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Fermion-mediated long-range interactions of bosons in the one-dimensional
Bose-Fermi-Hubbard model
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The ground-state phase diagram of mixtures of spin polarized fermions and bosons in a 1D periodic lattice is
discussed in the limit of large fermion hopping and half filling of the fermions. Numerical simulations performed
with the density matrix renormalization group (DMRG) show in addition to bosonic Mott insulating (MI),
superfluid (SF), and charge density-wave phases (CDW) a yet unreported phase with spatial separation of MI and
CDW regions. We derive an effective bosonic theory which allows for a complete understanding and quantitative
prediction of the bosonic phase diagram. In particular the origin of CDW phase and the MI-CDW phase separation
is revealed as an effective fermion-mediated long-range interaction between bosons with alternating sign.
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Ultracold atomic gases in light induced periodic potentials
have become an important experimental testing ground for
concepts of many-body physics since they allow the realization
of precisely controllable model Hamiltonians with widely
tunable parameters. A system which has attracted particular
interest in the recent past is a mixture of bosons and spin-
polarized fermions in a deep lattice potential, described by
the Bose-Fermi-Hubbard model (BFHM) [1,2]. Mixing lattice
bosons with fermions, Günther et al. [3] and Ospelkaus et al.
[4] observed an unexpected reduction of bosonic superfluidity
which triggered a number of theoretical and experimental
studies on the influence of fermions on boson superfluidity.
In the limit of small fermion mobility the phase diagram
can be well understood by mapping to the purely bosonic
Hubbard system with binary disorder [5,6]. For increasing
fermionic hopping amplitudes a number of new phenomena
emerge [7], including polaronic phases [8] and density waves
[9,10]. Furthermore the interaction with fermions has been
predicted to allow the bosons under certain conditions to enter
the a supersolid phase (SS), where CDW and off-diagonal
long-range order coexist [11–13].

In the present Rapid Communication we study the 1D
BFHM in the limit of large fermion hopping which allows for
a rather comprehensive understanding of the existing phases
and their origin in particular in the case of half filling of
the spin-polarized fermions. In the large hopping limit the
fermions can be formally integrated out [11,14,15], resulting in
a long-range density-density interaction between the bosons.
This interaction has alternating sign if the fermion filling is
commensurate with the lattice which is to be the origin of the
4kF CDW. In the thermodynamic limit it is, however, formally
divergent and needs to be renormalized which is done here
by taking into account the back-action of the bosons to the
fast fermions. The resulting effective boson model allows an
analytic and quantitative prediction of the (µB − JB) phase
diagram, where µB is the bosonic chemical potential and JB

the corresponding hopping amplitude. At double half filling,
i.e., �F = �B = 1

2 , we identify an incompressible CDW phase
and study its transition to a SF with increasing JB both
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using analytic results from the effective model and numerical
simulations based on DMRG [16]. DMRG simulations also
show the presence of a yet unreported phase with coexistence
between spatially separated Mott-insulator and CDW regions
for noncommensurate boson filling. This phase which is absent
for a pure boson model with nearest-neighbor interaction [17]
can be well explained within the effective model and is shown
to exist for all values of the boson-fermion interaction. As the
effective theory describes the appearance of a density wave on
a quantitative level it is expected to explain also the conditions
for the existence of a SS found in Ref. [13] using quantum
Monte Carlo simulations. In Ref. [13], numerical evidence was
given that a SS only exists if the filling of the spin-polarized
fermions is exactly one half and the system is doped with extra
bosons away from half filling.

Mixtures of ultracold bosons and spin-polarized fermions in
optical lattices are well described by the Bose-Fermi-Hubbard
Hamiltonian [18,19]

Ĥ = −JB

∑
j

(b̂†j b̂j+1 + b̂
†
j+1b̂j ) + U

2

∑
j

n̂j (n̂j − 1)

− JF

∑
j

(ĉ†j ĉj+1 + ĉ
†
j+1ĉj ) + V

∑
j

n̂j m̂j , (1)

where b̂†, b̂ (ĉ†, ĉ) are bosonic (fermionic) creation and
annihilation operators and n̂ (m̂) the corresponding number
operators. Here, the bosonic (fermionic) hopping amplitude
is given by JB (JF ), and U (V ) accounts for the intra-
(inter-) species interaction energy. In the following we consider
the limit of large fermionic hopping, i.e., we assume JF �
U, |V |, JB and the energy scale is set by U = 1.

