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Finite-size effects on squeezing in the self-pulsing regime of second harmonic generation

Oliver Veits and Michael Fleischhauer*

Sektion Physik, Ludwig-Maximilians Universita¨t München, D-80333 Mu¨nchen, Germany
~Received 11 December 1996!

We analyze the quantum fluctuations of second harmonic generation at the Hopf bifurcation and in the
limit-cycle regime near the critical point using many-body techniques. The many-body approach does not make
use of linearization approximations and can thus be used to study finite-size effects. Finite-size corrections
reduce the amount of squeezing at the Hopf bifurcation and eliminate infinities predicted by the linearization
approach at this point and in the self-pulsing regime. The characteristic frequencies of the linearized fluctuation
spectra in the self-oscillation regime are shifted and new spectral structures are observed.@S1050-
2947~97!05606-0#

PACS number~s!: 42.65.Ky
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When the threshold to self-oscillations in intracavity se
ond harmonic generation~SHG! is approached from below
the amplitude fluctuations of the two modes are reduced
low the shot-noise limit @1#. Standard linearization ap
proaches predict perfect amplitude squeezing of the fun
mental~harmonic! mode if the decay rate of the fundamen
mode is much larger~smaller! than that of the harmonic
mode@2#. At the Hopf bifurcation itself, however, the linea
ization approach breaks down, since the fluctuations of
antisqueezed component diverge. Also, the region clos
the bifurcation is correctly described only if the system s
is infinite, i.e., in the thermodynamic limit.

The quantum noise in the self-pulsing regime above
Hopf bifurcation has been analyzed by Pettiaux, Mandel,
Fabre@3# by extending the standard linearization techniqu
to a nonsteady deterministic evolution. Since the fluctuat
spectra show divergencies in the limit-cycle regime also,
small-noise assumption of the linearization approach is v
lated here as well.

Following an idea of Mertens and co-workers@4–6# and
Plimak and Walls@7#, we analyze here the quantum fluctu
tions in SHG with a many-body approach. In this approa
we numerically solve Dyson equations for Green’s functio
or time-ordered correlation functions in the bare-vertex
proximation. Unlike Refs.@4–6#, we use an iteration schem
which starts from a mean-field approach@8# and are in this
way able to achieve convergence at the Hopf bifurcation
self and in the limit-cycle regime. Since the many-body a
proach does not make use of small-noise assumptions
can study the quantum fluctuations beyond the thermo
namic limit, i.e., taking into account finite-size effects.

The quantum dynamics of intracavity second harmo
generation is described by the interaction Hamiltonian@9#

VSHG52 i\
K

2
~a2a1

†22a2
†a1

2!1 i\e1~a12a1
†!, ~1!

wherea1,2,a1,2
† are the annihilation and creation operators

the fundamental~1! and harmonic~2! modes, with frequen-
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ciesn and 2n, ande1 describes an external coherent pum
ing. The nonlinear interaction between the modes is
scribed by the coupling constantK, which is proportional to
the second-order susceptibility of the nonlinear crystal a
the inverse cavity volume. There are two parameters
describe the classical scale of the two modes:

n:5
g1
2

K2 , m:5
2g1g2

K2 , ~2!

whereg1,2 are the cavity decay rates of the fundamental a
harmonic mode, respectively. Normalizing the mode ope
tors to these scalesã1 :5a1 /Am, ã2 :5a2 /An and measur-
ing time in units of the decay rateg1, t:5g1t, we find the
scaled Heisenberg-Langevin equations:

d

dt
ã152 ã11 ẽ 11 ã2ã1

†1A2

m
F1~t!, ~3!

1

g

d

dt
ã252 ã22 ã1

21A2

n
F2~gt!. ~4!

Here F1 and F2 are d-correlated noise forces an
ẽ 1 :5e1 /g1Am. g:5g2 /g1 is the ratio of the cavity decay
rates of the harmonic and fundamental mode. It also rela
the two system-size parameters viam52gn.

