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Short-time versus long-time dynamics of entanglement in quantum lattice models
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We study the short-time evolution of the bipartite entanglement in quantum lattice systems with local
interactions in terms of the purity of the reduced density matrix. A lower bound for the purity is derived in terms
of the eigenvalue spread of the interaction Hamiltonian between the partitions. Starting from an initially separable
state the purity decreases as 1 − (t/τ )2 (i.e., quadratically in time, with a characteristic timescale τ that is inversely
proportional to the boundary size of the subsystem, that is, as an area law). For larger times an exponential lower
bound is derived corresponding to the well-known linear-in-time bound of the entanglement entropy. The validity
of the derived lower bound is illustrated by comparison to the exact dynamics of a one-dimensional spin lattice
system as well as a pair of coupled spin ladders obtained from numerical simulations.
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I. INTRODUCTION

Motivated by the question of whether the time evolution of
interacting quantum systems can be efficiently simulated with
the help of matrix-product decompositions of the many-body
wave function [1–3] or corresponding analogs in higher
dimensions [1,4–8], the dynamics of entanglement in quantum
lattice models has become an important research area in
quantum physics. A convenient measure of entanglement are
[9] the von Neumann and Rényi entropies. It was shown in
Refs. [10,11] that the von Neumann entropy of a subsystem
that starts in an initially separable state has an upper bound
that grows linear in time. The linear growth of the entropy,
as observed by Calabrese and co-workers [12,13], which
corresponds to an exponential growth of the effective bond
dimension of matrix-product states (MPS) represents a severe
limitation for the simulability of the unitary time evolution of
quantum many-body systems. In the present note we derive
an upper bound to the bipartite entanglement that also holds
for short times. In particular, we consider the purity of the
reduced density matrix of one of the partitions. General
quantum mechanical arguments suggest that the purity cannot
decrease exponentially for short times as implied by the
linear entanglement bound [10,11,14], but rather quadratically.
Here we derive a quadratic lower bound for the purity. This
finding, which is the main result of our article, has practical
relevance for the numerical simulation of another class of
dynamical problems that gained a lot of interest recently
where the time evolution is nonunitary due to a coupling
to external reservoirs [15–25]. The nonunitary Liouvillian
dynamics of the system density matrix is equivalent to a time
evolution of the many-body wave function with a complex
Hamiltonian and with a stochastic sequence of projections,
called quantum jumps [26–28]. If the frequency of such
projections is sufficiently large they can prevent the growth
of entanglement within the system by a mechanism similar
to the well-known quantum Zeno effect [29]. As a result of
this, the time evolution of open system may be simulated
using an adaptive MPS expansion as, for example, within the
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time evolving block decimation algorithm (TEBD) [2,3] for
longer times. The critical frequency of such a Zeno effect for
entanglement is determined by the coefficient of the quadratic
term in the short-time expansion of the purity. Note that this
effect would be absent for an exponential time dependence of
the purity. For larger times we derive an exponential lower
bound corresponding to the well-known linear–in–time bound
of the entanglement entropy [10,11,14]. Although this result
follows directly from the latter entropy bound, we derive it
here in a few lines without making use of the somewhat
more involved proof of the linear entropy scaling. To illustrate
the validity of our findings we discuss as an example the
one-dimensional (1D) spin- 1

2 XX and XXZ models, where we
calculate the time evolution of the purity using the numerical
time-evolving block decimation algorithm [2,3], as well as two
coupled spin chains, which allow us to illustrate the scaling
with the boundary size.

II. SHORT-TIME BEHAVIOR

We here consider a lattice model with a bipartition into
parts A and B, which are, say, compact sets of lattice sites.
We assume that the Hamiltonian of the total systems can be
written as

ĤAB = ĤA + ĤB +
∑

q∈{A|B}
Ĥ (A)

q ⊗ Ĥ (B)
q , (1)

where ĤA and ĤB are the parts of the Hamiltonian acting
on lattice sites inside the respective partitions. The last sum
describes the interaction between the two parts and extends
over all bonds, labeled by the index q, that connect sites from
both partitions. We assume an interaction that has strict finite
range. In this case, the total number of bonds scales with the
size N of the surface separating the two partitions.

