield a low-
energy coherent polariton distribution. The coherence is
then subsequently destroyed by thermalizing collisions.
Alternatively, storage of an incoherent light pulse results
in the preparation of a nonequilibrium mixed state.

Since the maximum temperature allowed by the finite
transparency window is below the temperature range
where collisions in a gas cell could provide sufficiently
fast thermalization, the latter should occur by elastic colli-
sions between DSPs. These can be induced by resonantly
enhanced optical nonlinearities provided by the stationary-
light coupling scheme itself. If, e.g., the excited states in
Fig. 1 are hyperfine states, then other off-resonant cou-
plings exist, such as those shown in Fig. 1(b). This cou-
pling induces ac-Stark shifts which give rise to a resonantly
enhanced optical Kerr nonlinearity [18,22]. If we ignore
off-resonant couplings of the control laser fields, which is
justified if the energy splitting between the lower states jgi
and jsi is larger than j��j, the resulting effective Kerr-
interaction reads

Ĥ Kerr 
 �@
g2

�Kerr

tan2�
Z

d3r:ðÊy
þÊþ þ Êy

�Ê�Þ2:: (7)

�Kerr is the one-photon detuning from the additional ex-
cited states, and ‘‘: :’’ denotes normal ordering. Since (7)
only effects the electromagnetic component of the polar-
itons, the optical Kerr interaction involves also nonlinear
scattering of dark- into bright-state polaritons. Assuming
sin� 
 1, i.e., vgr � c, one finds

Ĥ Kerr ¼ � @g2cos2�

�Kerr

Z
d3r�̂y�̂y�̂ �̂þ @g2 cos�

�Kerr

�
Z

d3r�̂yð�̂y
2 �̂þ �̂y�̂2Þ�̂: (8)

The bright polaritons decay rapidly, and thus the nonlinear
coupling of polariton modes results in an effective loss.
Adiabatic elimination of the fast decaying bright polaritons
yields in Born-Markov approximation a Liouville equation
for the density matrix of the DSPs with a Hamiltonian part
describing elastic two-body collisions and a nonlinear loss
part [17].

_�� ¼ �i
g2cos2�

�Kerr

Z
d3r½�̂y�̂y�̂ �̂; ���

þ 4i
g2�cos2�

n�2
Kerr

Z
d3r½�̂y�̂y�̂�̂y�̂ �̂; ���

þ 4
g2�cos2�

n�2
Kerr

Z
d3rf�̂y�̂y�̂�̂y�̂ �̂; ��gþ

� 8
g2�cos2�

n�2
Kerr

Z
d3r�̂y�̂ �̂���̂

y�̂y�̂: (9)

From these, one can extract the rate of elastic collisions

�coll ¼ g2

�Kerr

cos2��DSP ¼
vgr

Labs

�
�

�Kerr

�DSP

n

�
(10)

as well as the rate of collision induced losses

�nl
loss ¼

vgr

Labs

�
�

�Kerr

�DSP

n

�
2
: (11)

One notices that the characteristic time scale 
 of both
processes is determined by the ratio of absorption length to
group velocity. For typical vapor values, such as vgr ¼
1 km=s and Labs ¼ 1 cm, one finds 
 ¼ 10�5 s, while for a
solid or a condensate of atoms where Labs can be as small
as 10 �m, one finds 
 ¼ 10�8 s. Since �=�Kerr as well as
�DSP=n are small compared to unity, elastic collisions
happen always on a much shorter time scale than the non-
linear losses.
In addition to the nonlinear loss, there is also a linear

absorption resulting from the imaginary part of the polar-
iton mass. It corresponds to the absorption of high spatial-
frequency components in EIT. If L denotes the character-
istic longitudinal length scale of the polariton, the linear
loss rate can be estimated from Eq. (5):
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�lin
loss ¼

vgr

Labs

�
Labs

L

�
2
: (12)

In order for the elastic collisions to be fast compared to the
linear losses, it is necessary that the optical depth OD �
L=Labs of the medium over the length L of the polariton
wave packet fulfills

OD ¼ L

Labs

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Kerr

�

n

�DSP

s
: (13)

Taking the above example of vgr ¼ 1 km=s and Labs ¼
1 cm or 10 �m, respectively, and assuming �Kerr ¼ 100�
and �DSP=n ¼ 0:1 finally yields an elastic collision rate of
�el 
 102 s�1, or 105 s�1. Thus, for sufficiently large elas-
tic collision rates, one needs a large optical depth OD>
30, which is feasible however in solid-state systems or
magneto-optical traps.

