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Coherent population transfer beyond the adiabatic limit:
Generalized matched pulses and higher-order trapping states
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We show that the physical mechanism of population transfer in a three-level system with a closed loop of
coherent couplings is not equivalent to an adiabatic rotation of the dark state of the Hamiltonian, but corre-
sponds to a rotation of ahigher-order trapping statein a generalized adiabatic basis. The concept of general-
ized adiabatic basis sets is used as a constructive tool to design pulse sequences for stimulated Raman adiabatic
passage, which also give maximum population transfer under conditions when the usual condition of adiabat-
icty is only poorly fulfilled. Under certain conditions for the pulses~generalized matched pulses!, there exists
a higher-order trapping state, which is an exact constant of motion, and analytic solutions for the atomic
dynamics can be derived.@S1050-2947~99!05105-7#

PACS number~s!: 32.80.Bx, 42.65.Dr, 42.50.Hz
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I. INTRODUCTION

The transfer of population in a multilevel atomic syste
from an initial quantum state to a target quantum state i
fast and effective way is currently a problem of practic
importance as well as of substantial theoretical interest
there is a dipole-allowed transition between initial and tar
states, one can achieve the desired transfer by using eit
constant-frequencyp pulse tuned to resonance, or an ad
batic process based on a swept carrier frequency. Sin
dipole-allowed transition implies radiative decay, one is
ten interested in systems with two metastable states witho
direct electric-dipole coupling. Whereas an extension of
two-statep-pulse approach to multistate excitation is po
sible, these techniques require careful control of the pu
areas. Adiabatic processes do not require such precise
trol, if the time evolution is slow~meaning, generally, large
pulse areas!. In a three-state Raman-transition system,
example, it is possible to achieve adiabatic passage with
use of two constant-frequency pulses suitably delayed~coun-
terintuitive order! @1#. The process of this stimulated Rama
adiabatic passage~STIRAP! @2,3# can be represented by
slow rotation of a decoupled eigenstate of the Hamilton
~dark state! @4#.

The disadvantage of STIRAP is the requirement for la
pulse areas: to ensure adiabatic time evolution, the effec
average Rabi frequency of the pulses must be large c
pared to the radiative decay rates of the intermediate leve~s!.
Nonadiabatic corrections and the associated diabatic lo
@5–7#, scale with 1/VT, where\V is a characteristic inter
action energy andT is the effective time required for th
transfer. In some potential applications, as, for example,
transfer of information in the form of coherences@8#, it is
desirable to minimize these losses without the need of
tense pulses or long transfer times. Intense fields ind
time-varying ac Stark shifts, which may be detrimental to
coherence transfer. Short times are required to minimize
PRA 591050-2947/99/59~5!/3751~10!/$15.00
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effect of decoherence processes during the transfer@9#.
An approach that reduces nonadiabatic losses for pu

of moderate fluence in a three-state system was recently
troduced in Ref.@10#. In addition to a pair of Raman pulse
~‘‘pump pulse’’ and ‘‘Stokes pulse’’!, which couple the ini-
tial and target states via a common upper level, a direct c
pling ~called ‘‘detuning pulse’’! between them is introduced
This scheme of the loop STIRAP does not require the us
adiabaticity conditions~of large pulse areas!, nor is it of the
p-pulse type~requiring specific pulse areas!. Nevertheless,
the scheme can produce complete population transfer.

In the present paper we show that the physical mechan
of the loop STIRAP is not an adiabatic rotation of the da
state, but the rotation of ahigher-order trapping statein a
generalized adiabatic basis. The concept of generalized a
batic basis sets allows one to rationalize many example
population transfer even when the adiabaticity condition
poorly fulfilled. If pump and Stokes pulses fulfill certain con
ditions ~they are then called generalized matched pulses!, a
higher-order trapping exists, which is an exact constan
motion. In this case analytic solutions for the atomic dyna
ics can be found which, in contrast to the case of ordin
matched pulses with identical pulse shapes@12#, also include
the possibility of population transfer. This can be exploit
to design pulse sequences which give maximum popula
transfer. In contrast to techniques based on optimum con
theory, which are used for such tasks, the generalized-d
state concept provides a physical interpretation of the res
However, the design of the pulse, which in some cases
lead to complete population transfer~i.e., withoutanydiaba-
tic losses!, needs to respect more restrictive requirements
specific pulse properties similar top-pulse techniques.

Our paper is organized as follows. In Sec. II we discu
the loop STIRAP, and propose a simple physical interpre
tion in terms of an adiabatic rotation of a generalized tra
ping state. In Sec. III we define generalized trapping sta
via an iterative partial diagonalization of the time-depend
Hamiltonian. In Sec. IV we derive conditions under which
3751 ©1999 The American Physical Society
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3752 PRA 59FLEISCHHAUER, UNANYAN, SHORE, AND BERGMANN
higher-order trapping state is an exact constant of mot
and thus allow for an analytic solution of the atomic dyna
ics. Finally, various examples of population and cohere
transfer based on generalized trapping states are discuss
Sec. V.

