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Ultracold bosons in disordered superlattices: Mott insulators induced by tunneling
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We analyze the phase diagram of ultracold bosons in a one-dimensional superlattice potential with disorder,
using the time-evolving block decimation algorithm for infinite-sized systems. For degenerate potential ener-
gies within the unit cell of the superlattice, loophole-shaped insulating phases with noninteger filling emerge
with a particle-hole gap proportional to the boson hopping. Addition of a small amount of disorder destroys this
gap. For not too large disorder, the loophole Mott regions detach from the axis of vanishing hopping, giving
rise to insulating islands. Thus the system shows a transition from a compressible Bose glass to a Mott-
insulating phase with increasing hopping amplitude. We present a straightforward effective model for the
dynamics within a unit cell which provides a simple explanation for the emergence of Mott-insulating islands.
In particular, it gives rather accurate predictions for the inner critical point of the Bose glass to Mott insulator

transition.
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I. INTRODUCTION

Ultracold atomic gases in light-induced periodic poten-
tials have become an important experimental testing ground
for concepts of solid-state and many-body physics, since
they allow the realization of precisely controllable model
Hamiltonians with widely tunable parameters. This develop-
ment was triggered by the theoretical proposal of Jaksch et
al. [1] that ultracold bosonic atoms in an optical lattice are
well described by the Bose-Hubbard model and the subse-
quent observation of the superfluid—-Mott-insulator transition
in that system by Greiner et al. [2]. A characteristic feature of
light-induced periodic potentials is the possibility to modify
their properties in a simple way. For example, when phase-
locked lasers with different but commensurable frequencies
are superimposed to create a periodic dipole potential, differ-
ent types of superlattices with more complex unit cells can
be constructed [1,3-9]. Superimposed optical lattices with
noncommensurate frequencies furthermore mimic a disor-
dered potential [10].

In the present paper we study the phase diagram of ultra-
cold bosons in a one-dimensional superlattice potential with
degenerate potential energies and/or degenerate tunneling
rates within the unit cell. For such a system loophole-shaped
Mott-insulator domains with fractional filling have been pre-
dicted by Buonsante, Penna, and Vezzani [8] within a
multiple-site mean-field approach, as well as with a cell
strong-coupling perturbation approach [9]. In contrast to the
Mott lobes at integer filling known from the simple Bose-
Hubbard model, which exist also in the superlattice, the char-
acteristic feature of the loophole insulators is a particle-hole
gap that vanishes at zero boson hopping J. So in the u-J
phase diagram, where u is the chemical potential, these do-
mains touch the J=0 line only at a single point. We here
perform numerical simulations using the time-evolving block
decimation algorithm (TEBD) introduced by Vidal [11] in
the infinite-system variant (iTEBD) [12], as well as density
matrix renormalization group (DMRG) calculations [13], to
determine the boundaries of the different Mott-insulating re-
gions in the phase diagram. We also present a simple effec-
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tive model that provides a straightforward explanation for
the emergence of the loophole insulators by taking into ac-
count hopping processes between the sites of degenerate po-
tential energy within a unit cell but neglecting tunneling be-
tween different unit cells.

We then study the influence of some additional disorder
potential with continuous, bounded distribution. If the maxi-
mum amplitude of the disorder is not too large, the Mott
lobes shrink in a similar way as for the simple Bose-Hubbard
model [14]. The loophole Mott domains also shrink. As a
consequence, near the critical (fractional) filling, Mott-
insulating islands emerge surrounded by a Bose-glass phase.
A rather peculiar property of this system is the phase transi-
tion from a compressible (Bose-glass) phase for small values
of the bosonic hopping J to an incompressible Mott phase for
larger tunneling rates, i.e., we have a tunneling-induced Mott
insulator. The effective model describing the full dynamics
within a unit cell provides a simple explanation for this and
gives good quantitative predictions for the critical value J,.
for the compressible-phase to Mott-insulator transition. The
analytical predictions are compared to numerical simulations
again using the iTEBD algorithm for a superlattice with dis-
order.

