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A scheme for generating continuous beams of atoms in nonclassical or entangled quantum states is
proposed and analyzed. For this the recently suggested transfer technique of quantum states from light
fields to collective atomic excitation by stimulated Raman adiabatic passage [M. Fleischhauer and M. D.
Lukin, Phys. Rev. Lett. 84, 5094 (2000)] is employed and extended to matter waves.
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Since the experimental realization of Bose-Einstein con-
densation (BEC) of atoms [1] much effort has been put
into the generation of coherent matter waves (atom lasers)
[2]. Besides being of fundamental interest, coherent mat-
ter waves are anticipated to lead to a substantial increase
of interferometer sensitivities as compared to their optical
counterparts due to the much smaller wavelength. On the
other hand, particle sources have a significantly smaller
brightness than lasers and consequently a much higher
level of shot noise. By now experimental techniques have
advanced to the point that shot-noise limited operation is
achievable in the laboratory [3] and quantum fluctuations
represent a true sensitivity limit for atom interferometer.
Furthermore, recent advances in quantum information sci-
ence lead to an increased interest in sources of entangled
massive particles. Some time ago Kitagawa and Ueda [4]
as well as Wineland et al. [5] proposed to use atom beams
in spin-squeezed states to reduce the noise level in inter-
ferometers and atomic clocks. While optical techniques to
generate nonclassical light are by now well developed [6],
less progress has been made for massive particles. We here
propose a novel scheme for generating continuous beams
of atoms in nonclassical quantum states, extending the re-
cently suggested quantum-state transfer between light and
atoms to matter waves [7–9].

Several proposals for generating atomic beams with
nonclassical quantum correlations have been put forward
and in part experimentally implemented. Hald et al. [10]
reported about spin squeezing of trapped atoms created
by squeezed-light pumping. The transfer was, however,
accompanied by spontaneous emission and only a limited
amount of spin squeezing could be achieved. A higher
degree of noise reduction was obtained by Kuzmich et al.
[11] by continuous quantum nondemolition measurements
on an atomic beam. Recently Pu and Meystre [12] and
Duan et al. [13] have proposed to make use of collisional
interactions in a Bose condensate to create squeezing or
entangled pairs of atoms. Conceptually related is the
squeezing and entanglement generation by dissociating
diatomic molecules [14]. Finally, the generation of
number squeezing in BEC in an array of weakly linked
traps was reported by Orzel et al. [15].
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Recently we have proposed a technique to transfer the
quantum state of photon wave packets to collective Raman
excitations of atoms in a loss-free and reversible manner
[7]. First experiments [8,9] have confirmed important as-
pects of this proposal. It is based on the adiabatic rotation
of dark-state polaritons, which are quasiparticles associ-
ated with electromagnetically induced transparency (EIT),
from a light field to a stationary spin excitation. When an
optically thick sample of three-level atoms in Raman con-
figuration is irradiated by a strong coherent Stokes field,
the absorption of the pump field is suppressed. (The no-
tion of pump and Stokes is introduced here to distinguish
the field coupling to the initially occupied and nonoccupied
lower levels in the Raman scheme. No special relation be-
tween the frequencies is implied, however.) Associated
with this is a substantial reduction of the group velocity
of the pump pulse [16] which corresponds to a temporary
storage of its quantum state in atomic spins. A complete
and persistent transfer can, however, be achieved only by a
dynamical reduction of the group velocity due to a decrease
of the Stokes field intensity in time. Although an applica-
tion of this technique to generate entangled or squeezed
samples of atoms has been proposed in [17], it requires an
explicit time dependence and is thus limited to pulsed light.
For many applications, in particular, subshot noise, matter-
wave interferometry, and continuous teleportation, a sta-
tionary source of nonclassical atoms is desired. We here
show that a complete transfer is possible under stationary
conditions in a setup where atoms move through a spatially
varying Stokes field creating an explicitly time-dependent
interaction in their rest frame. In this way a simple and ro-
bust cw source of atoms in nonclassical or entangled states
can be built.