II. LOOP STIRAP

To set the stage, in the present section we conside
three-state system driven by coherent fields in a loop c
figuration, as shown in Fig. 1. The bare atomic statesc1 and
c3 are coupled by a resonant Raman transition via the
cited atomic statec2 by a pump pulse and a Stokes puls
having Rabi frequenciesP(t) andS(t), respectively, which
are in general complex. In addition there is a direct coupl
between states 1 and 3 by a coherent detuning pulse
scribed by the~complex! Rabi frequencyD(t). Before the
application of the pulses the system is in state 1, and the
is to transfer all population into target state 3 by an app
priate sequence of pulses. For simplicity we assume tha
carrier frequencies of the pulses coincide with the atom
transition frequencies, and that the phases of the pulses
time independent. Since the phases of pump and Sto
fields can be included into the definition of the bare atom
statesc1 andc3 , they can be set equal to zero without lo
of generality. The phase of the detuning pulse is relevant
cannot be eliminated. The time-dependent Schro¨dinger equa-
tion for this system, in the usual rotating-wave approxim
tion, reads

d

dt
C~ t !52 i W~ t !C~ t !, ~1!

whereC(t) is the column vector of probability amplitude
Cn(t)5^nuc(t)&, (un&P$c1 ,c2 ,c3%). The evolution matrix
W(t) has the form

W~ t !5
1

2 F 0 P~ t ! D~ t !

P~ t ! 0 S~ t !

D* ~ t ! S~ t ! 0
G . ~2!

It is well known that the counterintuitive pulse sequen
~Stokes pulse precedes pump pulse, without a detun
pulse! leads to an almost complete population transfer, if
adiabaticity conditionVT@1 is fulfilled. HereT is the char-
acteristic time for the transfer, given by the interval whe
S(t) and P(t) overlap, andV the effective total Rabi fre-
quency averaged over the intervalT:

FIG. 1. Three-state system with loop linkage.P(t), S(t), and
D(t) denote the Rabi frequencies of pump, Stokes, and detu
pulses.
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dtAP~ t !21S~ t !2. ~3!

As shown in Ref.@10#, an almost perfect transfer is als
possible when pump and Stokes pulses alone do not fu
the adiabaticity condition by applying an additional detuni
pulse. Figure 2 illustrates an example of ramped pump
Stokes pulses intersected by a hyperbolic-secant detu
pulse:

P~ t !5AP sinF1

2
arctan~ t/TP!1

p

4 G , ~4!

S~ t !5AS cosF1

2
arctan~ t/TS!1

p

4 G , ~5!

D~ t !5AD sech@ t/TD#. ~6!

Figure 3 shows examples of population histories for th
pulses. When only the pump and Stokes pulses are pre
the population transfer is rather poor, since the pulse a
are small (V T;uAPu TP5uASu TS52). As can be seen from
the upper part of Fig. 3, only about 70% of the initial pop
lation ends up in state 3.

The situation is remarkably different when a detuni
pulse with uADuTD'2.7 and a phase factor ofe2 ip/2 is ap-
plied; see the lower part of Fig. 3. With a detuning pul
present, the entire population is transferred from the ini
state to the target state. This result is relatively insensitive
changes in the amplitude~or the shape of the detuning puls!
if the phase is2p/2.

We note that in contrast to ordinary STIRAP there is~for
a short time! a substantial intermediate population of state
This indicates that the transfer does not occur as an adiab
rotation of the dark state fromc1 to c3 .

For our present discussion it is useful to describe ordin
STIRAP in terms of the following set of adiabatic superp
sition states

g

FIG. 2. Pair of ramped pump~solid line! and Stokes~dotted
line! pulses withAP5AS520 andTP5TS50.1 applied in counter-
intuitive order ~Stokes precedes pump! with additional hyperbolic
secant detuning pulse~dashed line! with AD5213.4i and TD

50.2. Rabi frequencies and time are in units ofT21 andT, where
T is arbitrary.
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FF1~ t !

F2~ t !

F3~ t !
G5U~ t !* F c1

c2

c3

G , ~7!

with the unitary matrix

U~ t !5F 0 1 0

sinu0~ t ! 0 cosu0~ t !

i cosu0~ t ! 0 2 i sinu0~ t !
G . ~8!

The dynamical angleu0 is defined by

tanu0~ t !5
P~ t !

S~ t !
. ~9!

FIG. 3. Populations of statesc1 ~solid line!, c2 ~dotted line!,
and c3 ~dashed line! for the pulse sequence of Fig. 2. The upp
picture shows population when only pump and Stokes pulses
applied, and the lower one if the detuning pulse is added. Units
as in Fig. 2.
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The vector of probability amplitudes in the bare atomic ba
C(t) and a corresponding vectorB(t) in the superposition
basis~7! are related through the transformation

B~ t !5U~ t !C~ t !. ~10!

SinceU(t) is time dependent, the transformed evoluti
matrix has the form

W~ t !→W̃~ t !5U~ t !W~ t !U~ t !211 i U̇~ t !U~ t !21. ~11!

