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Stationary light in cold-atomic gases
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We discuss stationary light created by a pair of counterpropagating control fields in A-type atomic gases
with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case, the
secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the
quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for
vanishing ground-state dephasing. The dynamics of the photon loss is in general nonexponential and can be

faster or slower than in hot gases.
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I. INTRODUCTION

Strong coupling between light and matter is of large in-
terest in many fields of physics. It is of particular importance
in quantum information and quantum-optical realizations of
strongly interacting many-body systems. The interaction
strength between single photons and quantum dipole oscilla-
tors is determined by the value of the electromagnetic field at
the position of the oscillator and thus by the spatial confine-
ment of the photons. This has lead to the development of
cavity quantum electrodynamics where strong confinement
and thus strong coupling is achieved by means of low-loss
microresonators [1]. An alternative suggested by Andre and
Lukin [2] and first implemented in a proof-of-principle ex-
periment by Bajcsy et al. [3], is to create spatially confined
quasistationary pulses of light with very low losses by means
of electromagnetically induced transparency (EIT) [4,5] in
an ensemble of A-type three-level atoms driven by two
counterpropagating control fields. The physical properties of
stationary light were discussed in a number of theoretical
studies. It was shown that under adiabatic conditions, quasis-
tationary light obeys a Schrodinger equation with complex
mass and that inhomogeneous control fields can be used to
spatially confine and compress its wave packet [6]. The fun-
damental quasiparticles of stationary light have been identi-
fied [7], a transition from a Schrodinger-like to a Dirac-like
dynamics has been found [8] and many-body phenomena
with stationary-light polaritons have been discussed theoreti-
cally such as the Tonks gas transition [9] and Bose-Einstein
condensation [10].

An essential assumption of the original model for station-
ary light is the secular approximation in which spatial modu-
lations of the ground-state coherence of the A-type atoms
with wave numbers on the order of the optical fields and its
harmonics are neglected. The latter is a very good approxi-
mation in warm gases, where atomic motion leads to a fast
dephasing of fast spatial oscillations. It fails however for
cold gases or other systems where the motion is suppressed
such as solids [11] or atoms in optical lattices [12,13]. Al-
though the problem of a secular approximation can be en-
tirely avoided by using a double-A rather than a A transition
[7,14], it is interesting to consider the dynamics in a cold gas
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of A-type atoms without the secular approximation. The ear-
liest analysis of this case was done by Moiseev and Ham
[15]. However their analysis was limited to the case of un-
equal coupling field intensities, thus the probe field was not
really stationary. In a more recent study Mglmer and Hansen
found that without secular approximation the wave-packet of
light is truly stationary for equal strength of the control field,
i.e., does not undergo a diffusive spreading, and the only
source of photon loss is the finite lifetime of the ground-state
coherence [16]. In this analysis radiative losses where ne-
glected however. The result obtained in [16] predicts the pos-
sibility of light trapping in EIT media with unprecendented
Q factors. In the present paper we analyze stationary light in
A-type media without the secular approximation by taking
into account the relaxation of the excited state. We prove that
the unavoidable excited-state decay limits the lifetime of the
probe field in the medium. It leads either to a broadening of
the quasistationary wave packet in time or a splitting into
two pulses [17] depending on the system parameters. The
general dynamical behavior is nontrivial, leading e.g., to a
nonexponential decay of photons from the initial volume. We
identify parameter regimes in which the effective loss in cold
gases is slower or faster than the one in a warm gas where
the secular approximation holds.

II. FIELD EQUATIONS OF STATIONARY LIGHT
BEYOND THE SECULAR APPROXIMATION

We here consider a medium consisting of an ensemble of
nonmoving three-level atoms with a A configuration shown
in Fig. 1. We assume that initially some coherence is stored
in the lower levels of the atomic medium, so that when a
standing wave resonant coupling field (). is applied, a qua-
sistationary probe field E is created. For simplicity the states
|g) and |s) are assumed to be degenerate, thus the wave vec-
tors of the probe and the coupling fields have equal magni-
tude k.