The signature of condensation is here the macroscopic
occupation of the k ¼ 0 momentum state or, respectively,
the buildup of spatial coherence. The transition into modes
with vanishing transverse momentum k? ¼ 0 can easily
be observed by switching off one of the two control laser.
In this case, the stationary polariton will be transformed
into a moving one and will leave the sample as a light
pulse. From the transverse profile of the emitted pulse, one
can deduce the transverse coherence length as indicated in
Fig. 3.

In summary, we have shown that stationary-light polar-
itons behave as massive Schrödinger-like particles with
small and variable mass. In the presence of a resonantly

enhanced optical Kerr nonlinearity, the stationary DSPs
undergo elastic collisions at a rate determined by the group
velocity divided by the absorption length multiplied by the
inverse normalized Kerr detuning. For a sufficiently high
optical density of the sample, the elastic collisions are fast
enough to mediate a stimulated transition into the k ¼ 0
polariton mode. The critical temperature for this can be
orders of magnitude larger than that of atoms.
Condensation can be observed by releasing the stationary
field into a propagating field and observing the transverse
mode profile as well as the temporal coherence. In contrast
to exciton-polaritons, no cavity is needed, and the polariton
gas is three dimensional.
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[3] J.M. Blatt, K.W. Böer, and W. Brandt, Phys. Rev. 126,

1691 (1962).
[4] P. Littlewood, Science 316, 989 (2007).
[5] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[6] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West,

Science 316, 1007 (2007).
[7] S. O. Demokritov et al., Nature (London) 443, 430 (2006).
[8] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966); P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[9] F. E. Zimmer, J. Otterbach, R. G. Unanyan, B.W. Shore,

and M. Fleischhauer, Phys. Rev. A 77, 063823 (2008).
[10] M. Fleischhauer and M.D. Lukin, Phys. Rev. Lett. 84,

5094 (2000); M. Fleischhauer and M.D. Lukin, Phys.
Rev. A 65, 022314 (2002).

[11] L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi,
Nature (London) 397, 594 (1999).

[12] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth,
and M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001).

[13] C. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Nature
(London) 409, 490 (2001).

[14] M. Bajcsy, A. S. Zibrov, and M.D. Lukin, Nature
(London) 426, 638 (2003).

[15] Chu Chen et al., Phys. Rev. Lett. 97, 173004 (2006).
[16] J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson,

Phys. Rev. Lett. 95, 063601 (2005).
[17] See also: J. Otterbach, R.G. Unanyan, and M.

Fleischhauer, (to be published).
[18] D. E. Chang et al., report at http://arxiv.org/abs/0712.1817

(2007).
[19] S. E. Harris, Phys. Today 50, No. 7, 36 (1997).
[20] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev.

Mod. Phys. 77, 663 (2005).
[21] F. E. Zimmer, A. Andre, M.D. Lukin, and M.

Fleischhauer, Opt. Commun. 264, 441 (2006).
[22] H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).

(b)

(a)

Ε+

−

|s

|g

+Ω

|e|e +

FIG. 3 (color online). (a) Detection of condensation: switching
off one of the two control beams transforms the stationary into a
propagating polariton which can be observed as emitted light
pulse. (b) Transverse emission profile above (left) and much
below (right) condensation. An ideal quasihomogeneous Bose-
gas was assumed with transversal Gaussian distribution of width
178 �T;x with �T;x being the transversal de Broglie wavelength at

temperature T.
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