In the adiabatic limit, the second term can be disregarded
we are left with the first one, which for ordinary STIRAP
i.e., without the detuning pulse, reads

U~ t !W~ t !U~ t !215
1

2 F 0 V~ t ! 0

V~ t ! 0 0

0 0 0
G , ~12!

whereV(t)5AP(t)21S(t)2. One recognizes that the supe
position stateF3(t) is decoupled from the coherent intera
tion in this limit. Moreover, becauseF3(t) does not contain
the excited atomic statec2 , it does not spontaneously radia
and is therefore called a dark state@4#. For a counterintuitive
sequence of pulses the angleu0(t) vanishes initially and ap-
proachesp/2 for t→`. Thus F3(t) asymptotically coin-
cides with the initial and target states fort→6`, respec-
tively. Therefore, ordinary STIRAP can be understood a
rotation of the adiabatic dark stateF3(t) from the initial
state to the target bare atomic state@3#. Nonadiabatic correc-
tions are contained in the second contribution toW̃(t),

i U̇~ t !U~ t !215
1

2F 0 0 0

0 0 2u̇0~ t !

0 2u̇0~ t ! 0
G . ~13!

They give rise to a coupling between the dark stateF3(t)
and the so-called bright stateF2(t).

Let us now apply the same transformation to the lo
STIRAP system, i.e., including the detuning pulse. We fi

re
re
W̃~ t !5
1

2F 0 V~ t ! 0

V~ t ! Re@D~ t !#sin 2u0~ t ! 2u̇0~ t !1 i @D~ t !sin2 u0~ t !2D* ~ t !cos2 u0~ t !

0 2u̇0~ t !2 i @D* ~ t !sin2 u0~ t !2D~ t !cos2 u0~ t !# 2Re@D~ t !#sin 2u0~ t !
G . ~14!
na-

p

If D(t) is real or complex but not strictly imaginary, there
a time-dependent energy shift of the superposition st
F2(t) andF3(t), and the detuning pulse adds an imagina
part to the nonadiabatic coupling. IfD(t) is imaginary, as in
the example discussed above, there is no detuning but areal
contribution to the nonadibatic coupling. Let us now assu

an imaginary detuning pulse, i.e.,D(t)5 iD̃ (t), with D̃(t)
being real. In this case the transformed evolution matrix s
plifies to
es
y

e

-

W̃~ t !5
1

2F 0 V~ t ! 0

V~ t ! 0 2u̇0~ t !2D̃~ t !

0 2u̇0~ t !2D̃~ t ! 0
G . ~15!

If the amplitude of the detuning pulse matches the no
diabatic term, i.e., ifD̃(t)52u̇0(t), the dark stateF3 is ex-
actly decoupled even if the adiabaticity condition for pum
and Stokes pulses alone@V(t) being much larger thanu̇0(t)]
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is not fulfilled. However, sinceu0(t) rotates from 0 top/2,
the detuning pulse would have to be exactly ap pulse in
such a case:

E
2`

`

dt D̃~ t !5E
2`

`

dt 2u̇0~ t !52u0~ t !u2`
1`5p. ~16!

Furthermore no pump or Stokes pulses were required
population transfer to begin with, since at any time the en
population is kept in the dark state by the action of the
tuning pulse, and thus pump and Stokes pulses would
interact with the atoms. This is consistent with the obser
tion that an exactly decoupled stateF3 implies exactly van-
ishing ~not only adiabatically small! probability amplitude of
the excited bare statec2 for all times. Since the origin of
population transfer in this case is the well-known pheno
enon ofp-pulse coupling, which requires a careful control
the area and the shape of the detuning pulse, the caseD̃(t)
52u̇0(t) is of no further interest here.

On the other hand, ifD̃(t) is negative, as in the exampl
of Fig. 2, the nonadiabatic coupling is effectively increas
by the detuning pulse~note thatdu0(t)/dt.0). Thus the
success of population transfer in Fig. 3 cannot be unders
as dark-state rotation. This is illustrated in Fig. 4, whi
shows the populations of the superposition statesF15c2 ,
F2 , and F3 for the above example. One clearly sees t
about 80% of the population is driven out of the dark st
during the interaction.

It is worth noting, however, thatF2 remains almost un-
populated during the interaction and all population excha
happens between statesF1 andF3 . This suggests an inter
pretation of the process asadiabatic population return be-
tween the superposition statesF1 andF3 . In fact comparing
the dressed-state evolution matrixW̃(t) @Eq. ~15!#, with the
bare-state evolution matrixW(t) @Eq. ~2!# ~without detuning
pulse!, one recognizes a formal agreement with the cor
spondenceP(t)↔V(t) and S(t)↔2u̇0(t)2D̃(t). That is,
there exists ageneralized trapping statewhich is a superpo-
sition of the statesF1 andF3 . Since hereV(t)5const and
2u̇0(t)2D̃(t) vanishes in the asymptotic limitst→6`, this
generalized trapping state coincides withF3 for t→6`,
which in turn coincides withc1 and c3 in the respective
limits.