The interaction Hamiltonian in rotating wave approxima-
tion reads

H=-42 (gEGL,+Q.6)) + He., (1)
J

where E is the dimensionless slowly varying complex ampli-
tude of the probe field, g is the atom field coupling constant,
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FIG. 1. (Color online) Schematic diagram of the three-level
atomic system and the medium pumped by a standing wave-
coupling field.

Q). is the Rabi frequency of the coupling field, and o*’

=|w) i v| are the atomic transition operators of the jth atom
between states |u) and |v). The atom dynamics is governed
by Langevin equations corresponding to (1) and including
losses from the excited state. They can be written as

0,640 = =Gy +igE(Gyy — G,,) + i€, Gy, (2)
=iQ.6 Ggo +I8EG,, (3)

where T' is the relaxation rate of the upper level and it is
assumed that the decoherence of the lower-level transition is
negligible on the time scale of interest. In the limit of low
probe-field intensities (|gE|<|Q,|) and for an initial prepara-
tion of the ensemble in the ground state |g), we can set in Eq.
(2) 6,,~ i; 6,,=6,,=6,,=0, which corresponds to the well-
known pertubative linear-response limit. Since losses are in-
cluded in the above equations there should be in general
Langevin noise operators [ 18]. The noise operators are how-
ever inconsequential since in the linear-response limit, con-
sidered here, there is no excitation of the excited states. Thus
they are neglected. We assume furthermore, that the charac-
teristic duration of interaction 7 is long compared with re-
spect to the upper level relaxation (I'T>1). This allows for

an adiabatic elimination of the optical coherence &,, and
Eqgs. (2) are reduced to
6, =igE+iQ).Gy
. * oA
Gy =€), Gy, (4)

Differentiating the first equation with respect to time and
assuming a constant control field (). yields

. 2
. o_ig Q]
N Gge = F&,E - Tca'ge,

which has the formal solution
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ig (" OE Q. Yy
rl, aTexp T 7) (dT

Q. Q.2
+i?‘6'gs(z,0)exp{—| | t}. (5)

Since the coupling field is a standing wave formed by two
counterpropagating fields of equal intensity and polarization,
it can be expressed as ).(z)=2) cos(kz), where () repre-
sents the amplitude of the coupling field. The probe field
consists also of two counterpropagating components E
=E,e®*+E_e7™ Due to the presence of [(Q.(z)|?> in the ex-
ponents in Eq. (5), the optical coherence and thus by virtue
of Eq. (4) also the ground-state coherence will develop all
harmonics of e, Thus we make the ansatz

&ge(z’ t) =

o

Golzt)= 2 6(z,0eM,
n=—o0

Goelz) = 2 6z ne™™. (6)
n=—x

The secular approximation corresponds to disregarding all
terms in G, with n# 0. This is justified in a hot gas where
atomic motlon washes out the fast spatial oscillations asso-
ciated with terms &i,’? and n#0 [2,6].

The propagation of the probe pulse components are gov-
erned by the Maxwell equations for the slowly varying field
amplitudes

P 9
— * ¢ |E.=igN6', ", 7
(c?t &z) § @

where é'(fl) are the components of atomic coherence be-

tween levels |g) and |e) that oscillate in space according to
™% and N is the number density of atoms.
If the stationary light pulse is generated from a stored spin
coherence without rapidly oscillating components, i.e., for
( ">(Z t=0)=0, for n#0 the corresponding initial condi-
tlons are

Fé’ (Z 0) =iQ6,,(z,0),

63.(z,0)=0, for n# 1. (8)
Using the identity
=30 I, (A)cos(zn) =2 ), (A)e™",

with I, being the nth order modified Bessel function, we can
rewrite Eq. (5).

+l) ’ —,B(t—t)
e F Odt

x [Iow(r—t'))f—t,*—h(ﬁ(t—r'»‘f—f

+1G,,(2,0)Q/Te™ P1,(Bt) — 1,(B1)], 9)

where we have introduced S=202/T". If we consider times ¢
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which are sufficiently large, the initial value term in Eq. (9)
can be disregarded.

