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We study the phase diagram of the zero-temperature, one-dimensional Bose-Fermi-Hubbard model for fixed
fermion density in the limit of small fermionic hopping. This model can be regarded as an instance of a
disordered Bose-Hubbard model with dichotomic values of the stochastic variables. Phase boundaries between
compressible, incompressible �Mott-insulating�, and partially compressible phases are derived analytically
within a generalized strong-coupling expansion and numerically using density matrix renormalization group
�DMRG� methods. We show that first-order correlations in the partially compressible phases decay exponen-
tially, indicating a glass-type behavior. Fluctuations within the respective incompressible phases are determined
using perturbation theory and are compared to DMRG results.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide an experimen-
tally accessible toolbox for simulating strongly correlated
quantum systems �1–7�. The interaction of the atoms gives
rise to local Hamiltonians on a lattice that can be character-
ized in their microscopic details. Moreover, by means of
mixtures of different species, Feshbach resonances, or addi-
tional optical lattices, an unprecedented control over system
parameters can be achieved. Following the first experiments
showing a Mott-insulator–superfluid phase transition �3� in a
bosonic system �4,5�, a plethora of systems of cold atoms
have been studied. This includes mixtures of bosonic and
fermionic atoms—studied in experiments �8–11� and theory
�12–23�—giving rise to a rich phase diagram and complex
physics, including fermion pairing, phase separation, density
waves, and supersolids.

Early theoretical studies of the Bose-Fermi-Hubbard
model �BFHM� within mean-field and Gutzwiller decoupling
approaches �12,14,15� as well as exact numerical diagonal-
ization �16� revealed the existence of Mott-insulating �in-
compressible� phases with incommensurate boson filling. In
comparison to the Bose-Hubbard model, where the incom-
pressible phases are entirely characterized by the local boson
number, the corresponding phases for Bose-Fermi mixtures
display a much richer internal structure. A rather complete
description of these phases can be obtained using a
composite-fermion picture �13�, which predicts density
waves with integer filling, the formation of composite-
fermion domains �phase separation�, composite Fermi liq-
uids, and BCS-type pairing. The properties of one-
dimensional �1D� Bose-Fermi mixtures in the compressible
phases were analyzed in terms of fermionic polarons using a
bosonization approach �18�. In two spatial dimensions the
existence of supersolid phases, characterized by the simulta-
neous presence of a density wave and long-range off-
diagonal order for the bosons, was demonstrated. The persis-
tence of a density wave with noninteger fillings in the
compressible phases was shown in �17�. There are also a few
exact numerical studies using both quantum Monte Carlo
�22,23� and density matrix renormalization group �DMRG�
calculations �23�.

In the present work, we consider a Bose-Fermi mixture in
a one-dimensional, deep periodic lattice described by the
Bose-Fermi-Hubbard model. In particular, we study the case
of small fermionic hopping, where the presence or absence
of a fermion at a lattice site results in a dichotomic random
alteration of the local potential for the bosons. We show that
for this limiting case a rather accurate prediction of the in-
compressible �Mott-insulating� phases is possible using a
generalized strong-coupling approach. To verify this ap-
proach we perform numerical simulations using the density
matrix renormalization group �24�. We predict the existence
of partially compressible phases and provide numerical evi-
dence that they have a Bose-glass character. Finally, we cal-
culate local properties in the incompressible phases and draw
conclusions about the validity of effective theories.

II. THE MODEL

We consider a mixture of ultracold spin-polarized fermi-
ons and bosons in an optical lattice. In the tight-binding limit
of a deep lattice potential, the system can be described by the
Bose-Fermi Hubbard model �12�. We here consider a semi-
canonical model, in which the number of fermions is held
constant, but in which we allow for fluctuations of the total
number of bosons determined by a chemical potential �. The
corresponding Hamiltonian reads

Ĥ = − JB�
j

�b̂j
†b̂j+1 + b̂j+1

† b̂j� − ��
j

n̂j − JF�
j

�ĉj
†ĉj+1 + ĉj+1

† ĉj�

+
U

2 �
j

n̂j�n̂j − 1� + V�
j

n̂jm̂j . �1�

Here, ĉj and b̂j are the annihilation operators of the fermions

and bosons at lattice site j, respectively, and n̂j = b̂j
†b̂j and

m̂j = ĉj
†ĉj the corresponding number operators. The particles

can tunnel from one lattice site to a neighboring one, the rate
of which is described by JB and JF for bosons and fermions,
respectively. V is the on-site interaction strength between the
two species, while U accounts for intraspecies repulsion of
bosons, which will define our energy scale; we set henceforth
U=1.
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Throughout the present work, we will focus on the case of
heavy, immobile fermions, i.e., we consider the limit in
which JF=0 is a good approximation. In this case the effect
of the fermions reduces to a dichotomic random potential at
site j for the bosons, depending on whether a fermion is at
site j or not. This means that the local potential is altered by

�� j = �V if a fermion is present at site j ,

0 otherwise.
� �2�

We will systematically investigate to what extent this limit of
the Bose-Fermi-Hubbard model can be described as a spe-
cific instance of a disordered Bose-Hubbard model,