FIG. 4. Population of superposition statesF1 ~dashed line!, F2

~dotted line!, and the dark stateF3 ~solid line!. Parameters are tha
of Fig. 2. Units are as in Fig. 2.
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To quantify this statement let us introduce a basis
second-order adiabatic states. Now using the first-order
statesF1 , F2 , and F3 as a basis set instead of the ba
atomic states, we introduce, in analogy to Eq.~7!,

F F1
~2!~ t !

F2
~2!~ t !

F3
~2!~ t !

G5U1~ t !* FF1~ t !

F2~ t !

F3~ t !
G5U1~ t !* U~ t !* F c1

c2

c3

G .

~17!

The unitary transformation matrix is given by

U1~ t !5F 0 1 0

sinu1~ t ! 0 cosu1~ t !

i cosu1~ t ! 0 2 i sinu1~ t !
G , ~18!

which has the same form asU(t) @Eq. ~2!#, but here the
dynamical angleu1(t) is defined by

tanu1~ t !5
V~ t !

2u̇0~ t !2D̃~ t !
. ~19!

Denoting the vector of probability amplitudes in these ge
eralized adiabatic states byB(2)(t), we find the relation

B~2!~ t !5U1~ t !B~ t !. ~20!

One easily verifies that for the above example more th
95% of the population remains in the generalized trapp
stateF3

(2)(t). Thus the success of the population transfer
the loop STIRAP can be understood as a rotation of
second-order decoupled stateF3

(2)(t)—which is an approxi-
mate constant of motion—from the initial to the target ba
atomic state.

III. GENERALIZED ADIABATIC BASIS AND
GENERALIZED TRAPPING STATES FOR STIRAP

We now return to the case of ordinary STIRAP, i.e., wit
out a detuning pulseD. The formal equivalence ofW(t) and
W̃(t) suggest an iteration of the procedure introduced in
last section. We define annth-order generalized adiabati
basis by the iteration:

FIG. 5. Iterative definition of thenth-order adiabatic basis.



in

PRA 59 3755COHERENT POPULATION TRANSFER BEYOND THE . . .
F F1
~n!~ t !

F2
~n!~ t !

F3
~n!~ t !

G5Un21~ t !*F F1
~n21!~ t !

F2
~n21!~ t !

F3
~n21!~ t !

G
5Un21~ t !* Un22~ t !*¯U0~ t !* F c1

c2

c3

G . ~21!

Correspondingly, for the vector of probability amplitudes
the nth-order basis we obtain
is
b

ls

h

iv
al

-
n

B~n!5Un21B~n21!5Un21Un22¯U0C[VnC, ~22!

where we have dropped the time dependence. Thenth-order
transformation matrix is defined as

Un~ t ![F 0 1 0

sinun~ t ! 0 cosun~ t !

i cosun~ t ! 0 2 i sinun~ t !
G , ~23!

with
sinu0~ t !5
P~ t !

V0~ t !
, cosu0~ t !5

S~ t !

V0~ t !
, V0~ t ! 5AP~ t !21S~ t !2, ~24!

sinun~ t !5
Vn21~ t !

Vn~ t !
, cosun~ t !5

2u̇n21~ t !

Vn~ t !
, Vn~ t !5AVn21~ t !214u̇n21~ t !2. ~25!

The iteration is illustrated in Fig. 5.
In the nth-order basis, the equation of motion has then the form

d

dt
B~n!~ t !52 iWn~ t !B~n!~ t !, ~26!

with

Wn~ t ![
1

2 F 0 Vn~ t !sinun~ t ! 0

Vn~ t !sinun~ t ! 0 Vn~ t !cosun~ t !

0 Vn~ t !cosun~ t ! 0
G5

1

2F 0 Vn21~ t ! 0

Vn21~ t ! 0 2u̇n21~ t !

0 2u̇n21~ t ! 0
G . ~27!
it

rk
en
d

If cosuk(t) vanishes, which implies thatuk21 is time inde-
pendent, the stateF3

(k) decouples from the interaction. In th
case exact analytic solutions of the atomic dynamics can
found, as discussed in Sec. IV. The analytic solutions a
include cases of population or coherence transfer. If cosuk(t)
does not vanish but is small, the corresponding coupling
the evolution matrix can be treated perturbatively. In suc
situation we have ageneralized adiabatic dynamics. In con-
clusion of this section, it should be noted that the iterat
definition of a generalized adiabatic basis is conceptu
very similar to the superadiabatic approach of Berry@11#
introduced for two-level systems.

IV. GENERALIZED MATCHED PULSES
AND ANALYTIC SOLUTION

OF ATOMIC DYNAMICS

If a dynamical angleun21 is a constant, the time
dependent stateF3

(n)(t) is decoupled from the interactio
~constant of motion!. In this case the dynamical problem
reduces to that of a two-state system interacting via areal
resonant coherent coupling plus a decoupled state
e
o

in
a

e
ly

d

dtF B1
~n!~ t !