From the Langevin equations~3! and~4! and the commu-
tation relations@ ã1 , ã 1

†#51/m and @ ã2 , ã 2
†#51/n, one can

see that in the thermodynamic limit of large system-size
rameters, the field operators can be treated classic
( ãm→ãm). The classical dynamics of SHG was studied
McNeil, Drummond, and Walls@10,11# and Mandel and Er-
neux @12# under conditions of a stationary external pum
For small values of the pump rate, the system has a st
steady state, where the amplitudes of the fundamental
harmonic mode are given by

ã1~11uã1u2!5 ẽ 1 , ã252ã 1
2. ~5!
4516 © 1997 The American Physical Society



o
ld

a
e
oi
re
od
d
e
no

ar

cl

in
a
m
it-

vit
ib

n
ot
tio

c

s

s

e

d

a

re
tu
on
in

-
rnal

ns
ua-

a-
de

us-
re-
act
te-
ion

.
ced
cal
te
in
the
ns

ean
e.

the
ngle
eld

55 4517FINITE-SIZE EFFECTS ON SQUEEZING IN THE . . .
When a critical value of the pump rateẽ 1
cr5A11g(21g) is

reached, the system undergoes a Hopf bifurcation int
stable limit cycle with an oscillation frequency at thresho
of v0 /g15Ag(21g).

In the steady-state regime below the bifurcation, stand
linearization techniques@2# have shown that the amplitud
fluctuations of both modes are reduced below the shot-n
or vacuum limit. In fact, perfect squeezing has been p
dicted at the critical point for the harmonic mode in the go
converter limitg→` or in the fundamental mode in the ba
converter limitg→0. However, since the fluctuations in th
orthogonal field component diverge, the linearization is
valid at this point.

A linear fluctuation analysis in the limit-cycle regime ne
the bifurcation for the case of a good converter (g→`) was
given by Pettiaux, Mandel, and Fabre@3#. This work was
based on the analytic results for the deterministic limit-cy
dynamics near threshold derived in@12#. The authors found
divergencies at multiples of the self-oscillation frequency
the fluctuation spectra. Since this implies diverging equ
time correlations of the fluctuations, the small-noise assu
tion of the linearization approach is violated in the lim
cycle regime.

We analyze here the stationary properties of intraca
SHG beyond the level of linearization, applying nonequil
rium Green’s function~GF! techniques@13# in a similar way
as in Ref.@14#, where we have studied parametric dow
conversion. For the purpose of a compact and simple n
tion, let us introduce here a general three-boson interac
of the form

V5 i\
1

3!
vklmAk~ t !Al~ t !Am~ t !1 i\ekAk~ t !, ~6!

where the subscriptiP$m1,m% indicates thatAi creates or
annihilates a photon of modem. In the case of intracavity
second-harmonic generation, we havev111125v11211

5v211115K, andv11215v12115v211152K, and all others
vanish. We introduce Green’s functions or correlation fun
tions of mode operatorsAi

H in the Heisenberg picture~super-
scriptH):

Di j ~ ť1 , ť2!5^TCAi
H~ ť1!Aj

H~ ť2!&2^Ai
H~ ť1!&^Aj

H~ ť2!&.
~7!

Here, ť denotes a time on the so-called Schwinger-Keldy
time contourC, which goes fromt52` via t51` back to
t52` @15#. Each physical timet corresponds to two value
on the contour, either on the upper (1) or on the lower
branch (2). TC is a time-ordering operator onC, which
corresponds to time orderingT on the upper and to antitim
orderingT21 on the lower branch ofC. In addition, it orders
all operators on (1) to the right of those on (2). In this
way, time-, antitime-, normal-, and antinormal-ordered pro
ucts can be written in a simple common way.^ & stands for
Tr$r0•••%, r0 being the density operator of the system
t52`. Note that the definition~7! also contains so-called
anomalous Green’s functions with two annihilation or c
ation operators, which are needed to describe quadra
squeezing. Furthermore, mixed-type Green’s-functi
containing operators of different modes need to be taken
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account. The~known! Green’s functions without the nonlin
ear interaction between the modes and without exte
pumping are denoted byDi j

0 ( ť1 , ť2).
A relation between the unknown exact Green’s functio

and the known free expressions is given by the Dyson eq
tion @13#

Di j ~ 1̌,1̌8!5Di j
0 ~ 1̌,1̌8!1E E

C
d2̌d3̌Dik

0 ~ 1̌,2̌!