Ĥ = − JB�
j

�b̂j
†b̂j+1 + b̂j+1

† b̂j� − �
j

�� − �� j�n̂j

+
1

2�
j

n̂j�n̂j − 1� . �3�

We will see that this simple model shows, on the one hand,
important features of the full Bose-Fermi-Hubbard model.
On the other hand, we will see that this leads to important
qualitative differences from the phase diagram of the disor-
dered Bose-Hubbard model with continuously distributed
on-site disorder, as studied in Refs. �4,25,26�. Depending on
the physical situation of interest we will consider two cases
of disorder: If the fermionic tunneling is small but suffi-
ciently large such that, on the time scales of interest relax-
ation to the state of total minimum energy is possible, the
fermion-induced disorder is referred to as being annealed. In
this case the ground state is determined by minimization over
all possible fermion distributions. If the fermion tunneling is
too slow or the temperature too high the disorder is an actu-
ally random distribution called quenched.

III. COMPRESSIBLE AND INCOMPRESSIBLE PHASES

In this section we derive the phase diagram of the BFHM
with immobile fermions. More specifically, we will approxi-
mate the boundaries between compressible and incompress-
ible phases by employing a generalization of the familiar
strong-coupling expansion �27� to the present case of bosons
with a modified potential due to the presence of fermions.
This will be compared to the predictions of several instances
of mean-field approaches �14,15�. Furthermore, a compari-
son with numerical results in one spatial dimension obtained
by a DMRG computation will be given. Our strong-coupling
expansion reveals the existence of novel phases whose char-
acter will be discussed in the subsequent section.

A. Ultradeep lattices

We first discuss the simple case of an ultradeep lattice for
the bosons, such that their hopping can be neglected. In this
situation, where JF=JB=0 is a good approximation, the
Hamiltonian becomes diagonal in the occupation number ba-
sis. This basis will be denoted as �	n1 , . . . ,nN
	m1 , . . . ,mN
�,
where mj =0,1 denotes the number of fermions at site j and
nj =0,1 , . . . the corresponding number of bosons. N labels the
total number of lattice sites in the one-dimensional system.

The problem of finding the ground state reduces to identify-
ing product states with the lowest energy. By fixing the total
number of fermions NF=N�F, this amounts to minimizing

E =
1

2�
j

nj�nj − 1� − �� − V� �
j�F

nj − � �
j�N

nj ,

where F denotes the set of �FN=NF sites with a fermion and
N the set of �1−�F�N=N−NF sites without a fermion, �F

denoting the fermionic filling factor. The energy is obviously
degenerate for all fermion distributions and the ground state
is given by an equal mixture of all states with state vectors

	�0
 = �
i�F

	n1,1
 �
j�N

	n0,0
 . �4�

Here,

n1 = max�0,�1/2 + �� − V���, n0 = max�0,�1/2 + ���
�5�

is the local boson number for sites with �F� or without �N� a
fermion and �·� denotes the closest integer bracket. In other
words, the degenerate states with lowest energy will have
�FN sites with n1 bosons and one fermion and N�1−�F� sites
with n0 bosons and no fermion. For the case of zero or unity
fermion filling, �F=1, the situation becomes particularly
simple as we encounter the pure Bose-Hubbard model with
an effective chemical potential �eff=�−V�F.

Since n1 and n0 are integers, there are adjacent intervals of
� where the occupation numbers do not change. In these
intervals the system is incompressible, i.e.,

���
j

n̂j
��

= 0, �6�

and the points between two intervals are quantum critical
points. This behavior, illustrated in Fig. 1, is very similar to
that of the Bose-Hubbard model except that here the bosons
can be incompressible even for noninteger filling �B as we
have �B=n0+�F�n1−n0�. Following Ref. �13�, we label the
difference n0−n1 in the bosonic number mediated through
the presence of a fermion by s. The local ground state can
consist of either n0 bosons and no fermion or n1=n0−s
bosons and one fermion. These state vectors will be denoted
as 	n0 ,0
= 	0
 and 	n0−s ,1
= 	1
. The value of s depends on
� and V and can be a positive or negative integer. Both these
vectors are eigenvectors of the number operator

Q̂j = n̂j + sm̂j �7�

with the same integer eigenvalue n0 and ��Q̂j
2
=0. Thus,

incompressible phases have a commensurate number Q̂ and
can be characterized by the two integers n0 and s. Since n0
and n1 are integers and increase monotonically with �, there
is a jump in the total number of bosons when moving from
one incompressible phase to the adjacent one. All systems
with boson number between these values are critical and
have the same chemical potential since JB=0. The average
boson number per site in the incompressible phases does not
have to be an integer, however. The existence of Mott-
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insulating phases with noncommensurate boson number is a
direct consequence of the dichotomic character of the
fermion-induced disorder. A similar behavior has been pre-
dicted for superlattices, which can be considered as dichoto-
mic disorder in the special case of anticlustering �28,29�. In
general Mott-insulating phases with incommensurate boson
numbers exist for any disorder distribution that is noncon-
tinuous.