B2
~n!~ t !

B3
~n!~ t !

G52
i

2 F 0 Vn21~ t ! 0

Vn21~ t ! 0 0

0 0 0
GF B1

~n!~ t !

B2
~n!~ t !

B3
~n!~ t !

G .

~28!

This equation can immediately be solved:

B1
~n!~ t !5B1

~n!~0! cosf~ t !2 iB2
~n!~0! sinf~ t !, ~29!

B2
~n!~ t !5B2

~n!~0! cosf~ t !2 iB1
~n!~0! sinf~ t !, ~30!

B3
~n!~ t !5B3

~n!~0!, ~31!

where

f~ t !5
1

2E0

t

dt Vn21~t!. ~32!

In particular if the atom is initially in the trapping state,
will stay in that state.

For example ifu0 does not depend on time, the usual da
stateF3

(1) is an exact constant of motion. As can be se
from Eq. ~9!, for u0 to be time independent, Stokes an
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pump need to be either cw fields or need to have the s
envelope function, i.e., have to bematched pulses@12#,

S~ t !5V0~ t !cosu0 , ~33!

P~ t !5V0~ t !sinu0 , ~34!

where V0(t) can be an arbitrary function of time an
u05const. The atomic dynamics is trivial in this case. Sin
F3

(1) is time independent, the trapping state is a cons
superposition of the bare atomic states 1 and 3.

On the other hand, if some higher-order dynamical an
un is constant, the system remains in a generalized trap
state if initially prepared in it. The projection of this sta
onto the bare atomic basis is in general time dependent,
one can have a substantial rearrangement of atomic l
population including population transfer. If a higher-ord
dynamical angle is constant, we will call pump and Stok
pulsesgeneralized matched pulses.

To obtain an explicit condition for generalized match
pulses in terms ofP(t) and S(t) we successively integrat
relations~25!. This leads to the iterations

uk21~ t !5
1

2E2`

t

dt8 Vk~ t8!cosuk~ t8!1uk
0 ,

~35!

Vk21~ t !5Vk~ t !sinuk~ t !,

starting with someun(t)5un5const andVn(t) as an arbi-
trary function of time. Each iteration leads to one const
uk

0, which can be freely chosen. The application of gene
ized matched pulses to coherent population transfer will
discussed in Sec. V.

As noted before, there may be cases where for some n
bern the dynamical angleun(t) does depend on time but it
time derivative is much smaller than the corresponding g
eralized Rabi frequencyVn(t), while the same is not true fo
all k,n. In this case the stateF3

(n)(t) is an approximate
constant of motion and we have annth-order adiabatic pro-
cess. The example of the loop STIRAP discussed in Sec
is a realization of a higher-order adiabatic process, whic
nonadiabatic in the first-order basis.

V. APPLICATION OF GENERALIZED MATCHED
PULSES TO POPULATION TRANSFER AND COHERENCE

TRANSFER

In the following we discuss several examples for a coh
ent transfer of population from one nondecaying state to
other or to the excited state using generalized matc
pulses. We furthermore discuss the possibility to transfer
herence, for example from the ground-state transition to
optical transition. Since in all cases there exists a general
trapping state which is an exact constant of motion, we
obtain exact analytic results for the atomic dynamics.
e
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A. Population and coherence transfer with second-order
generalized matched pulses

1. Complete transfer of coherence from a ground-state double
to an optical transition

First we discuss the case whenF3
(2) is an exact constan

of motion, i.e., a trapping state. Furthermore we assu
that the state vectorC coincides with this trapping state a
t52`. Then the system will remain in the trapping state
later times. Thereforeu15const, and it is clear from Fig. 5
thatC is a time independent superposition of statesF1

(1) and
F3

(1) , and thus has at all times a constant probability am
tude of the bare atomic state 2. In fact, from

C5V2
21B~2!5V2

21F 0

0

1
G , ~36!

we find

FC1~ t !

C2~ t !

C3~ t !
G52 i cosu1F i tanu1 cosu0~ t !

1

2 i tanu1 sinu0~ t !
G . ~37!

We now identify state 2 with a lower, i.e., nondecaying lev
and state 3 with an excited state. The pump pulseP(t) then
couples two ground states which could be realized, for
ample, by a magnetic coupling. The Stokes pulse, wh
couples states 2 and 3, is considered an optical pulse. Du
the finite and constant admixture of state 2 to the trapp
state, second-order generalized matched pulses are
suited to transfer coherence for example from the 1-2 tra
tion to the 3-2 transition.

We now want to construct pulses that would lead to
desired complete coherence transfer. To achieve this we h
to satisfy the initial and final conditions

u0~2`!50, ~38!

u0~1`!5p/2. ~39!

On the other hand, the iteration equation~35! requires, for
second-order matched pulses, that

u0~ t !5 1
2 E

2`

t

dt8 V1~ t8!cosu11u0
0 , ~40!