We consider the one-dimensional model shown in
Fig. 1. A beam of L-type atoms with two (meta)stable
lower levels interacts with a quantum pump and a clas-
sical Stokes field. Atoms in different internal states are
described by three bosonic fields Cm�z, t� (m � 1, 2, 3).
The Stokes field is characterized by the Rabi-frequency
V�z, t� � V0�z�e2ivs�t2z�c0� with V0 taken real, and
the quantum pump field by the dimensionless positive
frequency component Ê�1��z, t� � E �z, t�e2ivp�t2z�c�,
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FIG. 1. Beam of three-level L-type atoms coupled to a classi-
cal field with Rabi-frequency V�z, t� and quantum field Ê�z, t�.
To minimize effect of Doppler broadening, geometry is chosen
such that ��ks 2 �kp� ? �ez � 0.

where c0 denotes the phase velocity projected onto the
z axis. The atoms are assumed to enter the interaction
region in state j1�.

It is convenient to introduce slowly varying ampli-
tudes, and a decomposition into velocity classes C1 �P

l F
l
1e

i�klz2vl t�, C2 �
P

l F
l
2ei��kl1kp �z2�vp1vl�t�, C3 �P

l F
l
3ei��kl1kp2ks�z2�vp2vs1vl�t�, where h̄kl is the momen-

tum of the atoms and h̄vl � h̄2k2
l �2m the corresponding

kinetic energy in the lth velocity class. kp and ks are
the wave-vector projection of pump and Stokes to the z
axis. The atoms shall have a narrow velocity distribution
around y0 � h̄k0�m with k0 ¿ jkp 2 ksj. All fields are
assumed to be in resonance for the central velocity class.
The equations of motion for the matter fields readµ

≠

≠t
1

h̄kl

2m
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≠z
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Fl

1 � 2igE1Fl
2 , (1)
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h̄kl
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∂
Fl

3 � 2iV0Fl
2 2 idlF

l
3 , (2)

µ
≠

≠t
1

h̄�kl 1 kp�
2m

≠

≠z

∂
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2 � 2�g 1 iDl�Fl
2

2 iV0Fl
3 2 igEFl

1

1 Fl
2 , (3)

where g is the atom-field coupling constant and Dl �
h̄klkp�m 1 �v21 2 vp� and dl � h̄kl�kp 2 ks��m 1
�v31 2 vp 1 vs� are the single and two-photon de-
tunings. Here second derivatives of the slowly varying
amplitudes were neglected and sufficiently slow spatial
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variations of E and V0 assumed. g denotes the loss rate
out of the excited state and Fl

2 the corresponding Langevin
noise operator. The propagation equation for the electro-
magnetic field readsµ

≠

≠t
1 c

≠

≠z

∂
E �z, t� � 2igC1

1 �z, t�C2�z, t� . (4)

The classical Stokes field is taken to be much stronger than
the quantum pump and is assumed undepleted.

In the following we will omit all Langevin noise terms
Fl

2 as well as homogeneous contributions to the solutions.
Thus the operator relations derived are valid only when
taken in normal-ordered correlation functions.

Consider a stationary input of atoms in state j1�, i.e.,
C1�0, t� �

p
n, where n is the constant total density of

atoms. In the limit of a weak quantum field and weak
atomic excitation one finds

Fl
1�z, t� � Fl

1�0, t 2 2mz�h̄kl� �
p

n jle
2iwl �z,t�, (5)

where
P

l jle2iwl�0,t� and wl � �klz 2 vlt�. Furthermore,
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First the case of perfect two-photon resonance for all
atoms shall be discussed, i.e., dl � 0. Here one can invoke
an adiabatic approximation, leading to
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gE �z, t�
V0�z�
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(9)
with yl �

h̄kl

2m .
Substituting the latter result into the equation of motion

for the radiation field yields
∑µ
1 1

g2n
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with y0 �
P

l jlyl.
Thus the quantum field propagates with a group velocity

ygr � c
�1 1

g2n
V2

0 �z�
y0

c �

�1 1
g2n

V
2
0 �z� �

, (11)

which approaches y0 if V0 ! 0. Note that y0 . 0 was
assumed here. In the case of atoms moving against the di-
rection of light propagation, i.e., for a negative y0, a van-
ishing and even a negative value of ygr can arise. Moving
the medium against the very small group velocity would
effectively freeze or redirect the light pulse [18] (note that
Galilean laws apply since jygrj ø c). In reality, however,
reflection as well as nonadiabatic effects and associated
losses prevent the latter from happening [19].