B. Minimum-energy distribution of fermions for small bosonic
hopping

In order to understand the physics of disorder due to the
presence of fermions, we need to discuss the influence of the
distribution of fermions on the ground state energy. The en-
ergetic degeneracy of different fermion distributions in the
incompressible phases is lifted if a small bosonic hopping JB
is taken into account. Near the quantum critical points the
boson hopping leads to the formation of possibly critical
phases with growing extent. We first restrict ourselves to
regions where incompressibility is maintained, i.e., suffi-
ciently far away from the critical points.

In order to obtain a qualitative understanding of the ef-
fects of a finite bosonic hopping, we have performed a nu-
merical perturbation calculation on a small lattice. Figure 2
shows different distributions of four fermions over a lattice
of eight sites ordered according to their energy for different
parameters in sixth-order perturbation.

One notices that the lowest-energy states are given by
fermion distributions with either maximum mutual distance

�anticlustered configuration� or minimum mutual distance
�clustered configuration� modified by boundary effects. This
behavior can in part be explained by the composite-fermion
picture introduced in �13�. The composite fermions are de-
fined for the phase �n0 ,s� by the annihilation operators

f̂ i =��n0 − s�!
n0!

�b̂i
†�sĉi for s � 0, �8�

f̂ i =� n0!

�n0 − s�!
�b̂i�−sĉi for s � 0. �9�

For each n0 and s=1, the full BFH Hamiltonian, Eq. �1�, with
JF=0 in second order in JB gives rise to the effective Hamil-
tonian �13�
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FIG. 1. �Color online� Phases of the BFHM for JB=JF=0 for
different interspecies couplings 0�V�1 �lowest diagram�, 1�V
�2 �middle diagram�, −1�V�0 �upper diagram�, and U=1. n
indicates the number of bosons �empty circles� at the site and m the
number of fermions �red filled circles�. The horizontal red bars il-
lustrate the boson number n1 for sites with a fermion �m=1� as a
function of the chemical potential; the horizontal blue bars are cor-
respondingly the boson number n0 for sites without a fermion �m
=0�, which is identical to the BHM. The values of � where a
transition between different boson numbers n0 occurs at sites either
without a fermion �m=0� or with a fermion �m=1� are quantum
critical points.

FIG. 2. �Color online� Fermion distributions ordered increas-
ingly by ground state energy. Blue, lowest energy, red, highest en-
ergy, for JF=0, JB=0.02, U=1. Top: attractive boundary, �i� V
=1.5, n0=1, s=1, i.e., Keff=−0.002, and �ii� V=1.5, n0=2, s
=1, i.e., Keff=0.001. Bottom: repulsive boundary �iii�
V=−1.5, n0=0, s=−1, i.e., Keff=−0.002, �iv� V=−1.5, n0=1, s
=−1, i.e., Keff=0.001.
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Ĥeff = Keff�
�j,k


� f̂ j
† f̂ j�� f̂ k

† f̂ k� , �10�

where �· , ·
 denotes nearest neighbors. Here, as JF=0, we
find the effective coupling �note that again U=1�

Keff = 4JB
2�n0�n0 + 1 − s�

1 − s + V
+

�n0 − s��n0 + 1�
1 + s − V

− n0�n0 + 1�

− �n0 − s��n0 + 1 − s�� . �11�

Composite fermions cannot occupy the same lattice site, but
there may be nearest-neighbor attraction �Keff�0� or repul-
sion �Keff�0�. Associating a site with a composite fermion
with a spin-up state and a site without a fermion with spin
down, Eq. �10� corresponds to the classical Ising model with
fixed magnetization and antiferromagnetic �Keff�0� or fer-
romagnetic �Keff�0� coupling.

As a consequence, to this order in perturbation theory, if
Keff�0, the energy is smallest for fermion distributions that
minimize the surface area of sites with and without a fermion
�referred to as clustering�. In this setting, we can take the
fermion distribution to form a block of occupied sites.

The other regime is the one for Keff�0. Then, the fermi-
ons repel each other, and they form a pattern with maximum
number of boundaries for small JB, referred to as anticluster-
ing. That the fermions attain a distribution with maximum
distance cannot be explained by the effective model due to
its perturbative nature. In all of our numerical simulations
using the density matrix renormalization group, we found,
however, that a positive Keff always led to anticlustering with
maximum distance.

The ground state energies of the various fermionic distri-
butions differ only by a small amount which is on the order
of JB

2 /U or even higher powers. Also, for temperatures that
are still small enough to treat the bosonic system with given
disorder as an effective T=0 problem, but larger than the
energy gap between different fermion distributions, i.e., for
JB�JB /U�n�kBT�JB, the various fermion distributions will
be equally populated. Thus it seems more natural to consider
the case of quenched, random disorder rather than that of
annealed disorder.