Any pure state of the total system can be decomposed as

|�(t)〉AB =
L∑

α=1

√
ξα

∣∣φ(A)
α

〉 ⊗ ∣∣φ(B)
α

〉
, (2)

where |φ(A)
α 〉 and |φ(B)

α 〉 are orthonormal sets of states of the
subsystems, ξα � 0 are the Schmidt coefficients, and L is at
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most the dimension of the Hilbert space of the smaller sub-
system. As |�(t)〉AB is normalized,

∑
α ξα = 1. The reduced

density operator of the subsystem A, ρA = trB{ρAB}, where
ρAB = |�(t)〉AB〈�(t)|AB , satisfies the equation of motion,

dρA

dt
= −itrB{[ĤAB, ρAB]}. (3)

(Note that we have set h̄ = 1 throughout this text.) The form of
the Hamiltonian (1) and the cyclic property of the trace allows
us to obtain the following equation,

d

dt
trρ2

A = −2itr

{
ρAtrB

[∑
q

Ĥ (A)
q ⊗ Ĥ (B)

q , ρAB

]}
, (4)

for the purity rate. The traces on the right-hand side can be
calculated in the eigenbasis of the ρA and ρB :

tr

{
ρAtrB

(∑
q

Ĥ (A)
q ⊗ Ĥ (B)

q ρAB

)}

=
∑
q,α

ξα

〈
φ(A)

α

∣∣trBĤ (A)
q ⊗ Ĥ (B)

q ρAB

∣∣φ(A)
α

〉
(5)

=
∑
q,α,α′

ξα

√
ξαξα′

〈
φ(A)

α

∣∣trBĤ (A)
q ⊗ Ĥ (B)

q

∣∣φ(A)
α′

〉 ⊗ ∣∣φ(B)
α′

〉〈
φ(B)

α

∣∣
=

∑
q,α,α′

ξα

√
ξαξα′

〈
φ(A)

α

∣∣Ĥ (A)
q

∣∣φ(A)
α′

〉
trB

(
Ĥ (B)

q

∣∣φ(B)
α′

〉〈
φ(B)

α

∣∣)
=

∑
q,α,α′

ξα

√
ξαξα′

〈
φ(A)

α

∣∣Ĥ (A)
q

∣∣φ(A)
α′

〉〈
φ(B)

α

∣∣Ĥ (B)
q

∣∣φ(B)
α′

〉
, (6)

and in the same way, the second term of the commutator is

tr

{
ρAtrB

(
ρAB

∑
q

Ĥ (A)
q ⊗ Ĥ (B)

q

)}

=
∑

q,α,α′′
ξα

√
ξαξα′′

〈
φ

(A)
α′′

∣∣Ĥ (A)
q

∣∣φ(A)
α

〉〈
φ

(B)
α′′

∣∣Ĥ (B)
q

∣∣φ(B)
α

〉
. (7)

Combining Eqs. (4), (6), and (7) one obtains the following
differential equation for the purity,

d

dt
trρ2

A = −2i
∑
q,α,β

√
ξαξβ(ξα − ξβ)

× 〈
φ(A)

α

∣∣Ĥ (A)
q

∣∣φ(A)
β

〉〈
φ(B)

α

∣∣Ĥ (B)
q

∣∣φ(B)
β

〉
. (8)

This equation can be rewritten in a compact form,

d

dt
trρ2

A = tr[�Q], (9)

where

�αβ = −2i
√

ξαξβ(ξα − ξβ), (10)

and

Qαβ =
∑

q

〈
φ(A)

α

∣∣Ĥ (A)
q

∣∣φ(A)
β

〉〈
φ(B)

α

∣∣Ĥ (B)
q

∣∣φ(B)
β

〉
. (11)

The matrix � has only two nonzero eigenvalues. Indeed, �

can be written as

� = −2i|a〉〈b| + 2i|b〉〈a|, (12)

where

|a〉 = (
ξ

3/2
1 , ξ

3/2
2 , . . . ξ

3/2
L

)T
,

|b〉 = (
ξ

1/2
1 , ξ

1/2
2 , . . . ξ

1/2
L

)T
.

It is easy to show that the nonzero eigenvalues of � are

λ±(�) = ±2
√

〈a|a〉〈b|b〉 − |〈a|b〉|2 (13)

= ±2
√

trρ3
A − (

trρ2
A

)2
.