V0~ t !5V1~ t !sinu1 , ~41!

whereu1 andu0
0 are arbitrary constants andV1(t) an arbi-

trary positive function of time. To fulfill the initial condition
~38!, we setu0

050. In order to satisfy the final condition
~39!, we then have to adjust the total pulse area@see Eq.~40!#

A05E
2`

`

dt V0~ t !5p tanu1 . ~42!

Thus pump and Stokes pulses have the forms

P~ t !5V0~ t !sinFpA~ t !

2A0
G , ~43!
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S~ t !5V0~ t !cosFpA~ t !

2A0
G , ~44!

with

A~ t !5E
2`

t

dt8 V0~ t8!. ~45!

With this choice an initial coherent superposition of state
and 1,

C~2`!52 i cosu1 c21sinu1 c1 , ~46!

can be completely mapped into a coherent superpositio
states 2 and 3:

C~1`!52 i cosu1 c22sinu1 c3 . ~47!

In order to transfer a given ground-state coherence to
optical transition, the pulse areaA0 should be chosen accord
ing to Eq. ~42!, A05uC1(2`)/C2(2`)u. The shape of
V(t) is otherwise arbitrary. It should be noted that Eq.~46!
requires a certain fixed phase of the initial coherent supe
sition. The phase of the pump pulse, which is included in
definition of c1 ~cf. Sec. II!, may need adjustment to satis
this condition.

In Fig. 6 we show the populations of the bare atom
states for the exampleV0(t)5Ap exp(2t2) (A5p) and
C(2`)51/A2(c12 ic2) from a numerical solution of the
Schrödinger equation. One clearly sees that all populat
from state 1 is transferred to state 3. This transfer happ
without diabatic losses despite the fact thatA5p and thus
the usual adiabaticity condition is only poorly fulfilled. Th
process discussed here may have some interesting app
tions, since it allows one to transfer coherence from a rob
and long-lived ground-state transition to an optically acc
sible transition.

The population transfer from states 1 to 3 with finite co
stant state amplitude in state 2 discussed here coincides
the solution found by Malinovsky and Tannor@13# with nu-
merical optimization techniques. Assuming a finite const
amplitude in state 2, these authors numerically optimized
peak Rabi frequency~which in this case is the only remain

FIG. 6. Example of complete coherence transfer from 1-2
herence to 3-2 coherence with second-order generalized mat
pulses. Plotted are the populations of bare atomic states for a pa
pulses as shown in the inset. One recognizes a constant popu
in state 2 and a complete transfer of population in 1 to 3. Units
as in Fig. 2.
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ing free parameter! to achieve maximum population transfe
They found that, in order to maximize the final amount
population in state 3, the peak Rabi frequency has to
larger than a certain critical value. This can very easily
verified from the generalized matched-pulse solutions@Eqs.
~42! and ~47!#

uC3~`!u25sin2 u15
A2

p21A2
, ~48!

uC2~`!u25cos2 u15
p2

p21A2
. ~49!

In the limit u1→p/2, which impliesA→`, the admixture of
level 2 vanishes, and we essentially have population tran
from state 1 to state 3.

2. Population transfer from state 1 to state 3
and nonexponential diabatic losses

We saw in Sec. V A1 that second-order matched pul
can be used to effectively transfer population from state 1
state 3, if there is an initial admixture of the excited sta
This amplitude is inversely proportional to the square of
pulse areaA. Therefore, one could expect a good transfer
largeA also if all population is initially in state 1. In this cas
there is some finite amount of population which is n
trapped in the generalized dark stateF3

(2) . Clearly, in order
to achieve maximum population transfer, pump and Sto
pulses should be in counterintuitive order, and hence co
tions ~38! and ~39! should be fulfilled. Since the pulses a
assumed to be second-order matched pulses, the dynam
problem with the initial condition

F B1
~2!~2`!

B2
~2!~2`!

B3
~2!~2`!

G5U1U0 F 1

0

0
G5F 0

i cosu1

sinu1

G ~50!

can easily be solved@see Eqs.~29!–~31!#. From Eqs.~25! we
find V1(t)5V0(t)/sinu1. Thus

B1
~2!~`!5

p

Ap21A2
sinF1

2
Ap21A2G , ~51!

B2
~2!~`!5 i

p

Ap21A2
cosF1

2
Ap21A2G , ~52!

B3
~2!~`!5

A

Ap21A2
, ~53!

whereA is the total pulse area defined in Eq.~42!. From this
we find the asymptotic populations of the bare atomic sta

uC1~`!u25
p2

p21A2
sin2S 1

2
Ap21A2D , ~54!

uC2~`!u25
4p2A2

~p21A2!2
sin4S 1

4
Ap21A2D , ~55!
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uC3~`!u25
1

~p21A2!2 FA21p2 cosS 1

2
Ap21A2D G2

.

~56!

Thus the diabatic losses scale in general with 1/A2, i.e., non-
exponentially withA. Furthermore for

1
2 Ap21A252np or A5pA16n221, ~57!

with n51,2, . . . , the population transfer is complete.
Fig. 7 we show the final population in state 3 as a function
A/p.