Substituting (9) and (8) into Egs. (7) and introducing the
sum and difference normal modes E,=E,+E_, E,=E,-E_
yields

' ’ ’ (7_ES
7 o T dt'f(B(t—1")) P (10)

dE, JE, g°N J
+c—=-"
0
JE, O0E, gN j ! JE,
—+c—==-"| dt' t—t"))— ., 11
P R C v
where f.(x)=e™[Iy(x) = I,(x)].
For the following discussion it is convenient to introduce
normalized variables and parameter
2 2
N z 20)
TEg—t, E=—, aEz—=2C0t2 0, (12)
r labs 8 N
where I,,,=cI'/g’N is the resonant absorption length of the
medium in the absence of EIT. This leads to the normalized
equations

T

aTEx+01§Ed=_f dT’f_(CZ(T— T’))aTIES9 (]3)

0

T

O E + 0E =~ f dr' f (a(t-7))I E,. (14)
0

III. PROBE-FIELD DYNAMICS

In the following we will qualitatively discuss the probe-
field dynamics resulting from Egs. (13) and (14), illustrate
the results with numerical examples and compare the field
evolution with the case of a hot atomic gas. Equations (13)
and (14) turn into the corresponding equations for a warm
atomic gas where the secular approximation is valid, if one
sets f_(a(7—7"))~(2/a)8(7—7"), and f,(a(7—7"))—1

E, OE 0E;
Sy —4— _tan? —2, (15)
ar o9& ar
JE; OE
—4—=_E, (16)
ar o9&

where tan’ #=g>N/Q?. In this case adiabatic eliminating the
fast decaying difference mode, i.e., E;=—d:E, results in a
diffusion equations for the sum mode

JE, &°E,
+—2=0, (17)
ar €&
JE, PE,
or —+v - =0, (18)

ot grl abs 0.,22

where vg=c cos? @ is the group velocity of EIT. Associated
with the diffusion is a (nonexponential) loss of excitation

with a characteristic time scale of T}, =L*/ LapsUgr» With L
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FIG. 2. (Color online) Decay of total field intensity within the
spatial region from —3L; to 3L, for an initial spin excitation of
spatial shape exp{—zz/LS}, Ly=51,, in cold atomic gas (blue, solid
line) and in inhomogeneously broadened (red, dotted line) media
for tan?> #=100 (top) and tan®> =1 (bottom).

being the characteristic initial confinement length of the sta-
tionary pulse.

In order to discuss the stationary-light dynamics beyond
the secular approximation we start with numerical solutions
of Egs. (13) and (14) for two characteristic cases. In Fig. 2
the decay of the total field intensity I=| dz(Ei+EE) in the
interval {-3L,,3L,} is shown after retrieval of an initial
Gaussian spin excitation of spatial shape exp{—z>/ L(Z)}, and
Ly=51,, (solid line) for two important cases. In the first case
(top curve) tan? #=100, i.e., a=0.02, in the second (bottom
curve) tan? =1, i.e., a=2. Also shown is a comparison with
the results obtained with the secular approximation (dotted
line).

The time evolution of the field distributions of E; and E,
for the two cases are shown in Fig. 3 (tan?> §=100) and Fig.
4 (tan? 6=1).

From the numerical examples several conclusions can be
drawn: First of all one recognizes that contrary to the claims
in Ref. [16] the field intensity decays even if the dephasing
of the ground-state coherence is neglected. The decay is
caused by the relaxation of the upper state which was not
taken into account in [16] by restricting the discussion to the
lowest order in the adiabatic expansion. Thus stationary light
in cold gases or solids does not provide a perfect cavity.
Second, the decay of the intensity can either be slower or
faster as compared to the case with secular approximation. In
the first case, i.e., Figure 3 the evolution of the field distri-
bution is very similar to the diffusive spreading but much
slower than in the secular-approximation limit shown in Fig.
5. On the other hand in the second case (see Fig. 4), two
pulse components emerge which propagate with the group
velocity vy,=c cos® f with some additional loss [17].