Let |q±〉 be the corresponding eigenvectors of �, then the trace
(9) can be evaluated in the eigenbasis of �, which yields the
following equation for the purity rate,

d

dt
trρ2

A = 2
√

trρ3
A − (

trρ2
A

)2
(〈q+|Q|q+〉 − 〈q−|Q|q−〉).

(14)

The right side of this equation can be bounded from above by
the spread of the eigenvalues of the interaction Hamiltonian
between partitions A and B:

d

dt
trρ2

A � 2
√

trρ3
A − (

trρ2
A

)2
[λmax − λmin]. (15)

Here λmax and λmin are the maximum and minimum eigenval-
ues of

∑
q∈{A|B} Ĥ (A)

q ⊗ Ĥ (B)
q .

In a similar way one can show that

d

dt
trρ2

A � −2
√

trρ3
A − (

trρ2
A

)2
[λmax − λmin]. (16)

Combining the inequalities [Eqs. (15) and (16)] we obtain∣∣∣∣ d

dt
trρ2

A

∣∣∣∣ � 2µ

√
trρ3

A − (
trρ2

A

)2
, (17)

where

µ = λmax

(∑
q

Ĥ (A)
q ⊗ Ĥ (B)

q

)
− λmin

(∑
q

Ĥ (A)
q ⊗ Ĥ (B)

q

)

is a constant that scales linear with the size N of the surface
separating the subsystems.

In order to solve the differential inequality [Eq. (17)] we
need an expression or at least an estimate for trρ3

A in terms of
the purity. With the help of Hardy’s inequality (

∑
k am

k )1/m �
(
∑

k an
k )1/n for any ak � 0, and m > n > 0 (see Ref. [30]), one

can show that trρ3
A � (trρ2

A)3/2. With this we find the following
differential inequality for the purity∣∣∣∣ d

dt
trρ2

A

∣∣∣∣ � 2µ

√(
trρ2

A

)3/2 − (
trρ2

A

)2
. (18)

In general the short-time behavior is local, and Eq. (18)
partially supports this intuition; since the control parameter
is µ, the spread of the local Hamiltonian. However, due to the
second factor the dynamics of the purity does not only depend
on the local Hamiltonian, but also on the purity of the initial
state (see examples).

We can divide the left- and right-hand side by the square-
root term, which after integration yields∣∣∣∣ d

dt
arcsin

[(
trρ2

A

)1/4]∣∣∣∣ � µ

2
. (19)
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Using

arcsin
[(

trρ2
A

)1/4] =
∫ t

0

d

dτ

{
arcsin

[(
trρ2

A

)1/4]}
dτ

+ arcsin
{[

trρ2
A(0)

]1/4}
(20)

gives a solution of Eq. (18) with the initial purity trρ2
A(0),

sin4
[
max

(
−µ

2
t + arcsin

[
trρ2

A(0)
]1/4

, 0
)]

� trρ2
A

� sin4
[
min

(µ

2
t + arcsin

[
trρ2

A(0)
]1/4

,
π

2

)]
. (21)

If trρ2
A(0) = 1 (i.e., if the subsystems are uncorrelated in the

beginning, the upper bound is trivial). The lower bound reduces
to

trρ2
A � cos4 µt

2
, for µt � π. (22)

We note that the lower bound becomes zero at µt > π (i.e., it
reduces to the trivial one).

The lower bound can be slightly improved, if we know the
maximum Schmidt rank Lmax of the bipartite decomposition
that can arise along the evolution. One finds

trρ2
A � cos4 µt

2
+ 1

Lmax − 1
sin4 µt

2
. (23)

Evidently, trρ2
A � L−1

max as it should be. Typically Lmax � 1
and thus the second term in Eq. (23) is small. In the general
case, Lmax can be the dimension of the smaller Hilbert space.
Therefore, one must assume this, if there is no better bound
known a priori. In certain special cases such as for the 1D
quantum Ising model with an initial state that factorizes in all
sites, Lmax = 2, and the lower bound [Eq. (23)] becomes exact
(see below).