3Pkl~ 2̌,3̌!Dl j ~ 3̌,1̌8!, ~8!

where we have used 1ˇ ,2̌, . . . for time arguments.Pi j are the
so-called self-energies, which in the bare-vertex approxim
tion @6,14# can be expressed in terms of the mean amplitu
of the modes and exact GF’s:

Pi j ~ 1̌,2̌!5v i jk^Ak
H~ 1̌!&d~ 1̌,2̌!

1
1

2!
v iklDkm~ 1̌,2̌!Dln~ 1̌,2̌!vmn j . ~9!

A simple pictorial representation of the Dyson equation
ing Feynman diagrams is given in Fig. 1. Single lines rep
sent the known free Green’s functions, double lines the ex
ones. At each vertex denoted by a triangle or circle, an in
gration over the whole Keldysh contour and a summat
over all mode indices has to be performed.

The Dyson equation~8! is a nonlinear integral equation
Under stationary conditions the integrations can be redu
to one by Fourier transformation, with respect to physi
~not contour! times. It should be noted that there is comple
phase symmetry with respect to the limit-cycle oscillations
a quantum mechanical calculation. The mean values of
modeŝ ãm& are therefore time independent under conditio
of stationary pump.

If only the first term of the self-energy, Eq.~9!, is taken
into account, the Dyson equation~7! can be solved analyti-
cally in terms of the~as yet unknown! mean amplitudes of
the fields. This corresponds to a mean-field approach@8#, in
which the harmonic mode operator is replaced by its m
value in the equation of motion of the fundamental mod

FIG. 1. Graphical representation of the Dyson equation in
bare-vertex approximation. Double lines denote the exact and si
lines the known free GF. The self-energy consists of a mean-fi
contribution (;^A&) and a one-loop contribution.
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One can show that this approximation remains good ab
the Hopf bifurcation, when the decay of the fundamen
mode is much faster than that of the harmonic mode, i.e
the bad converter limitg→0 and when the system size of th
harmonic moden is kept constant. In this limit, fluctuation
in the fundamental mode~more precisely, in the anti
squeezed component! are short lived and do not cause flu
tuations in the harmonic mode, which therefore stays qu
classical. Also, the amplitude of the limit-cycle oscillatio
decreases with decreasing value ofg. Eventually, the classi-
cal trajectorya2(t) lies well within the vacuum- or coheren
state uncertainty region.

In the mean-field approximation the Langevin equat
~3! for the fundamental mode becomes linear in the opera
and can be solved analytically in steady state. One finds

^ ã1&5
ẽ 1

12^ ã2&
~10!

for the mean amplitude and

^^ ã 1
†ã1&&5

u^ ã2&u2

m~12u^ ã2&u2!
, ^^ ã 1

2&&5
^ ã2&

m~12u^ ã2&u2!
~11!

for the incoherent contributions to the photon number a
the fluctuationŝ ^xy&&5^xy&2^x&^y&. This gives the non-
linear algebraic equation

2^ ã2&5
ẽ 1
2

~12^ ã2&!2
1

^ ã2&

m~12u^ ã2&u2!
~12!

for the mean amplitude of the harmonic mode, where
have assumed a real pump rateẽ 1. While the first term in Eq.
~12! represents the classical case, the second one desc
finite-size corrections and vanishes in the thermodyna
limit m→`, except at the critical point. Due to this term, th
system never reaches the critical point, as opposed to
linearization approximation, which ignores the depletion
the harmonic amplitude due to energy transfer back into f
damental fluctuations. Figure 2 shows the dependenc

FIG. 2. Scaled mean amplitude of the harmonic mode^ ã2& as a
function of scaled pump strengthẽ 1 from the mean-field approxi-
mation for different system-size parameters.
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^ ã2& on the external pump rate for different values of t
system-size parameter. As can be seen, the harmonic-m
amplitude stays always below its critical value^ ã2&51 ~for
g→0) and, for small system-size parameters, the mean
plitude strongly deviates from the classical value. Equat
~11! shows that the maximum squeezing is achieved only
infinite pump rates. Clearly, for any nonvanishing value
g, the mean-field approximation becomes invalid much e
lier. Analyzing corrections to the mean-field approximatio
one finds that the range of validity increases when the sys
sizem of the fundamental mode becomes small.