In this limit of large fermionic hopping the physics of the
BFHM is well captured by the bosonic phase diagram alone.
Considering the most interesting case of half filling of the
spin-polarized fermions, i.e., on average one half fermion per
site, we have plotted in Fig. 1 the phase diagram for the bosons
obtained by numerical DMRG simulations (L � 256 sites) and
exact diagonalization (ED) for JF = 10, V = 1.25. In addition
to the MI and SF phases expected from the pure bosonic
model, the phase diagram displays a CDW phase at double half
filling (�F = �B = 1/2). Exact diagonalization (L = 12 sites
and periodic boundaries) is used for very small JB to avoid

1050-2947/2010/81(1)/011603(4) 011603-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.011603


RAPID COMMUNICATIONS

ALEXANDER MERING AND MICHAEL FLEISCHHAUER PHYSICAL REVIEW A 81, 011603(R) (2010)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

µ B

bosonic hopping J
B

CDW  (ρ
B
=1/2)

MI  (ρ
B
=0)

MI  (ρ
B
=1)

DMRG
ED
2nd orderPS

PS

FIG. 1. (Color online) Boundaries of the incompressible MI
phases and the CDW phase for half fermion filling �F = 1/2,
JF = 10, and V = 1.25 obtained by (open boundary) DMRG and
for small values of JB by (periodic boundary) ED. For the DMRG
data, only those data points are used which do not show pinning to the
boundary resembling the infinite system case. One recognizes partial
overlap between MI and CDW phase for small values of JB indicating
regions of spatial phase separation (PS) between MI and CDW. The
dashed lines are results from the second-order perturbation theory
based on the effective bosonic model.

effects of boundary conditions. Furthermore, a novel phase
is visible for the case of noncommensurate boson filling in
which spatially separated regions of bosonic Mott insulators
and density waves coexist (phase separation, PS). Figure 2
shows numerical results for the density cuts from within the
corresponding phases. We note that while the pinning of the
CDW to the boundaries is a result of the open boundary
conditions required for DMRG, the phase separation persits
for large systems and was verified for small systems using
periodic boundary conditions.

In the following we derive an effective bosonic model
which provides an understanding of the phase diagram in
Fig. 1 on a quantitative level. In the limit of fast fermions one
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FIG. 2. (Color online) Densities of bosons and fermions corre-
sponding to the different regions in the boson phase diagram Fig. 1
for a lattice of length L = 128 and open boundary conditions. The
boson number NB is (a) 19, (b) 64, (c) 96, and (d) 101. The plots (a),
(b), and (c) are taken at JB = 0.01 and (d) at JB = 0.07. While (b)
displays the gaped CDW, (a) and (c) show the PS phase. (d) is outside
of the parameter regime with a CDW.

could expect that their main influence is through a mean field
contribution, which according to Eq. (1) amounts to a simple
shift of the bosonic chemical potential µB → µB − �F V . And
indeed the two Mott lobes in Fig. 1 are symmetrically located
around µ = 1

2 V . To explain the CDW and PS phases one
needs, however, an effective description beyond the mean-field
level. In order to adiabatically eliminate the fast fermions
we first separate the fermion Hamiltonian. As will be seen
later on it is essential to take into account the back action
of bosons to the fermions. To do this we incorporate in
the fermion Hamiltonian the interaction with a mean-field
potential given by a yet undetermined average density ñj of
bosons. Thus ĤF = −JF

∑
j (ĉ†j ĉj+1 + ĉ

†
j+1ĉj ) + V

∑
j ñj m̂j

is the fermionic Hamiltonian and ĤI = V
∑

j (n̂j − ñj ) m̂j the
interaction.

To formally eliminate the fast fermions we follow standard
techniques as presented in Ref. [11,14]. Since the fermionic
hopping is the fastest process we obtain approximately an
instantaneous long-range interaction which results in the
effective bosonic Hamiltonian

Ĥ eff
B = ĤB + V

∑
j

(n̂j − ñj ) 〈m̂j 〉F

+
∑

j

∞∑
l=−∞

gl(n̂j − ñj ) (n̂j+l − ñj+l), (2)

where gl = −i V 2

2h̄

∫ ∞
−∞ dτ 〈〈T m̂j (τ )m̂j+l(0)〉〉F. T denotes

time-ordering, and 〈〈m̂j m̂j+l〉〉 = 〈m̂j m̂j+l〉 − 〈m̂j 〉〈m̂j+l〉 is
the density-density correlation of the fermions. The couplings
gl describes a long-range density-density interaction between
the bosons separated by l lattice sites.