A special case of the population transfer with seco
order matched pulses discussed in the present section i
analytical model discussed by Vitanov and Stenholm in@14#.
These authors considered a pulse sequence with

V0~ t !5
a

2T
sech2S t

TD , u0~ t !5
p

4 F tanhS t

TD11G ,
~58!

and thus tanu15V0(t)/2u̇0(t)5a/p5const.

B. Population transfer via large-area third-order
matched pulses

Next we analyze the possibility of population transf
whenF3

(3) is exactly trapped. In order forF3
(3) to be a con-

stant of motion, or equivalently to have third-order match
pulsesu25const. We assume again that the system state
tor C is initially in the trapping state in which it will remain
for all times. In order to realize population transfer from sta
1 to state 2 or 3 in this case, we furthermore must satisfy
initial conditions

C1~2`!51, C2~2`!50, C3~2`!50. ~59!

This can be translated into a condition for the initial valu
of the dynamical phasesu0 and u1 using Eq.~22!. In fact,
from

C5V3
21B~3!5V3

21F 0

0

1
G , ~60!

FIG. 7. Final population in state 3 as a function of total pu
areaA/p for population transfer from state 1 with second-ord
matched pulses. ForA/p5A16n221 the transfer is complete
~100.00%!.
f
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we find

C1~ t !5 i „cosu0~ t !sinu1~ t !sinu22sinu0~ t !cosu2…,
~61!

C2~ t !52 i cosu1~ t !sinu2 , ~62!

C3~ t !52 i „cosu0~ t !cosu21sinu0~ t !sinu1~ t !sinu2….
~63!

The initial condition is fulfilled when

cosu0~2`!sinu1~2`!sinu22cosu2 sinu0~2`!51,
~64!

sinu2 cosu1~2`!50, ~65!

cosu0~2`!cosu21sinu2 sinu0~2`!sinu1~2`!50.
~66!

The result is

u1~2`!5
p

2
, u0~2`!5u21

p

2
. ~67!

From Eq.~25! we find the following differential equation

2
du1~ t !

dt
5a V1~ t !,

where

a5~ tanu2!215const. ~68!

Introducing

x~ t !5tanu1~ t !, ~69!

we find, furthermore,

2x ẋ

~11x2!3/2
5aV0~ t !, ~70!

2
du0~ t !

dt
5

V0~ t !

x~ t !
. ~71!

Integrating these equations, and taking into account the
tial conditions~67!, yields

tanu1~ t !5x~ t !5A 1

f 2~ t !
21, ~72!

u0~ t !5u21
p

2
1

1

a
@12A12 f 2~ t !#, ~73!

where

f ~ t !5
a

2E2`

t

dt8 V0~ t8!. ~74!

V0(t) is an arbitrary smooth function which we assume
vanish at infinity,V0(6`)50. We still have one free con
stanta, which we can choose. As we will show now, we ca

r
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choosea such that the efficiency of the transfer from state
to state 3 or 2 approaches unity.

1. Population transfer from ground state to state 3

In order to transfer the initial population from state 1
the target state 3, it is necessary to satisfy the final condit

u1~1`!5
p

2
, u0~1`!5u2 , ~75!

which implies

tanu1~`!5A 4

a2A2
21→`, ~76!

u0~`!5u21
p

2
1

1

a
@12A12a2A2/4#5u2 , ~77!

where

A5E
2`

`

dt V0~ t ! ~78!

is the pulse area. From these conditions one finds the
straint

a52
4p

p21A2
, A@p. ~79!

The diabatic losses in the limitA@1 are

12uC3~`!u2'
4p2

2p21A2
, ~80!

and thus in the adiabatic limit we have essentially comp
population transfer from state 1 to state 3.

Figure 8 shows an example of population transfer w
third-order matched pulses. HereV0(t)5A/2 sech2(t) and
A520p. Pump and Stokes pulses are shown in the up
frame, and the population histories in the lower one. We
that the amplitudes of the Stokes and pump pulses are
equal. As in ordinary STIRAP, the population of the state
is small during the evolution.

2. Population transfer from ground state to state 2

In order to transfer the initial population from state 1
state 2, it is necessary to satisfy the conditions

u1~1`!50, u25
p

2
. ~81!

In this case we have to fixa to be

a5
2

A
, A@1. ~82!

Figure 9 shows the pulsesP(t) andS(t) and the evolution
of the atomic populations. HereV0(t)5A/2 sech2(t) andA
516. We see that the Stokes and pump pulses are in a c
terintuitive sequence. At first the atomic population oscilla
ns

n-

e

er
e
n-

n-
s

between states 1 and 3, but as the pulse sequence pro
the whole population is transfered into state 2. In oth
words, during the full pulse sequence there occur sev
STIRAP transitions, but due to the large nonadiabatic c
pling the population accumulates in state 2.