The estimation [Eq. (23)] follows from the inequality

trρ3 � 1

L3
max

{
[1 +

√
(Lmax−1)(Lmaxtrρ2 − 1)]3 + [Lmax−1 −

√
(Lmax−1)(Lmaxtrρ2 − 1)]3

(Lmax−1)2

}
, (24)

which can be proven by the method of Lagrange multipliers.
Equations (21) and (22), respectively Eq. (23), provide

an estimate for the purity for short times. As expected from
general quantum mechanical arguments, the lower bound of
the purity decreases quadratically in time following ∼−(t/τ )2.
The characteristic time τ that defines the range of validity
of the quadratic time scaling is inverse proportional to the
eigenvalue spread µ and scales linearly with the size of the
surface N separating the subsystems and thus has an area-law
behavior. In order to test the scaling of the lower bound with
the boundary size of the system, we consider next a pair of
linear spin chains subject to an Ising interaction,

Ĥ =
N∑

j=1

σ̂ x
j ⊗ τ̂ x

j , (25)

where σ̂ and τ̂ are the Pauli operators of the two chains,
respectively. If the initial state is

|⇓A⇑B〉 = |↓↓ · · · ↓〉A ⊗ |↑↑ · · · ↑〉B, (26)

that is, where all spins in chain A are in the eigenstate of σ̂ z,
respectively τ̂ z, with spin down and all spins in chain B in the
corresponding spin up state, the purity is given by

trρ2 = (cos4 t + sin4 t)N. (27)

This can be seen easily, as for the initial product state the total
purity can be represented as

trρ2 = tr
N∏

i=1

ρ2
i = (

trρ2
1

)N = (cos4 t + sin4 t)N, (28)

because each spin pair of the coupled chains has a purity equal
to cos4 t + sin4 t . We, thus, see that the characteristic time τ

scales as
√

N for this choice of the initial state. However, if one

considers a Greenberger-Horne-Zeilinger–type initial state,

|GHZ〉A ⊗ |GHZ〉B
=

(
1√
2

|++ · · · +〉A + 1√
2

|−− · · · −〉A
)

⊗
(

1√
2

|++ · · · +〉B + 1√
2

|−− · · · −〉B
)

, (29)

with |±〉 denoting eigenstates of σ̂ x , respectively τ̂ x , one finds

trρ2 = cos4 Nt + sin4 Nt, (30)

as can be shown by simple algebraic calculations. We see
that Eq. (30) coincides with our estimation [Eq. (23)] since
µ = 2N and Lmax = 2. In other words, our estimate is a tight
lower bound for the purity. In this case, the system size scaling
of the characteristic time is N .

Note that in the special case of an Ising Hamiltonian, our
two-chains example, in fact, also represents higher dimen-
sional Ising lattices of arbitrary size. Since all summands in
the Ising Hamiltonian, say on a hyper-cubic lattice, commute,
they can be absorbed in the quantum states of the subsystems
A an B. They play no role for the entanglement, which is only
created by the terms directly coupling A and B. But those can
always be written in the form Eq. (25), no matter what the
spacial dimension of the surface is.

For short times, the quadratic estimate [Eq. (22)] is much
better than any exponential one [Eq. (34)] (see below).
Furthermore, it is of fundamental importance. It shows, for
example, that a sequence of frequent projections of the system
onto nonentangled states (i.e., no entanglement within the
system) at a rate larger than µ will prevent the buildup of
such an entanglement in full analogy to the quantum Zeno
effect [29].
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III. LONG-TIME BEHAVIOR

The long-time behavior of the purity can be obtained
from the known upper linear-in-time bound of the entropy
[10,11,14]. Indeed, by using the convexity of − ln x, we
immediately get

S = −
∑

i

ξi ln ξi � − ln
∑

i

ξ 2
i = − ln trρ2

A. (31)

We thus have

trρ2
A � exp(−S) � exp(−c0) exp(−c1t),

where S � c0 + c1t , c0 and c1 being positive constants.
In the following we show that Eq. (31) can also be obtained

in a simple way from our approach without the necessity to
invoke the rather involved proof of the linear-in-time bound of
the entropy.