II. THE MODEL

We consider ultracold bosonic atoms in an optical super-
lattice, having a periodic structure with a period / of some
lattice sites. As shown in [1], the physics of these atoms can
be described by the so called superlattice Bose-Hubbard
model (BHM), extensively studied in [7-9,15]. We here
work mostly in the grand canonical BHM; only the calcula-
tions of the shape of the loophole insulators in Secs. III B
and IV A will be performed for fixed particle numbers. In
second quantization, the BHM reads as

N e . U o
H=—J2 tj(a;aj+1 +a;+1aj) + 52 nj(nj_ 1)
J J

=2 (k=0 (1)
J
where d; and d'}f are the annihilation and creation operators of

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.77.043618

MUTH, MERING, AND FLEISCHHAUER

J
number operator. The particles can tunnel from one lattice

site to a neighboring one with hopping rate J, #; accounts for
the variation of the hopping due to the superlattice potential,
v; accounts for local variations of the potential energy within
a unit cell, and w is the (global) chemical potential.

A particularly interesting situation arises if there is a de-
generacy in the tunneling amplitudes and local potentials
within the unit cell. This will be studied in detail in the
following. For simplicity we focus on a special superlattice
structure in which only the local potential is varied with
period 3, namely,

the bosons at lattice site j, and ﬁ:d;dj is the corresponding

v={v,v,,05} (2)

with v,-U<v,<v,<U and ¢t={1,1,1}. It should be noted
that the results obtained for this case are qualitatively iden-
tical to the more general case ¢={r,,t,1,} and v

={U1’Ul’02}-

II1. SUPERLATTICE WITHOUT DISORDER

Let us consider first a superlattice BHM without disorder
in the two cases vz{%,g,O}, t={1,1,1}, and v={0,0}, ¢
={1,0.2}. As shown in Ref. [9], within a supercell mean-field
approach such superlattices lead to loophole-shaped insulator
phases at fractional bosonic filling. In the following we will
determine the boundaries of these loophole phases numeri-
cally and compare them to the mean-field predictions. Fur-
thermore, we will present a rather simple model which pro-
vides an intuitive explanation.

A. Numerical results

In order to calculate the boundaries of the Mott phases for
the superlattice Bose-Hubbard model, we apply the iTEBD
algorithm as described in the Appendix to calculate the
ground state of Hamiltonian (1). We are able to calculate
properties such as the local density p=(n) as a function of J
and w. Using this method to map out the shape of the insu-
lating regions, we make use of the fact that for any Mott
phase the average local density is an exact multiple of 1/1, /
being the period of the superlattice. Thus the phase bound-
aries can be well approximated by the line where

ter=p((n))  where (ny=m/l * ¢ (3)

for some mEN (indicating the order of the lobe) and some
1/1>&>0 [16]. This line can be calculated by finding the
value of u using a bisection method for a set of given m and
J. Figures 1 and 2 show the results of this approach for the
two different superlattice potentials specified above.

The phase diagrams consist of a number of incompress-
ible Mott phases, separated by a superfluid region. In con-
trast to the BHM for a simple lattice, there are, however, two
types of insulating phase: The lobe-shaped ones, well known
from the simple-lattice Bose-Hubbard model, which have a
finite extent at J=0, and the loophole-shaped ones, which
vanish at J=0. In general there are / distinct insulating re-
gions for a superlattice of period /. A loophole is present,
whenever the local potential v; is the same for two sites in
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FIG. 1. (Color online) Incompressible phases for an /=3 super-
lattice with v={U/2,U/2,0} and t={1,1, 1} without disorder. Solid
line, iTEBD; crosses, DMRG; dashed line, CSCPE from [9]. Simu-
lation parameters for the iTEBD are y=5, D—1=3, 8/U=1000 (see
the Appendix for definitions). DMRG results are obtained from an
infinite-size extrapolation.

the same unit cell. The following section will give a qualita-
tive understanding of these loophole Mott regions.

Figure 1 shows our results in the case v:{lz—/,lz—],O}, t
={1,1,1}, together with the cell strong-coupling pertubative
expansion (CSCPE) results from [9]. As a check of our nu-
merics we added numerical results from a density matrix
renormalization group calculation [13]. The existence of
noninteger insulating phases at J=0 in this special superlat-
tice has a direct connection to the case of a binary disorder
BHM [17], which arises, for example, in the presence of a
second, immobile particle species (here of filling % with an
interspecies interaction of v=—%/).