C. Compressible and incompressible phases for finite JB

We now discuss the boundaries of the incompressible
phases for finite bosonic hopping. To this end we extend the
strong-coupling expansion of Ref. �27� and complement the
results with numerical DMRG simulations. The strong-
coupling expansion provides a rather accurate description for
the Bose-Hubbard model even on a quantitative level.

Let us consider a phase with �n0 ,s� and NF=�FN fermi-
ons, i.e., a phase with NF sites containing n0−s bosons and a
fermion and N−NF sites with n0 bosons. The ground state
vector for JB=0 is then found to be

	�0
 = �
j�F

ĉj
†�âj

†��n0−s�

��n0 − s�!
�

k�N

�âk
†�n0

�n0!
	0
 , �12�

where 	0
= 	0, . . . ,0
bosons � 	0, . . . ,0
fermions is the total
vacuum of both bosons and fermions at all sites. The energy
density is given by

	0 =
U

2
��1 − �F�n0�n0 − 1� + �F�n0 − s��n0 − s − 1��

+ V�F�n0 − s� . �13�

We now consider states with a single additional boson
�bosonic hole�. In contrast to the actual Bose-Hubbard model
in the absence of fermions, we here have to distinguish two
cases, where a boson �bosonic hole� is added to a site with a
fermion. Up to normalization, we then have

	�+,F
 j = âj
†	�0
, 	�−,F
 j = âj	�0
, j � F , �14�

or without a fermion

	�+,N
 j = âj
†	�0
, 	�−,N
 j = âj	�0
, j � N . �15�

All of these vectors are eigenvectors of the BFH Hamiltonian
for JB=0 with respective energies

E+,F = E0 + V + U�n0 − s� , �16�

E−,F = E0 − V + U�n0 − s − 1� , �17�

E+,N = E0 + Un0, �18�

E−,N = E0 + U�n0 − 1� , �19�

where E0=N	0. The corresponding chemical potentials read

�+,F
0 = E+,F − E0 = V + U�n0 − s� , �20�

�−,F
0 = E0 − E−,F = �+,F − U , �21�

and

�+,N
0 = E+,N − E0 = Un0, �22�

�−,N
0 = E0 − E−,N = �+,N − U . �23�

Except for the special case V=Us, the energies E
,F and
E
,N all differ from each other. Thus we can determine the
phase boundaries for JB�0 by degenerate perturbation
theory within the subspaces j�F and j�N separately.

There will be a second-order contribution in JB for sites j
that have at least one neighboring site of the same type. For
isolated sites degenerate perturbation theory will lead only to
higher-order terms in O�JB

2�. Since the boundaries of the in-
compressible phases are determined by the overall lowest-
energy particle-hole excitations, we can construct the ex-
pected phase diagram in the case of extended connected
regions of fermion sites coexisting with extended connected
regions of nonfermion sites. In this case we can directly ap-
ply the results of Ref. �27� to sites with and without fermi-
ons,
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�
,F/N = �
,F/N
0 + ��
�n0,JB� , �24�

where

��+�n0,JB� = − 2JB�n0 + 1� + JB
2n0

2 + JB
3n0�n0 + 1��n0 + 2� ,

�25�

��−�n0,JB� = 2JBn0 − JB
2�n0 + 1�2 − JB

3n0�n0
2 − 1� . �26�

This gives rise to two overlapping sequences of quasi-Mott
lobes shifted by the boson-fermion interaction V as shown in
Fig. 3.

The system is truly incompressible only in the overlap
region of the quasi-Mott lobes �A�. Points which are within
one of the two sequences of quasi-Mott lobes but not in both
�cases B or C� are partially incompressible with an energy
gap for a bosonic particle-hole excitation on a site with �B�
�without �C�� a fermion but without a gap for a correspond-
ing excitation on a complementary site. The properties of
these partially incompressible phases will be discussed later.

These strong-coupling results will now be complemented
by numerical calculations using a DMRG simulation for a
system with fixed fermion distribution and open boundary
conditions. The local Hilbert space for the bosonic sector is
span�	0
 , . . . , 	6
�, so it is truncated at six bosons. The
DMRG computation is done for both clustered and anticlus-
tered fermion distributions. The corresponding graphs for the
phase boundaries are shown in Fig. 4.

One recognizes nearly perfect agreement between the nu-
merics and strong-coupling prediction in the case of cluster-
ing. This is expected since in the clustered case the majority
of sites have neighbors of the same type. In the case of
anticlustering, however, the incompressible lobes extend
much further into the region of large boson hopping with
a critical JB of about 1 for a fermion filling of �F=1 /4 at
V=−1.5. The latter is to be expected, since in this case hop-
ping to nearest neighbors is suppressed if the neighboring
sites are of a different type �F� or �NF�. Here the curves of

the critical chemical potential �crit�JB� that correspond to a
bosonic particle-hole excitation at a fermion site �here
�crit�0�=−1.5,−0.5,0.5,1.5, etc.� start with a power JB

� de-
termined by the minimum number of hops required to reach
the next fermion site, i.e., �=1 /�F, if �F�1 /2. If the fer-
mion filling is larger than 1/2 the picture changes and the
nonfermion sites �hole sites� cause �crit�JB��JB