In order to find a suitable estimate for the long-time
behavior of the purity, one has to find a different way to bound
the right-hand side of Eq. (8). The interference effects become
negligible at t � 1

µ
and therefore we may use inequalities of

the Schwartz type. In other words, we may sum all interactions
(matrix elements) in modulus instead of amplitude. In this case,
one finds∣∣∣∣ d

dt
trρ2

A

∣∣∣∣
� 2

∑
q,α,β

√
ξαξβ |ξα − ξβ |∣∣〈φ(A)

α

∣∣Ĥ (A)
q

∣∣φ(A)
β

〉〈
φ(B)

α

∣∣Ĥ (B)
q

∣∣φ(B)
β

〉∣∣
�

√
2

∑
q,α,β

ξ 2
α

∣∣〈φ(A)
α

∣∣Ĥ (A)
q |φ(A)

β

〉〈
φ(B)

α |Ĥ (B)
q

∣∣φ(B)
β

〉∣∣. (32)

Here we have used

√
2ξαξβ |ξα − ξβ | �

ξ 2
α + ξ 2

β

2
.

Making use of Schwartz’s inequality, we obtain∑
β

∣∣〈φ(A)
α

∣∣Ĥ (A)
q

∣∣φ(A)
β

〉〈
φ(B)

α

∣∣Ĥ (B)
q

∣∣φ(B)
β

〉∣∣
�

√∑
β

∣∣〈φ(A)
α

∣∣Ĥ (A)
q

∣∣φ(A)
β

〉∣∣2 ∑
β

∣∣〈φ(B)
α

∣∣Ĥ (B)
q

∣∣φ(B)
β

〉∣∣2

=
√〈

φ
(A)
α

∣∣(Ĥ (A)
q

)2∣∣φ(A)
α

〉〈
φ

(B)
α

∣∣(Ĥ (B)
q )2

∣∣φ(B)
α

〉
�

√
λmax

[(
Ĥ

(A)
q

)2]
λmax

[(
Ĥ

(B)
q

)2]
.

We thus arrive at ∣∣∣∣ d

dt
trρ2

A

∣∣∣∣ � χ trρ2
A, (33)

where

χ =
√

2
∑

q

√
λmax

[(
Ĥ

(A)
q

)2]
λmax

[(
Ĥ

(B)
q

)2]
.

The solution of this differential inequality with the initial
condition trρ2

A(0) = 1 is

trρ2
A � exp(−χt). (34)

IV. NUMERICAL EXAMPLES: SPIN– 1
2 XX

AND XXZ CHAINS, MULTIDIMENSIONAL
QUANTUM ISING MODEL

To illustrate the quality of the bounds given in Eqs. (22)
and (34), we perform exact numerical simulations for a large
1D spin system as well as for two coupled spin chains of small
size. We first consider the spin- 1

2 XX model,

Ĥ = −1

2

∑
j

(
σ̂ x

j σ̂ x
j+1 + σ̂

y

j σ̂
y

j+1

)
. (35)

For this model the constants that enter our estimates take
on the values µ = 2 and χ = √

2. We look at a chain of
160 spins and in order to maximize the dimension of the
subsystems we choose an equal partition with A (B) being
the left (right) half-chain. The initial state of the system is
taken to be a product state, specifically the antiferromagnetic
state,

|�A(t = 0)〉 = |�B(t = 0)〉 = |↑↓↑↓↑↓ · · · ↑↓〉 . (36)

We choose this particular initial state in order to have a large
maximum entropy since |�A(t = 0)〉 corresponds to half-
filling, so the dimension of the Hilbert space accessible with
respect to the present conservation of the total z magnetization
is maximized. The purity is initially 1. Figure 1 shows the
evolution of the purity over time. The red (online), straight,
thick line represents the numerical results from our simulation
using the time-evolving block decimation (TEBD) method
[2,3]. These results can be considered numerically exact as
discussed below. The solid, black, thinner lines show the
bounds [Eq. (22)]. The one starting at t = 0 indicates that our
bound is optimal up to second order for times short compared to
the inverse coupling between A and B, if we start initially from
a pure state. However, when starting from an initially entangled
state, we can only expect to get agreement up to zeroth order
from Eq. (21), as illustrated by the black, solid, thinner lines
starting at t = 1 and t = 2. Although the exponential lower
bound [Eq. (34)], plotted in the dashed line, is bad for short
times, it has the property of remaining finite for all times in
contrast to Eq. (22). So one can smoothly concatenate the two