Figure 2 shows the numerical results for the case of a v
={0,0} and r={1,0.2} superlattice of period 2 together with
the quantum Monte Carlo (QMC) results and the CSCPE

p=1

015
wu

FIG. 2. (Color online) Incompressible phases for an /=2 super-
lattice with v={0,0} and ¢#={1,0.2} without disorder. Solid line,
iTEBD; crosses with error bars, QMC (only for ¢=1/2); and
dashed line, CSCPE (only for ¢=1/2), both from [9]. Simulation
parameter for the iTEBD are y=7, D—1=4 for p<2 and D-1=5
for p=2, B/U=1000 (see the Appendix for definitions). For some
phase boundaries & was set to 0.02 instead of 0.005 in order to
avoid numerical artifacts.
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data from [9]. The agreement between our numerics and the
CSCPE is naturally good for small J but deteriorates for
larger J. It is also apparent that, while the insulator lobes are
rather well described by the CSCPE approach, it is much less
accurate for the loophole insulator regions, in particular for
the case of varying potential depth (see Fig. 1).

B. Two-site model

We will argue in the following that the loophole insulator
phases can entirely be understood from the effective dynam-
ics within a unit cell of the superlattice using a simplified
version of the zeroth-order CSCPE from [9]. To this end let
us discuss the above situation, where v={v,,v,,v,}, with
Uy, <Vj.

The presence of Mott lobes at fractional filling with a
finite extent at /=0 can easily be understood along the lines
of the simple-lattice BHM. As long as the filling is less than
%, the particles will occupy sites with local potential v,. Thus
the chemical potential reads

,LLI/:; =0p. (4)

When the filling reaches the value % additional particles will
start to occupy sites with local potential v, giving rise to a
particle-hole gap,

Az = pis = M3 =01 =y (5)

To explain the existence of the loophole insulators, one
has to take into account a finite hopping J. For J=0 any
particle added to the system between p:% and 1 increases
the total energy by the same amount v,. Thus the chemical
potential stays the same. This picture changes, however
when a small but finite tunneling is included. If the filling
exceeds the value %, additional particles experience an effec-
tive superlattice potential v={v,,v,,U+v,}, where the last
term results from the interaction with particles already occu-
pying sites with v,. If U>v|—v, the superlattice effectively
separates into degenerate double-well problems each corre-
sponding to a unit cell. Due to the degeneracy of the double
well, any small tunneling J within the unit cell of the lattice
needs to be taken into account while intracell tunneling can
be ignored. A finite tunneling lifts the degeneracy of the
single-particle states within the unit cell and leads to a split-
ting between symmetric and antisymmetric superpositions
proportional to J. As long as the filling is less than p=§, the
particles occupy all sites with the smallest local potential v,
and the symmetric superposition of the double well {v,,v}.
After that, additional particles have to go either to an already
occupied side with potential v,, which is, however, sup-
pressed by the large repulsive particle-particle interaction, or
to the antisymmetric superposition state. The latter requires
an energy on the order of v,+J, thus leading to another
particle-hole gap on the order of J induced by intracell tun-
neling. More quantitatively the gap can be calculated by di-
agonalizing the two-site Hamiltonians H(Np) for zero, one,
or two particles, (i.e., N3=0,1,2), which read

H(0)=0 (6)
in the basis {|00)},
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v, —-J
H<1>=[_J Ul] (7)
in the basis {|10),]01)}, and
U+2v, —1\2 0
HR)=| =72 20, -2 (8)
0 —J\2 U+2,

in the basis {|20),
gies are given by

11)|02)}. The resulting ground state ener-

E(0)=0, )
E(1)=v,-J, (10)
E(2)=%(U+4vl—\s’l6j2+ U?). (11)

Calculating the chemical potentials u},=E(2)—E(1) and
13,5=E(1)~E(0) yields

Moz =v1=J, (12)

U 1 —5—
M;,3=J+vl+5—5w/16ﬁ+u2, (13)
=v, +J+0(]), (14)

giving rise to a particle-hole gap
Apir3=J+0(P). (15)

A generalization of this discussion to the case of higher-order
loophole insulators or larger supercells is straightforward.
For higher-order loopholes, the accuracy becomes better,
since the difference in the chemical potential between the
rightmost and the other sites scales as U(n—1), where n
=]+ 1 is the number of particles of the corresponding Mott-
insulating lobe. This means that the effective two-site model
gets even better for higher fillings. Qualitatively, one can
understand the change in the shape of the loopholes for
higher order (also see Fig. 5) just by considering the replace-
ment J— (n+1)J in (7), because the single-particle matrix
H(1) is the only one relevant for the linear part of (15) and
because this replacement is the only influence of the other
bosons already filling the lattice on the hopping in H(1).