In the case of free fermions, i.e., ignoring the back-action
of bosons (i.e., setting ñj ≡ 0), fermionic correlations and
couplings gl can easily be calculated. For �F = 1/2, gl

scales asymptotically as gl ∼ (−1)l/ l, i.e., has a long-range
character and alternating sign. For a general fermion density
�F they oscillate with period 1/�F which is typical for induced
interactions of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
type [20–22]. The oscillation of the interaction is the origin
of the formation of charge density waves. For �F = 1/2 the
interaction energy is minimized if the bosons occupy sites
with distance 2. An effective theory with coupling constants
resulting from free fermions has, however, a fundamental
problem: As gl ∼ 1/l the boson-boson interaction energy
diverges logarithmically with the total length of the lattice.
This would result in an incompressible CDW for any value
of the bosonic hopping JB . Thus such a theory completely
fails to describe the transition from a CDW phase to a
bosonic superfluid. An accurate description of this transition
is, however, important, e.g., to address existence conditions of
a supersolid phase. Therefore it is necessary to renormalize the
effective interaction. This is done here by taking into account
the back action of the bosons through the mean-field potential
in ĤF . Since for �F = 1/2 the bosonic system is driven into
a CDW with period 2, a good ansatz is ñj = 1

2 [1 + (−1)j η],
where η = η(JB) is the amplitude of the density oscillation
with η|JB=0 = 1. In general η is treated as a free parameter
and can be determined self-consistently by a minimization of
the Hamiltonian. For the following calculations it turns out to
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be more convenient to introduce a parameter a proportional
to η as a = η V /(4

√
2πJF ).

Solving the free fermion problem in the periodic potential
V ñj yields

gl(a) = − V 2

8π2JF

∫ π

0

∫ π

0
dξdξ ′

× cos(ξ l) cos(ξ ′l)√
cos2(ξ ) + a2 +

√
cos2(ξ ′) + a2

×
(

1 + cos(ξ )√
cos2(ξ ) + a2

) (
1 − cos(ξ ′)√

cos2(ξ ′) + a2

)
.

(3)

Similarly one finds for the fermionic density

〈m̂j 〉 = 1
2 [1 − (−1)j ηF ], (4)

with ηF = 4a

π
√

1+a2 K[ 1
1+a2 ] and K[x] being the complete

elliptic integral of the first kind. This equation along with

〈n̂j 〉 = 1
2 [1 + (−1)j η] = ñj (5)

gives the density distributions of fermions and bosons for
double half filling, i.e., in the CDW phase, as function of
the variational parameter a. In the limit a → 0 the above
expressions reduces to the free fermion case (〈m̂j 〉 = 1

2 ).
For a first test of the validity of the effective theory we

have plotted in the inset of Fig. 3 the ratio of the amplitudes
of the bosonic and fermionic density waves obtained from
the data in Fig. 1 along with the prediction from Eqs. (4)
and (5). Note that this ratio is exactly fixed by the effective
theory and independent on the variational parameter a. One
recognizes a very good agreement. Also shown in Fig. 3
are the amplitudes of bosonic and fermionic density waves,
respectively, as function of bosonic hopping JB obtained
numerically and from the effective theory using the numerical
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FIG. 3. (Color online) CDW amplitudes (points) of bosons and
fermions for double half filling as function of normalized boson
hopping. (Dash-dotted line) Analytic estimate of the fermionic
amplitude ηF from the bosonic data. (Dashed line) Analytic estimate
of the bosonic amplitude η from the fermionic data. One recognizes a
reasonable agreement between the numerical data and the analytic
estimate, where it should be kept in mind that the underlying
perturbation theory gets better for η → 0, i.e., for increasing JB .

data of the other species as input. It can be seen, that the
renormalized effective theory fits quite well with the numerical
results.

Using the effective Hamiltonian, (2) we will now derive an
analytic approximation to the phase diagram of the full BFHM
using a strong-coupling expansion valid for small values of
JB [23]. Since we are mainly interested in the boundaries
of the incompressible lobes, we will calculate them in the
canonical ensemble from the energies of the relevant states as
a function of the bosonic hopping amplitude JB . The upper
(lower) boundary is given by the bosonic particle-hole gap,
i.e., the energy to add (remove) a boson to (from) the system.
With this, the chemical potentials for bosonic filling �B are
given by µ±

�B
= ±(E(�BL ± 1) − E(�BL)), where E(N ) is

the ground state energy for a given number of bosons N . At
JB = 0, this is straight forward to calculate since the ground
state distribution of the bosons in the lattice is trivial and the
variation parameter η is fixed to unity.