� with �
=1 / �1−�F�. In principle, it is possible to extend the strong-
coupling perturbation expansion to any fermion distribution,
which is, however, involved. Figure 5 shows the prediction
of a cell strong-coupling expansion �30� for an anticlustered,
fixed fermion distribution, which is equivalent to bosons in a
superlattice potential.1

We now want to argue that the strong-coupling expansion
for a clustered fermion distribution provides an accurate pre-
diction for the boundaries of the incompressible phases in the
case of quenched, random fermion disorder. Since in the
thermodynamic limit any local distribution of fermions is
realized at some places in the lattice, the actual phase bound-
aries are determined by the fermion configuration that leads

1It should be noted that the loop-hole insulator phases predicted
for a superlattice are too small for the present parameters to be
visible in the DMRG simulation and are expected to disappear after
averaging over disorder distributions.

FIG. 3. �Color online� Phase diagram from strong-coupling ex-
pansion and U=1, V=1.5. Red areas �a� indicate truly incompress-
ible Mott regions with gapped particle-hole excitations everywhere.
Green �b� or blue �c� areas are partially compressible quasi-Mott
regions with gapped particle-hole excitation for sites with or with-
out a fermion but ungapped excitation in the complementary region.
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FIG. 4. �Color online� Comparison of strong-coupling approxi-
mation �full line� and DMRG for boundaries of incompressible
phases for fixed distribution of fermions corresponding to clustering
�inner crosses � or anticlustering with maximum distance �outer
points •�. V=1.5 �top figure� and −1.5 �bottom figure�. �F=0.25 and
U=1.
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to the smallest incompressible regions. Since this is the case
for a clustered fermion configuration, which in turn is well
described by the strong-coupling expansion, the latter gives a
rather accurate description of the phase transition points be-
tween compressible and incompressible phases.

For the case of annealed fermion distribution the strong-
coupling expansion is expected to give only less accurate
results. This can be seen from Fig. 6, where we compare the
predictions of the strong-coupling approximation with those
from a DMRG simulation for annealed fermionic disorder
and a mean-field ansatz. Within the mean-field approach,
e.g., of �14�, hopping is included in the system as a pertur-
bation to the ground state,

	g
 = �1 − �F	n0,0
 + ��F	n0 − s,1
 . �27�

Using this ground state and introducing a global bosonic
order parameter �, the phase boundaries can be found using
the usual Landau argumentation. For details, see �14,15�.
Figure 6 shows the resulting phase diagram compared to
DMRG data for annealed disorder and strong-coupling pre-
dictions. When comparing the different data sets one recog-
nizes that the mean-field predictions are qualitatively correct
but, as expected, only moderately precise quantitatively. It
should be mentioned that the accuracy of the mean-field ap-
proach becomes worse even for JB→0 for a disorder with
maximum anticlustering. The numerical data were obtained
by letting the DMRG code freely evolve in the manifold of
fermionic distributions. The initial fermion distribution is not
fixed but determined by the build-up process inherent to the
initial infinite-size DMRG algorithm, which is then followed
by finite-size sweeps. The distribution arising then gives a
state which is at least close to the ground state, where the
�small� discrepancy comes from the truncations within the
method. Since this procedure is prone to get stuck in local
minima, we checked the consistency of our results by imple-
menting different sweep algorithms. In these algorithms the
fermionic hopping was not taken to be zero but was given a
finite initial value which was decreased during the DMRG
sweeps to the final value zero. To ensure proper convergence
we compared the data for a few representative points �JB
=0.07 boundaries of the �n0=1 , s=1� lobe; JB=0.15 bound-
aries of the �n0=1 , s=0� lobe; JB=0.03 boundaries of the
�n0=2 , s=0� lobe� to the data obtained from two different
sweep strategies.2 The difference in the chemical potential is
of the order of 3%, independent of the sweep strategy, and
therefore negligible on the scale of the plot.

It should be noted that the build-up procedure during the
infinite-size part of the DMRG algorithm inherently behaves
badly for annealed fermions in the case of a clustered ground
state �i.e., Keff�0� and for JF=0. Applying the above men-
tioned sweeping algorithm should yield proper results, how-
ever.

D. Influence of finite fermionic hopping

The question arises how the phase diagram changes if a
finite but small fermionic hopping is included. The case JF
�0 should be compared to the case JF=0 for annealed fer-
mionic disorder. Figure 7 shows a comparison of DMRG
data for JF=0 and JF=JB. One recognizes that the influence
of a small fermionic hopping is rather small.