IV. SUPERLATTICE WITH DISORDER

We now include a small disorder to the superlattice Bose-
Hubbard model. Of particular interest is the effect of the
disorder on the loophole insulator phases. Disorder can be
incorporated into the model by replacing the last part of (1)
according to

J J

with A; being independent random numbers with continuous
and bounded distribution, A;E[-A,A]. In the following we
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will restrict our analysis to the case of the superlattice poten-
tial vz{%,%,O}, t={1,1,1} and consider a canonical en-
semble.

A. Two-site model with disorder

If the disorder is small, i.e., if 3A <U+2v,-v,, the prop-
erties of the system in the vicinity of the A=0 loophole in-
sulators can again be understood by considering the unit cell
only, i.e., within an effective two-site model. The A=0 loop-
hole insulator can be characterized by the number of par-
ticles per two-site cell, 2n—1, and the disorder-modified
chemical potential u={v;+A,,v;+A,}

Defining the total local energy in one unit cell as

Ty, = %]nl(nl -+ gnz(nz — 1)+ A +Am,,
(17)
the two-site Hamiltonians can be written as
H,(2n—=2)=T, | 1. (18)
in the basis {[n—1,n—1)} for one particle less,
Hn(zn—1)=[T”"'” - } (19)
-nJ T,

in the basis {|n—1,n),|n,n—1)} for zero extra particles, and

Tos1nm1 -J \"m 0
Ho(2n) = | = INn(n+ 1) T —JNn(n+1)
0 ~INnn+1)  Toop
(20)
in the basis {|n+1,n—1),|n,n),|n—1,n+1)} for one addi-

tional particle.

The breaking of the Mott insulator is determined by the
particle-hole excitation with the smallest energy difference
throughout the whole system. Since in our approximation all
two-site cells are decoupled, one therefore has to find the
configuration {A;,A,} which minimizes the energy gap
within the two-site part of the superlattice unit cell. There-
fore one has to calculate the chemical potentials

:U*;n—1/3 = iniAn [Ey(A1LAy) — By (AL A, (21)
1>=2

M3p_13= gnan[E2n—l(Al9A2) -E(ALA)] (22)
152

that give the smallest energy lost in adding a particle and the
largest energy gain in removing a particle. Using Egs. (18)
and (19) it is easy to see that the energy gap for the hole
excitation w3, ;5 is given by

_ 1
M3p-1/3= max(U(n -D+ (A +4y)
ApA, 2

1 [
- E\s’4J2n2 +(A, - A2)2> , (23)

which is easily seen to be maximized by A;=A,=+A. The
energy gap of a hole excitation is given by
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Ma,_13=Um—1)—nJ+A. (24)

In the case of a particle excitation, an analytical calculation
is more involved. But in this case we can argue physically: If
the disorder is A;=A,=-A then the energy required to add
another particle is minimized because the energy of the
added particle resulting from the local disorder potential is
minimal, the interaction is minimal because the two particles
can distribute equally on both sides, and the kinetic energy is
smallest as well due to the maximal delocalization. This can
be verified by a straightforward numerical minimization of
(21). Using this, the energy gap of a particle excitation reads

1 l —
Mane1/3 = U(" - 5) +nJ—-A- 5\«"8J2n(n +1)+ U~

(25)

In order to calculate the critical tunneling rate at which
the loophole insulator emerges, one needs to solve the equa-
tion

13 = M3 (26)
H30-1/3 = M3n-1/3-

The solution can easily be found and reads

U-2A
=A 27
=AU @7
for n=1, and
J,= ;[(U 4A)
" 2n(n-1) "

—\nA(U* - 4UA + 8AY) —4A(U-2A)n]  (28)
for n>1. In both cases, the leading terms are given by

1 1
7,0 ==A+ A2 4 0(AY), (29)
n n

showing that the loophole decouples from the J=0 axis in
the presence of disorder, resulting in an insulating island. It
should be noted that the two-site model cannot be used to
calculate the maximum value of J for which the loophole
insulator exists since, for the vanishing of the gap at large J
values, intercell tunneling processes also need to be taken
into account.