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t

tr
 ρ

A2

0 0.1 0.2
0.9

1

FIG. 1. (Color online) Time evolution of the purity in the 80 + 80
site XX chain compared to the bounds [Eqs. (22) and (34)] (see
text). The inset shows a closeup for short times. Note that t has
no units since we have chosen the dimensionless Hamiltonian
Eq. (35).
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0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t

tr
 ρ

A2

0 0.1 0.2
0.9

1

FIG. 2. (Color online) Time evolution of the purity in the 80 + 80
site XXZ chain for  = 1

2 compared to the bounds [Eqs. (22) and (34)]
in analogy to Fig. 1. The inset shows a closeup for short times. The
dotted lines show the purity in the XX model (Fig. 1) for comparison.

bounds at time,

t1 = 2

µ
arctan

(
χ

2µ

)
, (37)

assuming we started with a pure state at t = 0. This combined
bound is superior to both the quadratic short-time and
exponential long-time estimates and is shown as a green
(online), dot-dashed line.

Analogous calculations where also done for the spin- 1
2 XXZ

model,

Ĥ = −1

2

∑
j

(
σ̂ x

j σ̂ x
j+1 + σ̂

y

j σ̂
y

j+1 + σ̂ z
j σ̂ z

j+1

)
, (38)

choosing the anisotropy  to be 1
2 . This again yields a constant

of µ = 2 for the short- time behavior. But while the exponential
bound increases to χ = 5

2
√

2
and one could expect a faster

decay of the purity due to the fact that this system cannot be
mapped to free fermions, the true curves are very much alike
for both systems (see Fig. 2).

The numerical calculation was done using a matrix dimen-
sion of D = 500, a time-step width of 0.01 in a fourth-order
Trotter decomposition, and exploiting the conservation of the
total magnetization explicitly. Although the dimension of the
subsystems is adaptively truncated to D, this cannot introduce
error on the timescale plotted, since the purity remains well
above the minimal value of 1/D representable using matrix
product states. Thus, all relevant states are included by
the algorithm.

Figure 3 illustrates the tightness of Eq. (22) for proper
initial conditions. It shows 1 − trρ2

A in a system of two
Ising spin chains of length N , subject to the Hamiltonian
Eq. (25), after a short time of t = 0.001 of evolution. Ising-type
couplings inside the chains were also taken into account, but
do not contribute to the entanglement between the two chains.
Although for simple product states between the sites, one can
expect a scaling of τ ∼ √

N (dashed line), we know from
Eq. (30) that there are in fact initial states that contain sufficient
entanglement along the boundary, to give τ ∼ N [i.e., where
Eq. (22) is tight]. The different symbols correspond to different
initial states, the evolution of which was calculated via an
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FIG. 3. (Color online) Short-time scaling of the purity with
boundary size for a pair of coupled spin chains with Ising interaction.
Exact diagonalization was done for t = 0.001, such that the quadratic
order in Eqs. (22) and (28) suffices to describe the result. Although
the GHZ-like initial states show the fastest increase of entanglement
[τ ∼ N ; Eq. (22), straight line], and the product-like ones stick to
the moderate τ ∼ √

N [Eq. (28), dashed line], W-type states show an
intermediate behavior.

exact diagonalization. As already seen above, we have an N

scaling for an initial product-like state Eq. (26), while we get
an exact N2 scaling for GHZ-like initial states [Eq. (29)]. Also
shown are other states like the W-type states |Wp〉A ⊗ |Wp〉B ,
where

|Wp〉 =
∑

1�j1<j2<···<jp�N

σ̂ x
j1
σ̂ x

j2
· · · σ̂ x

jp
|↓↓ · · · ↓〉. (39)

SUMMARY

In summary we derived an upper bound for the time evolu-
tion of the bipartite entanglement in quantum lattice models in
terms of a lower bound to the subsystem purity. As one would
expect from general quantum mechanical considerations, the
purity decreases for short times quadratically in time. The
corresponding characteristic time was shown to be limited by
the spread of the eigenvalues of the part of the Hamiltonian
that accounts for the interaction between the partitions. The
latter scales linear with the size of the surface separating the
two partitions and thus the entanglement follows an area-law
behavior. For larger times we derived a lower bound of the
purity that decreases exponentially in time. The latter is
equivalent to the known linear increase of the entanglement
entropy in the long-time limit. The existence of a quadratic
short-time bound means that a sufficiently frequent sequence
of projections to nonentangled states, as, for example, due to
a dissipative process, can prevent the buildup of entanglement
within the lattice system.
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