The right-hand side of Eq. (10) describes a reduction/
enhancement due to stimulated Raman adiabatic passage
in a spatially varying Stokes field. It can be seen that this is
070404-2
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possible only if y0 fi 0 in accordance with the observation
in [7] that a unidirectional transfer of excitation requires
an explicit time dependence. For nonvanishing y0 a space-
dependent Stokes field in the laboratory frame is equivalent
to a time-dependent field in the rest frame of the atoms.

Equation (10) has the simple solution

E �z, t� � E �0, t 2 t�z��
cosu�z�
cosu�0�

, (12)

where t�z� �
Rz

0 dz 0 y21
gr �z0� and we have introduced the

mixing angle u�z� according to tan2u�z� � g2n
V2

0 �z�
y0

c . If
V0�z� is a sufficiently slowly, monotonically decreasing
function of z which approaches zero, the amplitude of the
pump field decreases to zero as well. At the same time one
finds from (8) for C̃3 � C3e2i	�kp 2ks�z2�vp2vs�t


C̃3�z, t� � 2

r
c
y0

tanu�z�E �z, t� . (13)

If at the input of the interaction region u�0� � 0 and at the
output u�L� � p�2 this yields

C̃3�L, t� � 2

r
c
y0

E �0, t 2 t� , (14)

with t �
RL

0 dz y21
gr �z�. The factor

p
c�y0 accounts for the

fact that the input light propagates with velocity c while the
output matter field propagates only with y0. As can easily
be seen, the input flux of photons is thus equal to the out-
put flux of atoms in state j3�: c�E1E �in � y0�C1

3 C3�out.
Equation (14) is the main result of the paper. It shows that
in the present setup the quantum properties of an input
electromagnetic field can be completely transferred to an
atomic beam. This is illustrated in Fig. 2, where the av-
erage value and fluctuations of the photon number n̂�z�
and the number of atoms in state 3, m̂3�z� passing a plane
at position z during a certain time interval, are shown.
The exchange of photons into state-3 atoms is apparent.
Because of the incomplete transfer of excitations, atom-
number fluctuations reach a maximum for intermediate z,
but �Dm2

3�out ! �Dnph�in.
Thus continuous matter waves with nonclassical quan-

tum correlations can be generated out of cw nonclassical
light. Since the mapping technique can be applied to sepa-
rate Raman transitions at the same time, it is also possible
to transfer continuous entanglement from a pair of cw
light beams as generated, for example, in parametric down-
conversion to a pair of atomic beams.

In the derivation of the above result several approxima-
tions have been invoked. In the following, the validity of
those will be discussed in more detail. The first approxi-
mations made are those of a weak quantum pump field and
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FIG. 2. Average values and fluctuations of photons and atoms
in state 3 traversing a plane at position z in a given time interval
normalized to input photon number. Input light is in Fock state.
n̂ph � c

R
T dt Ey�z, t�E �z, t�, m̂3 � y0

R
T dt C

y
3 �z, t�C3�z, t�.

Inset shows V�z� in units of g
p

ny0�c.

weak atomic excitation. It can easily be seen from Eq. (8)
that the ratio of the intensity of the pump to the Stokes
field is given by the ratio of the atomic number density in
state j3� to the total number density, even when the Stokes
field goes to zero: g2�E1E ��V

2
0 � �C1

3 C3��n. It is thus
sufficient to fulfill the condition of weak atomic excitation,
which requires that the input flux of atoms is much larger
than the input flux of pump photons. This condition re-
quires some experimental efforts and may not be easy to
satisfy. On the other hand, rather high flux densities of
atoms can be achieved in supersonic beam configurations
or (with narrow velocity distributions) in atom lasers.