B. Numerical results

As seen above from the effective two-site model, the
loophole insulator regions are decoupled from the J=0 axis
giving incompressible islands. Although the system is for
any given disorder realization not translationally invariant,
the iTEBD method can be used also in this case. To this end
we define supercells each of which has the same disorder.
The supercells have to be large enough such that effects from
spatial correlations and finite size can be ignored. We have
chosen a supercell length of 96. Increasing this length did not
give any noticeable changes. To calculate the physical quan-
tities, the numerical results have to be averaged over a num-
ber of different disorder realizations, namely, over different
sets of disorder A={A,A,,..., A} with A;E[-A,A], where
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0.15f

J/U

0.051

FIG. 3. (Color online) iTEBD results for boundaries of incom-
pressible phases for /=3 superlattice with v={U/2,U/2,0} and ¢
={1,1,1} and a disorder amplitude A/U=0.04. Dashed line, pure
case; solid line, disordered case. For simulation parameters see Fig.
1. Horizontal lines indicate the positions of density cuts of Fig. 4.

a boxed disorder distribution is assumed. The length of the
vector A is the same as the size of the system simulated (see
the Appendix). It turns out that 20 realizations provide suffi-
cient convergence for the purpose of this paper.

Figure 3 shows the results of the iTEBD calculations in
both the pure (A=0) and the disordered (A=0.04U) cases.
The first thing to notice is the shrinking of the Mott-
insulating lobes for J=0 due to the disorder. As known from
the BHM [14,18], the Mott lobes shrink by an amount of 2A
at the J=0 axis. The second and more important thing to
notice is the decoupling of the loophole insulator from the
J=0 axis, meaning that there is no insulating phase for the
corresponding filling for J<J_;, in full agreement with Eqs.
(27) and (28).

The decoupling of the loophole insulator from the J=0
axis can most easily be seen in a cut parallel to the w axis for
fixed J, showing the average local density as a function of
the chemical potential. In the case of small hopping without
disorder, this cut shows, besides the expected Mott lobes at

=% and 1, an intermediate plateau at filling %, correspond-
ing to the loophole phase (Fig. 4, lower plot, solid line). For
larger hopping (upper plot, solid line), the width of the pla-
teau is slightly increased according to the shape of the loop-
hole in Fig. 1. In the case of disorder, the plateau for Q=%
vanishes for small hopping (Fig. 4, lower plot, dashed line).
For large hopping (upper plot, dashed line), the incompress-
ible phase survives, but with a greatly reduced width com-
pared to the pure case, which shows the decoupling of the
loophole from the /=0 axis as predicted.

In Fig. 5 we show the numerical results for the first, sec-
ond, and third loopholes for increasing values of the normal-
ized disorder amplitude. It should be noted that, due to the
finite number of disorder realizations, it is difficult to accu-
rately determine the lower tip of the insulating island in the
numerics. In Fig. 6 we compare the onset of the insulating
loopholes obtained from the analytic two-site model with
numerical results. One immediately recognizes two things:
First, the onset of the loophole, /.., is a monotonic function
of A and, second, the higher the filling of the lobe, the earlier
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J/U=0.06

2/3r

0.35 0.4 0.45 0.5 0.55

J/U=0.02

2/3r

; —A/U=0.00
1/3 = == AU = 0.044

0.35 0.4 0.45 0.5 0.55
(b) wu

FIG. 4. (Color online) Density cut along the horizontal lines in
Fig. 3 for the pure (solid line) and the disordered (A/U=0.04,
dashed line) cases. Upper plot: cut along the upper line in Fig. 3 at
J/U=0.06; lower plot: cut along the lower line in Fig. 3 at J/U
=0.02. Simulation parameters as in Fig. 1.

the insulating region arises. The numerical value of J; was
obtained by reading off the values from the numerically de-
termined phase diagram assuming generous error margins
[19]. Taking into account these errors, Fig. 6 shows a rather