For JB > 0 we apply degenerate perturbation theory in
second order [24], where there is a local correction of the
ground state energy for all numbers of particles, as well
as second-order two-site hopping processes connecting the
states within the ground-state manifold in the case of an
additional (absent) boson. Incorporating this, the upper and
lower chemical potentials for the CDW phase can be expressed
in a simple analytic form as

µ±
1
2

= V

2
± V ηF ± g0(a) − β±J 2

B. (6)

Similarly one finds for the chemical potential corresponding
to unity and zero filling

µ−
1 = V

2
− g0(0) + 2JB − αJ 2

B, (7)

µ+
0 = V

2
+ g0(0) − 2JB. (8)

Here ηF and g0(a) are taken for η ≡ 1 (JB = 0) because of the
perturbative treatment starting from JB = 0. The derivation
of the constants α and β± is lengthy but straightforward and
their explicit form is unwieldy and not shown here. One finds in
particular β+ > 0 > β−. Note that V ηF is positive irrespective
of the sign of V and is larger in magnitude than both g0(0)
and g0(a). With this one can see that µ+

1
2
|JB=0 > µ−

1 |JB=0,

µ−
1
2
|JB=0 < µ+

0 |JB=0. Thus there exists a region where the

chemical potential is not monotonous in the boson number
which explains the coexistence of MI and CDW in the
PS phases found numerically in Fig. 1. The long-range
character of the fermion mediated interaction together with
the fermion-induced mean-field potential prefers extended,
spatially homogeneous regions of a commensurate CDW.
Extra bosons will be pushed out and form an incompressible
Mott insulator region. Such a phase does not exist in purely
bosonic systems with nearest-neighbor interaction due to the
absence of the fermion induced mean-field potential V ηF .
Only if the bosonic hopping exceeds a certain critical value,
given by the crossing of the curves µ±

1
2

with µ−
1 or, respectively,

µ+
0 the minimization of kinetic energy by equally distributing

the particle is larger than the loss in interaction energy due to
the fermion mediated interaction.
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FIG. 4. (Color online) Boundaries (shifted by V/2) of incom-
pressible MI and CDW phases for half fermion filling �F = 1/2 at
vanishing bosonic hopping JB = 0 with varying interaction V . Curves
are the analytic results and the data points are obtained by DMRG
(CDW phase, L = 128) and ED (MI lobes, periodic boundaries with
infinite size scaling). The shaded region depicts the coexistence phase
between MI and CDW with µ+
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1
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In Fig. 4 we have plotted the chemical potentials for zero
bosonic hopping as function of the interaction strength V

defining the boundaries of the Mott insulating phases with zero
and unity filling as well as the lower and upper boundaries of
the CDW phase with half filling of bosons. One recognizes that
phase separation between MI and CDW exists for all values
of the boson-fermion interaction V . Furthermore, once again
there is a rather good agreement between full numerics and
effective theory, which provides another test for its validity.

The phase boundaries for JB > 0 obtained from the analytic
results for the chemical potentials in Eqs. (6) to (8) are
shown in Fig. 1 as dashed lines. Although the precise form

of the CDW lobe is not correctly reproduced (as expected
for the strong-coupling perturbation approach), the qualitative
agreement is remarkable. The strong coupling approximation
yields a critical value of J CDW

B = 0.025 beyond which the
CDW ceases to exist for JF = 10 and V = 1.25. Whether the
CDW gap vanishes at a finite value of JB is, however, unclear.
Our numerics indicates that a very small gap may persist even
for values of JB = 1. The critical values J PS

B ≈ 0.01 for the
PS region obtained from the effective model agrees, however,
rather well with the numerical data.

In summary we developed an effective model for a mixture
of bosons and spin-polarized fermions in a periodic lattice
in the limit of large fermion hopping. This model reveals the
physical origin of the incompressible CDW phase and provides
a simple quantitative description. The fast fermions mediate a
long-range density-density interaction which is of alternating
sign for �F = 1/2. In order to accurately describe the con-
ditions for the existence of a CDW renormalization effects
due to the back-action of the bosons need to be taken into
account. The density wave amplitudes were obtained from an
analytic model and verified by numerical DMRG simulations.
The effective model also gives a simple understanding and
quantitative description of a phase where spatially separated
regions of a maximum amplitude CDW and a MI coexist. The
effective model is expected to provide a means for predicting
and understanding conditions for the existence of a SS phase in
Bose-Fermi mixtures and other mass imbalanced two-species
models [25,26].
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