For finite values ofg, the mean-field results do not accu
rately describe the behavior at and beyond the Ho
bifurcation and the whole bare-vertex equation needs to
solved. This is done by a numerical iteration scheme, wh
uses the well behaved mean-field results as a starting p
@14#. This scheme is therefore also applicable at and, t
certain extent, above, the Hopf bifurcation, where lineariz
Green’s functions are divergent. The results for the me
amplitude of the harmonic mode are shown in Fig. 3
different values ofg. The curves approach the mean-fie
predictions for small values ofg and the classical result fo
large values ofg.

We have calculated the squeezing spectrum for the
phase quadrature component of the fundamental m
x15(a11a1

†)/2:

Sx~v!52g1E dt e2 ivt^^x1~ t !x1~ t2t!&&. ~13!

The results are shown in Figs. 4 and 5 forg50.1 and dif-
ferent system-size parameters of the fundamental mode
Fig. 4 we have chosen a pump rate just below the H
bifurcation, which is atẽ 1'2.203 here. One can see that f
small values ofm the squeezing is reduced. Also, peaks
approximately even mutiples~here 0 and 2! of the self-
oscillation frequency can be seen. This has already b
noted by Mertens and Kennedy@16# in the below-threshold
analysis of SHG. This feature corresponds to the peaks
dicted in the above-threshold linearized spectra@3#. Since the
threshold to self-oscillations is smeared out due to finite-s
correction, this behavior is expected. Note, however, that

FIG. 3. Amplitude of the harmonic mode from the bare-vert
approximation form55, for different values ofg. Also shown are
the classical and mean-field solutions.
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position of the peaks is shifted to higher frequencies w
decreasing system sizem.

Figure 5 corresponds to a point above the Hopf bifur
tion. Here the peaks at even multiples of the self-oscillat
frequency are much more pronounced. As opposed to
linearization result, which has been calculated along the li
of Ref. @3# and is shown here for comparision as well, the
peaks have a finite height, which increases with the sys
size. Their position is shifted, indicating an increase of
self-oscillation frequency due to finite-size corrections.

A new spectral feature occurs in the bare-vertex spect
above the bifurcation point. An additional splitting of th
peak aroundv50 can be observed for smaller values
m. This splitting is due to the finite-size renormalization
the characteristic frequencies. The characteristic frequen
of the fundamental and harmonic mode are shifted from
classical limit-cycle value by different amounts, which lea
to an additional beat note.

FIG. 4. Squeezing spectrumSx(v) of fundamental amplitude

fluctuations@x5(a11a1
†)/2# for g50.1 below thresholdẽ 152.0

~threshold atẽ 1'2.2), for a small and a larger system. Also show
is the linearization result from@2#.
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If the pump rate is further increased, the bare-vertex
proximation breaks down and higher- order terms in the v
tex expansion@6,14# need to be taken into account. Th
breakdown occurs earlier for larger values ofg, which can
be understood if we note that the present approximation
responds to an expansion around the mode amplitudes a
aged over the phase-space distribution and the phase o
limit cycle. Hence, the approach becomes less accurat
these oscillations become more pronounced. We exp
however, that an approach that allows for a spontane
breaking of the limit-cycle phase symmetry~similar to the
above-threshold parametric oscillator@14#! can overcome
this problem. This will be the subject of further investig
tions.

O.V. thanks the Bayrisches Kultusministerium and t
DAAD and M.F. thanks the Feodor-Lynen Programm of t
Alexander-von-Humboldt Stiftung for financial support.

FIG. 5. Squeezing spectrumSx(v) of fundamental amplitude

fluctuations@x5(a11a1
†)/2# for g50.1 above thresholdẽ 152.4

~threshold atẽ 152.2), for a small and a larger system. Also show
is the linearization result derived from analytical results for t
classical limit cycle@12# following @3#.
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