0.12
p=2/3
p=5/3
0.08
2
5
0.04
0.4 0.45 0.5 1.45 15 2.45 2.5
wyu

FIG. 5. (Color online) Detailed analysis of the first three loop-
hole insulators (from left to right: ©=2/3, 5/3, and 7/3) with vary-
ing disorder amplitude, increasing from the outer to the inner lines
(black, A/U=0.00; magenta, A/U=0.02; red, A/U=0.04; orange,
A/U=0.06). For the simulation parameters, see Fig. 1 except for
D-1=4 in the rightmost plot (0=8/3).
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0.06 p=23 }
0.05} =53
o 004 1 -
%
= 0.03 .
0.02 -
I p=8/3
0.01 ]
0 ‘ ‘ ] ]
0 0.02 0.04 0.06 0.08
AU

FIG. 6. (Color online) Critical point J,, of the onset of the loop-
hole insulating island as a function of the disorder. Solid line, ana-
lytic prediction from Egs. (27) and (28); crosses, data with error
bars as read from Fig. 5 (not all used data are shown in Fig. 5);
dashed lines, leading order in Eq. (29). From top to bottom, n=1, 2,
and 3.

good agreement of the two-site model with the numerics.
However, the analytic prediction tend to be slightly too large
compared to the numerics; nevertheless giving the right lead-
ing order for small A. This is because for larger A the critical
hopping gets larger than allowed by the assumption of a
decoupled two-site problem. By diagonalizing the complete
three-site unit cell with periodic boundary conditions, which
gives another but less intuitive approximation, we get a
curve for J; that is below the two-site prediction, but is the
same in first order and in better agreement with our numer-
ics.

V. SUMMARY

In the present paper we have analyzed the superlattice
Bose-Hubbard model with and without disorder. In particu-
lar, the cases of degenerate potential energies and/or degen-
erate tunneling rates within the unit cell of the superlattice
have been discussed. Using both exact numerical methods
such as the infinite-size time evolving block decimation al-
gorithm and the density matrix renormalization group, we
calculated the boundaries of incompressible Mott-insulating
phases. The existence of additional loophole-shaped Mott
domains, predicted before, was verified, and their numeri-
cally determined phase boundaries compared to other ap-
proaches such as the cell strong-coupling expansion. A
simple effective model was presented that takes the full dy-
namics within a unit cell into account. The model provides a
rather straightforward explanation for the emergence of loop-
hole Mott domains in the case without disorder. Adding a
small amount of disorder with continuous, bounded distribu-
tion leads to a shrinking of the loopholes to Mott-insulating
islands with the remarkable feature of a compressible-phase
to insulating transition with increasing bosonic hopping. The
analytic predictions for the critical hopping for this transition
from the effective model were compared to numerical simu-
lations and found in very good agreement.
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APPENDIX: THE TEBD ALGORITHM AND THE ITEBD
IDEA

In the following we give a short summary of the numeri-
cal algorithm used in Secs. III A and IV B. The basic idea of
the TEBD algorithm emerged from quantum-information
theory [11] and it can be used to simulate one-dimensional
quantum computations that involve only a limited amount of
entanglement.

Here we want to use it for an imaginary time evolution of
the one-dimensional Bose-Hubbard model. The state of the
system can be represented as a matrix product state:

X D
|\If> = 2 2 I‘[]]H)\[I]F[QZ];Z )\[aL—Z]
@yt . =1 ipig,. . i =0 172 L-2
s P iy [ (AD)

ar 2@ "‘Ll D‘Ll

Here D is the dimension of the local Hilbert space on a
single site and y is the number of basis states in the Schmidt
decompositions (see below) to be taken into account. y is a
measure for the maximum entanglement in the system and is
assumed not to increase with system size or to increase only
very slowly. In our model the number of particles per site is
in principle not bounded. But to reduce the numerical effort
one can safely set a maximum number of particles, D—1,
allowed per site, since higher occupancies are strongly sup-
pressed due to the on-site interaction. |i;--i;) is the state
from the Fock basis, where there are i, bosons on site k.
Furthermore, we require our matrix product representa-
tion to be in the canonical form, i.e., Eq. (A1) represents the
Schmidt decomposition for any bipartite splitting of the sys-
tem at the same time. This means that, for any given k, the
Schmidt decomposition between sites k£ and k+1 is given by