We now want to give a qualititative explanation of the
different dynamics in the two cases, which is due to the
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FIG. 3. (Color online) (a) Spatio-temporal dynamics of sum E;
and (b) difference E;X 10 modes of the probe field corresponding
to the top curve in Fig. 2, i.e., tan?> =100.

different action of the integral kernels f. in Egs. (13) and
(14). For this it is instructive to perform a Laplace-transform

of Egs. (13) and (14):

SE,— E((0) + 0:E,=— f_(s)[sE,— EJ(0)],  (19)

SELI - Ed(o) + agés = —f+(S)[SEl1 - Ed(o)]’ (20)

where the Laplace transform of f. reads

-300 -200 -100 0 100 200 300

-300 -200 -100 0 100 200 300

z/Iabs
FIG. 4. (Color online) (a) Spatio-temporal dynamics of sum
E, and (b) difference E;X 10 modes of the probe field, (c) as
well as field component E,, corresponding to the bottom curve in
Fig. 2, ie., tan®> =1. The white lines indicate the velocity
2¢ cos? 0/(2 cos? G+sin? 6).

-300 -200 -100 0 100 200 300

z/l e
FIG. 5. (Color online) (a) Dynamics of the sum E; and (b)
difference modes E;X 10 (b) of the probe field in inhomogeneosly
broadened medium, i.e., under conditions that justify the secular
approximation. All parameters are identical to the Fig. 2.

f+(s)=l[\/2“+1—1},
a S

F:(s) = l - ! +1
a a
2—+1
s
This yields
§E.—E(0)=— 2 (21)
L+/(s)
sy Ef0) = — 2 22)
1 +f+(S)

A. Limit of Small a
Assuming that a is small, a series expansion of 1/
[1+f+(s)] yields
s
1 "‘.]7 -(s)

For the slow time evolution, i.e., for (physical) times large
compared to (g>N/T")~! only values of s <1 are relevant, and
thus the right hand side can be replaced by s. Substituting
this into Egs. (19) and (20) one arrives at

GeE, ~ E;= = [E(£0) + GE(£0)],

s+1

TiE g~ Eg=—[E£0) + 0E,(£,0)],

which describes truly stationary wave packets that decay
exponentially with increasing distance. That there is no
dynamics is of course due to the fact that only the leading
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order term in the expansion of 1/(1+f.) was taken into
account.

B. Limit of Large a

A qualitative explanation of the opposite case can be
found by considering the limit of large a. To properly ana-
lyze this case one has to take into account that also the most
relevant Laplace frequency s increases when a becomes
large. In fact the numerical data suggest that the ratio a/s,
with s being the most relevant Laplace frequency approaches
a constant. Thus in this case one has

1 a

1+]7+(s) xa—1+x

1 a

1+f_(s) - a+1-1/x"

where x= \/2‘;’+1 is well approximated by a constant. This
leads to the approximate equations

a
0E,+——d:E,=0,
£ a+1-1/x §Ed

a
0 Ej+ —————dE,=0
Ea a-1+x b

In the limit of large a one arrives at wave equations for
the forward and backward components
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a2

+
“ (a+1-1/x)(a=1+x)

FE FE. =0,

which reads in physical time and space:

2.2

FE. * ==
T T (@a+1-1x)(a-1+x)

dgEi :O.

Thus the envelope of E. evolves freely This explains the
splitting of the stationary light wave packet into two compo-
nents each of which propagating with the modified group
velocity 2c cos? 6/(2 cos? 6+f sin® ), with f=(x—1/x)/4.
Noting that the most relevant Laplace frequency for the ex-
ample in Fig. 4 leads to a value of f on the order of unity we
find reasonable agreement with the numerical results.

IV. SUMMARY

We considered the dynamics of stationary light in a stand-
ing medium without secular approximation and derived
equations describing the evolution of the sum and difference
modes of the pulse. A numerical as well as approximate ana-
lytical solution showed that for small coupling field intensi-
ties the probe field spreading is slower than in the secular
approximation but in contrast to the results of [16] nonzero.
In the opposite limit of strong coupling the probe pulse splits
into two counterpropagating components.
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