2The sweep strategy was implemented by first applying an
infinite-size algorithm up to the system length, then applying five
finite-size sweeps, all at JF=JB /2. Subsequently, the hopping was
reduced after a complete sweep and again three sweeps were carried
out to ensure convergence with the new hopping amplitude. Repeat-
edly, the hopping was slightly reduced until after 30 sweeps the
fermionic hopping is set to be 0 with another three sweeps. In the
first method the hopping was reduced according to an exponential
decay followed by a linear decay to zero. In the second method the
hopping was reduced according to a cosine decay followed by a
linear decay to zero.
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cell strong coupling
DMRG

FIG. 5. �Color online� Comparison of cell strong-coupling ap-
proximation �full line� obtained from �30� and DMRG for bound-
aries of incompressible phases for fixed distribution of fermions
corresponding to anticlustering with maximum distance �full dots,
•�. V=−1.5, �F=0.25, and U=1.
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FIG. 6. �Color online� Incompressible phases for an annealed
fermion distribution and U=1, V=0.25, �F=0.25. Within the in-
compressible phases, the final fermion distributions correspond to
the totally anticlustered state, in agreement with the analytic predic-
tions of Sec. III C. Shown are the strong-coupling results �outer full
line�, the mean-field results from �14� �inner full line�, and results
from a DMRG calculation with JF=0 �crosses �. Vertical line
indicates position of the density cut shown in Fig. 9 in the following
section.
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E. Finite-size extrapolation

The DMRG simulations are done for finite lattices and
thus finite-size effects influence the results. To eliminate
these effects, each data point is obtained by a finite-size ex-
trapolation. This is particularly important if one wants to
determine the critical values of JB for the compressible-
incompressible transition. Figure 8 shows the extrapolation
of the tip of the lowest Mott phase in Fig. 7 for JF=JB to
infinite lattice sizes N→�. From a fit of Jc to ln�N� we find
the critical point in the thermodynamic limit Jc=0.160 38.
The data for different system lengths show the expected 1 /N
behavior shown in Ref. �31� for the BHM.

IV. PARTIALLY INCOMPRESSIBLE PHASES

A. Limit of vanishing fermionic hopping

Within the strong-coupling approximation discussed in
the previous section, we have identified regions in the �-JB
phase diagram where bosonic particle-hole excitations are

gapless if they occur on a fermion �nonfermion� site but have
a finite gap on a complementary, i.e., a nonfermion �fermion�
site. Associated with this is a partial incompressibility

���
i�F

n̂i
��

= 0,

�� �
i�NF

n̂i
��

� 0,

or

�� �
i�NF

n̂i
��

= 0,

���
i�F

n̂i
��

� 0. �28�

This is illustrated in Fig. 9. Here the average boson number
per site obtained from a DMRG simulation with annealed
disorder is shown as a function of the chemical potential for
constant bosonic hopping. The curve corresponds to the pa-
rameters of Fig. 6 for the vertical cut shown in that figure at
JB=0.02. Also shown are the corresponding values for fer-
mion sites only and for nonfermion sites only, respectively.
In the partially compressible phases, the average boson num-
ber increases only for one type of sites, while it stays con-
stant for the other. In the DMRG code the energy per particle
is calculated as a function of the total number of bosons N,
which then yields the chemical potentials �+�N�=E�N+1�
−E�N� and �−�N�=E�N�−E�N−1�. Averaging over a few
values of N in the compressible phase is needed here, since
the ground state fermion distribution changes with changing
boson number, leading to a nonmonotonic dependence of �
on the boson number.

We now discuss the properties of the single-particle den-
sity matrix �âi

†âi+m
 in the partially incompressible phases.
For very large values of JB the system is expected to have a
Luttinger-liquid behavior in 1D and to possess long-range
off-diagonal order in higher dimensions. In 1D we expect
that the Luttinger-liquid behavior disappears in the partially
incompressible phases and that correlations decay exponen-
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FIG. 7. �Color online� Incompressible regions for U=1, V
=0.25, �F=0.25. Shown are the results from a DMRG calculation
with JF=0 and annealed fermionic disorder �� and JF=JB ���.
The phases are the same as in Fig. 6. Vertical line indicates position
of the density cut shown in Fig. 12.
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FIG. 8. �Color online� Thermodynamic limit extrapolation for
the critical point of the n0=1, s=1 lobe ��F=1 /4, �B=3 /4� in
Fig. 7. The critical point is found at Jc=0.160 38.
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FIG. 9. �Color online� Density cut along the vertical line in Fig.
6 �annealed fermions, JB=0.02, U=1, V=0.25, �F=0.25�. From top
to bottom: overall average density �red solid line�, average density
for sites without a fermion �green solid line�, and average density
for sites with a fermion �blue solid line�. Inset: Dependence of
particle number on chemical potential without averaging.
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tially. This is because in this case a single �static� impurity is
sufficient to prevent the buildup of long-range correlations.
In higher dimensions there will be a critical fermion �or hole�
filling fraction above which off-diagonal order is suppressed.
This critical fraction is determined by percolation thresholds
and for annealed fermionic disorder depends on the actual
fermion distribution in the ground state �e.g., clustered or
anticlustered�. For a random fermion distribution in 2D the
threshold is �F

crit=0.5927 �or 1−�F
crit=0.5927 if nonfermion

sites are incompressible�. The corresponding number for 3D
is �F

crit=0.3116.
Figure 10 shows the first-order correlations �âi

†âi+m
 as
function of the distance m for an annealed fermion distribu-
tion obtained from DMRG simulations for a rather large lat-
tice of 512 sites with incommensurate boson filling �NB

=448� and �F=1 /4. For JB=0.07 strong exponential decay
with correlation length lc=1.7 is found, corresponding to a
glass-type behavior, while for JB=0.2 correlations decay al-
gebraically as m−0.33, which corresponds to a Luttinger liq-
uid. Note that for the chosen boson number, which corre-

sponds to a noncommensurate value of Q̂, there is no
incompressible phase.