X
W= 3 Al

,k]>|\];,[k+l,“.,L]> (A2)
a=1
where the Schmidt coefficients )\Ef] are normalized as
X 2
Sl =, (A3)

a=1

and the {|WL*1hy - ({|wlk~Lh} ) form an orthonormal
set of states in the subspace of the first k (last L—k) sites. By
sorting the Schmidt coefficients in nonascending order for
every bond, this makes the representation de facto unique.
Explicitly,
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|\P[1,...,k]> — E

ap,ay,. .., a
i1sigs - i

il lij -+

akl Q1@

F[]]il
a

(A4)

where the N’s account for all the Schmidt coefficients and the
A’s take care of the transformation into Fock space at every
single site. Describing an arbitrary state in general requires
that the Schmidt number y is of the order DE. We will use,
however, a relatively small, constant y to avoid exponen-
tially increasing complexity of the numerical problem. It has
been shown in [20] that this seemingly strong assumption is
justified and gives a good approximation for the ground
state. This is related to the fact that the ground state of one-
dimensional systems with finite-range interactions either has
a constant entanglement (for noncritical systems) or the en-
tanglement increases only logarithmically with the size (for
critical systems). Small values of y give usually very good
results for local observables, while correlations are only
poorly approximated over very large distances. For the latter
the approximation can be improved by choosing a larger y,
proportional to the distance [12]. The number of coefficients
needed to specify the matrix product state with given fixed y
is of the order LD)(2 and can be handled numerically, in
contrast to the D* coefficients required for representation in
the full Fock space.

Expressing the state in a local basis for sites k and k+1
only,

X D
_ [k=11p[kiy [klyp[k+11y [k+1]
|¥) = ,32120)\“ TN L
a,B,y=1 i,j=!

X)W, (AS)
we see that applying an operator that involves sites k and k
+1 only is equivalent to manipulating the matrices T'™] and
I'l11 and the vector A*! only, which is implemented as fol-
lows.
For reasons of stability we use A[k]’ F[k]‘)\[k] throughout
the algorithm [21]. To shorten the notat10n we rename
N+ ) and NFTWE2E) ) in (A5),
giving

|‘{/> E E A[k]lA[kH]] )\[k+1] | aijy). (A6)

ij

Applying a two-site operator V given by the matrix V;ﬁn then
results in

Vi =19 => > v

ay ImB
ij

1 ..
[k]lA[k+1]m )\[,ﬁl] |aijy).

Tay (A7)
The objective is now to decompose 7 into a product of

matrices gg‘};ﬁ%‘;lb and to keep the canonical form. The
{AN%‘; lli}ﬁ are the eigenvectors of the reduced density matrix
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p[k+1,...,L] — Tr[l’“"k]|\l~f)<\l~f|
_ E E )\[k—l]2le1 1]2) |j171> (iz)’z|
ay| ay, )\[k+l] )\[k-i-l]
Iz i@ P "
Y172 e
M2
" (A8)

Diagonalizing M gives the new Z[k”lf as eigenvectors and

the new (~[k])2 as eigenvalues. (Usmg the I' matrices instead
of the A matnces would require a division by )\[71‘”] But
Af1 can be zero if the Schmidt number for this bond is
smaller than y.) In general there are Dy nonzero eigenvalues.
(This is due to the possible creation of entanglement by V.)
But we can keep the y biggest of them. Therefor we have to
renormalize the new A%} according to (A3). This is necessary
anyway if we have a nonunitary V as in the case of an imagi-

nary time evolution. The A[k]’ are given by X W(A ) T’J
In order to calculate the ground state of our system (see

[22]), we divide the Hamiltonian (1) into two parts H.,,., and
H,yq where H,,., (H,) couples sites j and j+1 for even
(odd) j only. The local parts of H can be distributed between

ﬁeven and ﬁodd arbitrarily. The ground state is then given by
an imaginary time evolution

_I;B| Vo)
|\Ifground> T (A9)
Bﬂ°°||e Vo)