A second assumption made is that of perfect two-
photon resonance. This condition can be fulfilled only
if either the velocity spread of the atoms is extremely
small or if the relative wave vector of pump and Stokes
fields projected onto the z axis vanishes. Both conditions
are not easy to satisfy. They require either a substantial
level of longitudinal cooling, i.e., a coherent source of
input atoms or a careful design of pump and Stokes field
geometry. For a quantitative analysis a nonvanishing but
constant value of dl � d is considered in the following.
In this case there is a contribution to F

l
2 even in lowest

order of the adiabatic expansion.

Fl
2 ! Fl

2 1
dV0

V
2
0 2 d�D 2 ig�

gE

V0

p
n jle

2i�klz2vlt�,

(15)

which gives rise to an additional dissipative loss term in
the equation for E
∑µ

1 1
g2n
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where the dots indicate additional imaginary terms that
affect only the phase of E .

To estimate the influence of the dissipative term D � 0
is assumed. Integrating the field equation yields for the
loss factor h of the field amplitude (E ! hE )

h � exp

(
2a

Z 1

0
dz

cos2u�z �x2

cot4u�z � 1 x2

)
, (17)

with z � z�L. Here a � g2nL�gc is the opacity of
the medium in the absence of EIT and x � dg�g2n

y0

c is
a dimensionless quantity characterizing the two-photon
detuning. The cosine of the mixing angle is monotoni-
cally decreasing from some initial value to zero over the
interaction length L. Assuming x ø 1 one can give an
upper limit to the integral in Eq. (17), by replacing the in-
tegrand by its maximum value, which is achieved when
cos2u � jxj ø 1. This gives the very good estimate h $

exp	2ajxj�2
. Thus in order to neglect the influence of
dissipative losses, it is sufficient that

jdj
L

y0
ø 1 . (18)

A two-photon detuning can result, for example, from a
residual Doppler shift of the 1–3 transition. If Dy denotes
the difference of the velocity in z direction with respect to
the resonant velocity class, the corresponding two-photon
detuning reads d � Dy��kp 2 �ks� ? �ez . In this case (18)
translates into

jDyj

y0
ø

1
�kp 2 ks�L

. (19)

It can be seen from (19) that the geometry of the setup
should be chosen in such a way that the beat-note wave
vector has a minimal projection to the z axis. Combining
this with the requirement of a spatially decreasing Stokes
field V0�z� is experimentally difficult, but possible in prin-
ciple. Furthermore, other schemes of quantum-state trans-
fer that use adiabatic sweeping of the two-photon detuning
through resonance rather than an adiabatically varying
Stokes intensity may be employed [20].

For a monochromatic quantum pump field the conditions
for adiabaticity can easily be obtained from those in a
stationary medium with time-dependent Stokes field [21]
by a simple frame transformation. This yields

g
Z L

0
dz

y0�u0�z��2

g2n 1 V
2
0 �z�

ø 1 . (20)

Setting u0�z� � 1�L this results in a lower limit for the
beam opacity a � g2nL�gc in the absence of EIT

a ¿
y0

c
. (21)

Since y0 ø c, a value of a much less than unity will be
sufficient to guarantee total adiabatic transfer. Note that y0

cannot be arbitrarily small, however, since the atom flux at
the input has to be much larger than the input photon flux.
070404-4
In summary, we have shown that a complete and loss-
free transfer of quantum properties from a cw light field to
a continuous beam of atoms is possible using a recently
proposed technique based on Raman adiabatic transfer.
The combination of a space-dependent Stokes field with
a finite momentum of the input matter wave leads to a
time-varying Stokes field in the rest frame of the atoms.
In this way continuous and monochromatic matter waves
in nonclassical or entangled quantum states can be gener-
ated out of light fields with corresponding properties.
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