Figure 11 shows the first-order correlations for a random,
quenched fermion distribution averaged over 100 realiza-
tions with noncommensurate boson number ��B=NB /N
=184 /128�. Despite the sampling noise, one recognizes the
transition between exponential decay with correlation length
lc=2.9 for JB=0.03 and a power-law decay with m−0.37 for
JB=0.2, corresponding to a Luttinger liquid. JB=0.03 is
within a partially incompressible phase, JB=0.2 outside.

The numerical results and the above discussion indicate
that the partially incompressible phases have a glass-type
character. A detailed discussion of the Bose-glass to super-
fluid transition will be given elsewhere �32�.

B. Small fermionic hopping

If there is a nonvanishing but small fermionic hopping,
partial incompressibility is lost. Still, the increase of the bo-
son number with increasing chemical potential at one type of
site is substantially less that on the complementary type of
site:
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FIG. 10. �Color online� DMRG simulations �� of first-order
correlations �âi

†âi+m
 for V=0.25, �F=0.25, and U=1 for a lattice of
512 sites and NB=448 bosons in the case of annealed disorder. Top
curve: JB=0.07; line corresponds to exponential fit �exp�−m / lc�
with lc=1.7. The exponential decay for small JB is apparent. Bottom
curve: JB=0.2; line corresponds to algebraic fit �m−� with exponent
�=0.33.
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FIG. 11. �Color online� DMRG simulations �� of first-order
correlations �âi

†âi+m
 for V=1.5, �F=0.375, and U=1 for a lattice of
128 sites and NB=184 bosons averaged over 100 fermion distribu-
tions. Top curve: JB=0.03; line corresponds to exponential fit
�exp�−m / lc� with lc=2.9. The exponential decay for small JB is
apparent. Bottom curve: JB=0.2; line corresponds to algebraic fit
�m−� with exponent �=0.37. To avoid finite-size effects at short
and long ranges, only the sites between 13 and 110 are taken into
account.
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�� �
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n̂i
��

�
���

i�F
n̂i

��
. �29�

Figure 12 shows the density cut obtained from DMRG simu-
lations for the parameters of Fig. 9 but for JB=JF=0.05. It
should be noted that, in contrast to Fig. 9, averaging over
sites is not needed due to the finite mobility of the fermions.
The simulations show that the glass-type character of the
phases survives, as can be seen from the exponential decay
of the correlations in Fig. 13. We expect a crossover from
glass-type to Luttinger-liquid behavior with increasing fermi-
onic hopping. In addition, due to the stronger back action of
the boson distribution on the fermion distribution, other
phases such as density waves emerge �17�. A discussion of
the Bose-Fermi-Hubbard model in the limit of large fermion
mobility will be given elsewhere �33�.

V. FLUCTUATIONS

In this section, we will determine the fluctuations of the
bosonic number operator for vanishing fermionic hopping
JF=0 inside the quasi-Mott lobes for quenched disorder. To
this end, second-order perturbation theory will be applied
and compared to numerical results from the DMRG.

For vanishing bosonic hopping, the ground state with a
fixed number of fermions is clearly highly degenerate, from
the distribution of NF fermions in a lattice with N sites. For
the case of quenched disorder with fixed positions of fermi-
ons, considered here, this degeneracy is inconsequential.
This allows us to develop a tractable approach based on non-
degenerate perturbation theory for a given fermion distribu-
tion and subsequent averaging over all of these distributions.
In order to evaluate the fluctuations of the bosonic number
operator, we hence have to determine

n̄ = E�n̂j� , �30�

which is independent of the lattice site j due to translational
invariance. Here, the classical average E is taken with re-
spect to the fermionic distributions, so the average is over the

� N

NF
� different distributions with equal weight.

We can hence proceed as in Refs. �34,35� to compute the
fluctuations in the boson number, for each fermion distribu-
tion, followed by the appropriate average. In second-order
perturbation theory in JB at JF=0, only bosonic hoppings to
nearest neighbors contribute. On two such sites, clearly, four
different situations can arise, depending on whether or not a
fermion is present at each of the two sites �see Fig. 14�. The
change in energy due to these excitations is given by �here,
we have no longer taken U=1�

��1�E = ��4�E = − U , �31�

��2�E = − U�1 − s� − V , �32�

��3�E = − U�1 + s� + V , �33�

where the superscript denotes the type of process according
to Fig. 14. With this we are now able to calculate the fluc-
tuations E��n̂j