VI. SUMMARY

We have introduced the concept of generalized dres
states in order to explain the success of population transfe
stimulated Raman adiabatic passage with a loop coupling
the interaction of a three-level system with a pair of tim
dependent pump and Stokes pulses is described in term
the so-called dark and bright states instead of the insta
neous eigenstates of the Hamiltonian, the original thr
state–two-field system is transformed into a system of th

FIG. 8. Population transfer from state 1 to state 3 with thi
order matched pulses. The upper frame shows pulses, the l
frame, population dynamics. HereV0(t)5A/2 sech2(t) and A/p
520. Units of Rabi frequencies and time are as in Fig. 2.

FIG. 9. Population transfer from state 1 to state 2 with thi
order matched pulses. The upper frame shows pulses, the l
frame, population dynamics. HereV0(t)5A/2 sech2(t) and A
516. Units of Rabi frequencies and time are as in Fig. 2.
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states coupled by two effective interactions@15,7#. This al-
lows for an iteration procedure leading to higher-order ad
batic basis sets@11#. We showed that in the case of the loo
STIRAP there is a higher-order trapping state, which is
approximate constant of motion even when the usual adia
ticity condition is not fulfilled. This state adiabatically rotate
from the initial quantum state to the target quantum state
the atom, and thus leads to efficient population trans
though at the expense of placing some population into
decaying atomic state.

The concept of generalized trapping states allows the c
struction of pulse sequences which lead to an optimum po
lation or coherence transfer for small pulse areas, and all
for solutions for the atomic dynamics. If pump and Stok
pulses fulfill certain conditions ~so-called generalized
matched pulses!, the effective 333 coupling matrix factor-
izes at a specific point of the iteration. The trapping state
the correspondingnth-order adiabatic basis is then an exa
constant of motion. In this case the atomic dynamics redu
to a two-level problem, with a real coupling which can
solved analytically.

For ordinary matched pulses, i.e., if pump and Sto
K
-
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ri

ev
-

n
a-

f
r,
e

n-
u-
s

s

f
t
es

s

pulses have the same shape, the atomic dynamics is ra
limited. The corresponding dark state is a constant supe
sition of states 1 and 3. In the case of generalized matc
pulses, however, the trapping state has a time-depen
overlap with the bare atomic states, and thus population
coherence transfer is possible. We have discussed with
cific examples population transfer with second- and thi
order matched pulses. We found that, for certain values
the pulse areas complete population or coherence transf
possible. In the general case the diabatic losses scale no
ponentially with the inverse pulse area.

ACKNOWLEDGMENTS

The work of R.U. was supported by the Alexander v
Humboldt Foundation. B.W.S. thanks the Alexander v
Humboldt Stiftung for their financial support; his work wa
supported in part under the auspices of the U.S. Departm
of Energy at Lawrence Livermore National Laboratory und
Contract No. W-7405-Eng-48. Partial support by the E
~Network No. ERB-CHR-XCT-94-0603! is also acknowl-
edged.
,

a

W.

C.
@1# J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A29, 690
~1984!.

@2# U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Ku¨lz,
and K. Bergmann, Chem. Phys. Lett.149, 463 ~1988!; for
reviews on the experimental developments of STIRAP, see
Bergmann and B. W. Shore, inMolecular Dynamics and Spec
troscopy by Stimulated Emission Pumping, edited by H. L. Dai
and R. W. Field~World Scientific, Singapore, 1995!, pp. 315–
373.

@3# K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Ph
70, 1003~1998!.

@4# For a review on coherent population trapping, see E. A
mondo, Prog. Opt.35, 259 ~1996!.

@5# M. Elk, Phys. Rev. A52, 4017~1995!.
@6# T. A. Laine and S. Stenholm, Phys. Rev. A53, 2501~1996!.
@7# M. Fleischhauer and A. S. Manka, Phys. Rev. A54, 794

~1996!.
@8# A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Phys. R
.

.

-

.

Lett. 71, 3095~1993!; T. Pellizzari, S. A. Gardiner, J. I. Cirac
and P. Zoller,ibid. 75, 3788~1995!.

@9# In adiabatic population transfer involving atoms coupled to
common cavity mode as used in@8#, the transfer time needs to
be much shorter than the cavity decay time.

@10# R. G. Unanyan, L. P. Yatsenko, K. Bergmann, and B.
Shore, Opt. Commun.139, 48 ~1997!.

@11# M. V. Berry, Proc. R. Soc. London, Ser. A414, 31 ~1987!;
429, 61 ~1990!; R. Lim and M. V. Berry, J. Phys. A24, 3255
~1991!.

@12# S. E. Harris, Phys. Rev. Lett.72, 52 ~1994!; J. H. Eberly, M. L.
Pons, and H. R. Haq,ibid. 72, 56 ~1994!.

@13# V. S. Malinovsky and D. J. Tannor, Phys. Rev. A56, 4929
~1997!.

@14# N. V. Vitanov and S. Stenholm, Phys. Rev. A55, 648 ~1997!.
@15# A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and

Cohen-Tannoudji, J. Opt. Soc. Am. B6, 2112~1989!.