Here any initial state | W) is sufficient, as long as it has a
finite overlap with the (yet unknown) ground state. The evo-
lution is implemented by repeatedly applying small time

steps e /%, so called Trotter steps. The norm is conserved in

this procedure (see above). So after T steps only the ground
state has a reasonable contribution to our state if S8=Te is
much bigger than the inverse of the energy of the first ex-
cited state (relative to the ground state energy). In order to

write e ¢ as a product of two-site operators we use the

Suzuki-Trotter decomposition [23]. In first order one can get
e —e‘Hevens ‘Hodd“’+0(82) and in second order e~f¢

— ¢ Heven/26¢ Heven'28 4 O(£3). For higher orders see [23].
Thus we can calculate the ground state by repeatedly apply-
ing two-site operators.

To calculate expectation values of observables we again
take a look at (A5). The expectation value of a nearest neigh-
bor observable, say (W|d}d,|¥) can be directly calculated
because all occurring states are mutually orthogonal and nor-
malized. An nth-site nearest neighbor observable can be cal-
culated by expressing the state in the local basis for site k to
k+n analogously to (A5). For non-nearest-neighbor observ-
ables we can use the SWAP gate to bring the sites of interest
together [11].

A powerful feature of the algorithm is its application to
infinite, translationally invariant systems. Suppose a Hamil-
tonian that has a periodicity of ¢ sites [as (1) has for a su-
perlattice], restricted to ¢=2 for clarity. The state of an infi-
nite system is a slight modification of (Al):

Hodda
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Lo X To X To X T
N / AN 7

Hggq Hogq

7 N 7 N
'y A T X Tt A Ty

e N 7 N

Heven Heven Heven

N / N /
'y M Ts X Ty AN T

N\ Ve N\ /

FIG. 7. Symbolic representation of the effect of the TEBD al-
gorithm in a translationally invariant state. The uppermost (initial)
state is first changed by application of Hy4, giving new I'’s and \’s.
The second step with H,,., then produces a list of alternating I"s
and N\’s such that only two of them need to be kept in memory.
Every further Trotter step preserves this symmetry.

.. .)\[k—l]l“[k]ik )\[k]

S

W= X

s e oy Oy
A
L RSN T3 Y B

XFak Nao i i) (A10)
The imaginary time evolution is started with a translationally
invariant state, so all I"’s and \’s are the same in the begin-
ning. The scheme in Fig. 7 shows that the ¢ periodicity of the
representation is preserved during real or imaginary time

evolution. This is because all two-site operations H,qq and

PHYSICAL REVIEW A 77, 043618 (2008)

A

H.,., are respectively the same and are all applied to every
other pair of matrices.

So we have to store only two I" matrices and two \ vec-
tors. It is even more important that we only have to apply
two two-site operators per Trotter step.

After imaginary time evolution we end up with a
c-periodic ground state. [That means that expectation values
have a periodicity of c sites, although there can be contribu-
tions in (A10) from states which have a nonperiodic Fock
representation. This is a clear distinction from the case of
periodic boundary conditions, where not only all expectation
values but also the wave function must be periodic.] This is
called the iTEBD algorithm [12]. It means that we can effi-
ciently calculate observables in the thermodynamic limit. If
we were using DMRG or the normal TEBD we would have
to simulate large finite systems, which is time consuming,
and then extrapolate to L=0o0 to get rid of finite-size effects
but introducing additional error.

The idea works as well for ¢>2. If ¢ is odd, we have to
choose 2c¢ as the period, since we need a clear distinction

between f]even and ﬁodd. In fact, we used it in this work for
the nonperiodic Hamiltonian of the disordered superlattice
model, thus not saving calculation time (a large value has to
be used for ¢ in order to have a sufficiently random disorder)
but getting rid of boundary effects.

Finally we note that the TEBD algorithm itself is in prin-
ciple correct only for unitary operations. Nonunitary opera-
tions were found to destroy the representation in the sense
that the Schmidt vectors in are no longer exactly orthogonal,
i.e., the representation is no longer canonical [24]. Additional
steps to conserve orthogonality in the algorithm were pro-
posed in [25]. These were not incorporated here, since for
small & the Trotter steps are quasiorthogonal. Numerical
analysis shows that the scalar products of the normalized
Sch3midt vectors in the resulting ground state are of the order
107,
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