2
 of the bosonic number operator. After a
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FIG. 12. �Color online� Density cut for the same parameters as
Fig. 9 but for JB=JF=0.05 �see Fig. 7�.
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†âi+m
 for V=0.25, �F=0.25, and U=1 for a lattice
of 128 sites and NB=204 bosons in the case of equal hopping
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FIG. 14. Possible single-hop excitations; the energies are given
by �1E to �4E �see text for definitions�. Filled circles are fermions;
open circles bosons.
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number of steps, following the procedure of Ref. �34�, we
find

E��n̂j
2
 = 2z� JB

U
�2

n0�n0 + 1��1 − �F�2 + 2z� JB

U
�2

�n0 − s�

�n0 − s + 1��F
2

+ 2zJB
2 n0�n0 − s + 1� + �n0 − s��n0 + 1�

U2 − �Us − V�2 �F�1 − �F� ,

�34�

where z gives the number of nearest neighbors. The fluctua-
tions show the expected quadratic dependence on the hop-
ping strength. Moreover, in the two limiting cases �F=0 and
�F=1, this expression coincides with the pure BHM result
from Ref. �34�. Figure 15 shows the analytical result com-
pared with DMRG calculations for annealed disorder. For
small JB the agreement is rather good, with increasing dis-
agreement for bigger JB, where second-order perturbation
theory starts to fail.

Figure 16 shows the dependence of the fluctuations of the
fermionic density �F at a fixed hopping JB. Also shown is
one numerical curve obtained with annealed disorder. The
agreement between the analytical expression �34� and the
numerical data shows that the above derivation gives a good
estimate for the fluctuations in the system for small bosonic
hopping.

VI. SUMMARY

In the present paper we have analyzed the �-JB phase
diagram of the one-dimensional semicanonical Bose-Fermi-
Hubbard model with fixed number of fermions in the limit of
vanishing fermion mobility, i.e., JF→0. This limit is equiva-
lent to a Bose-Hubbard model with a random modulation of

the one-site energy. An important difference from the disor-
dered Bose-Hubbard model �4� lies, however, in the distribu-
tion of on-site energies, which is here not continuous but
binary, corresponding to the presence or absence of a fer-
mion at a given site. As a consequence there are no extended
compressible phases for vanishing bosonic hopping. Instead,
incompressible phases with in general incommensurate bo-
son number emerge, similarly to the case of a superlattice
�28,29�. These Mott-insulating phases, which can be charac-
terized by two integer parameter n0 and s, denoting the num-
ber of bosons at sites without a fermion and the shift of this
number due to the presence of a fermion, have been pre-
dicted before within mean-field and Gutzwiller approaches
�13,15�. Here we determined the extent of these phases using
a modified strong-coupling expansion and numerical simula-
tions employing the density matrix renormalization group.
We showed that the shape of the quasi-Mott lobes depends
on the actual fermion distribution. The latter is determined
by the preparation technique. If the fermionic hopping is
small but sufficiently large such that the fermions have time
to find the energetically lowest configuration, one has an
annealed fermionic disorder; otherwise, the distribution is
random and frozen. For the annealed case we showed that, in
the limit of small but nonzero bosonic hopping JB, the fer-
mions form either a clustered or an anticlustered configura-
tion with maximum mutual distance. A partial explanation
for this behavior could be found in terms of the composite-
fermion model of �13�. For the case of random, quenched
fermion distributions, we could derive semianalytical predic-
tions for the phase boundaries of the incompressible phase
using a strong-coupling approach �27�, which agreed very
well with numerical simulations. Within this approach we
also identified partially compressible phases where particle-
hole excitations at one type of site, i.e., either with or without
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FIG. 15. �Color online� Bosonic number fluctuations in the
Mott-insulating lobes for different lobes at fixed density for an-
nealed disorder. The upper three lines �from bottom to top� are for
V=1.25, �F=0.375, s=1 with n0=1 �red triangles�, 2 �green tri-
angles�, and 3 �magenta triangles� scaled by 103. Lower three lines
�from bottom to top�: V=1.7, �F=7 /16, s=2 with n0=2 �red
circles�, 3 �green circles�, and 4 �magenta circles�; solid lines are
the corresponding analytic curves.
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FIG. 16. �Color online� Bosonic number fluctuations in the
quasi-Mott lobes for different lobes at fixed hopping. The upper
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Open red circles are the corresponding fluctuations for a clustered
disorder �only for the uppermost plot�.
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a fermion, are gapless, while the corresponding excitations at
the complementary type of sites are gapped. The partial com-
pressibility of these phases was verified by numerical simu-
lations. We also showed that the presence of partial com-
pressibility led to Bose-glass phases, which are gapless but
for which first-order correlations decay exponentially. We
discussed the influence of a finite bosonic hopping on local
properties in the quasi-Mott phases using a perturbative ap-
proach supplemented by numerical DMRG simulations. Fi-
nally, we also discussed the influence of a finite fermionic
hopping. The numerical simulations indicate that many pre-
dictions remain valid for finite values of JF even as large as
JB. A more detailed discussion of the limit of large fermionic

hopping and the associated new phenomena such as density
waves, etc., will be given elsewhere �33�.
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