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The interaction of a pair of copropagating pulses with three-levelL-type atoms is discussed in terms of
time-dependent coupled and decoupled superpositionsu6& of the lower levels. Due to the explicit time
dependence of these states there is a nonadiabatic coupling between the ‘‘bright’’ stateu1& and the ‘‘dark’’
state u2& in addition to the strong coupling betweenu1& and the upper levelua& . We show that under
quasiadiabatic conditions and in the presence of decay from the upper level this coupling can be treated
perturbatively and the Maxwell-Bloch equations can be solved analytically. With the help of such a perturba-
tion approach, coherent population transfer and formstable laser pulse propagation are studied.@S1050-
2947~96!06206-3#

PACS number~s!: 42.50.Gy, 42.50.Hz, 42.65.Tq, 42.65.Dr

I. INTRODUCTION

The resonant interaction of time-dependent fields with
three-levelL-type atoms has attracted some attention in re-
cent years. There are two aspects of the problem for which
interesting effects have been predicted and observed. One is
the coherent dynamical evolution of the atomic system and
the other one is the loss-free propagation of fields.

For example, employing a so-called counterintuitive se-
quence of overlapping laser pulses@1#, it is possible to trans-
fer population between the lower levels in a very fast and
effective way. Since the upper level remains virtually un-
populated throughout the process, decay out of this state
does not affect the transfer. This method of stimulated Ra-
man adiabatic passage~STIRAP! was first observed by Berg-
mann and co-workers@2#. Since then this phenomenon has
been studied intensively both experimentally@3# and theo-
retically @4#.

The mechanism of population transfer is understood as an
adiabatic following of one instantaneous eigenstate of the
Hamiltonian in the time-dependent fields. The nonadiabatic-
ity of the process is described by a small parametere. A
measure for the success of the transfer are the nonadiabatic
losses that are, therefore, of particular theoretical interest.
For special pulse shapes, exact analytic solutions of the
Bloch equations have been found by Carrol and Hioe@5# and
very recently by Laine and Stenholm@6#. The generalization
to arbitrary pulse shapes is, however, not simple. It is well
known from the theory of adiabatic processes in two-state
systems@7# that the asymptotic nonadiabatic losses may be
exponentially small in 1/e @;exp(21/e)#. For this reason a
perturbation ine fails to describe the asymptotic behavior. A
method that can be applied to a broad class of smooth pulses
was recently proposed by Elk@8#. It is based on the supera-
diabatic basis technique for two-state systems introduced by
Berry @9#.

In all previous studies, decay from the upper level was

disregarded. In the present paper we show that a simpler
description of the population transfer is possible when this
decay is taken into account. For this we employ a picture
which uses the adiabatic coupled~‘‘bright’’ ! and decoupled
~‘‘dark’’ ! superpositions of the lower levels as a basis. In this
basis there is a strong coupling between the bright state and
the upper level with the total Rabi frequencyV and a weak
coupling between the bright and dark state characterized by a
~formal! Rabi frequencyV2 that is due to nonadiabatic cor-
rections. We derive a simple analytical expression for the
nonadiabatic losses in the limite→0 when the ratio of the
upper level decay rateg to the total Rabi frequencyV is
fixed. This expression can be expanded in a Taylor series in
e showing that in the presence of decay the nonadiabatic
losses arenot exponentially small in 1/e. Hence a perturba-
tion approach can be used to describe the population transfer
for finite e. The nonadiabatic losses are calculated for finite
values ofe and the influence of the pulse form and upper
level decay is discussed.

Another interesting aspect of the interaction of time-
dependent fields withL-type atoms is the quasiloss-free
propagation of strong laser pulses in otherwise optically
thick media. It was shown by Harris@10# that pulse pairs
with arbitrary but identical envelopes~matched pulses! may
propagate undisturbed, if the three-level atoms are prepared
in the uncoupled coherent superposition of lower levels. For
sufficiently strong pulses the preparation of the atoms is done
at the front end of the pulses via coherent population transfer
@11#. Furthermore as pointed out by Harris, matched pulses
may also be generated by the matter-field interaction~pulse
matching! for a variety of specific initial pulse shapes with-
out coherent preparation of the atoms@12#. Konopnicki and
Eberly showed that pulse pairs with the same hyperbolic
secant envelope~simultons! and total pulse area 2p repre-
sent a soliton solution which remains formstable with very
small energy losses@13#. Recently Grobe, Hioe, and Eberly
predicted another class of formstable solutions which have
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complementary pulse shapes~adiabatons! @14#.
All these propagation phenomena have in common a qua-

siadiabatic nature of the matter-field interaction. Therefore
the above mentioned approach of Maxwell-Bloch equations
in the basis of adiabatic dark and bright states seems very
appropriate to study pulse propagation phenomena as well.
We will show that a perturbation in the nonadiabatic cou-
pling allows an approximate analytical solution of the non-
linear dynamical equations and provides a simple physical
explanation for the loss-free propagation of matched pulses,
simultons, and adiabatons. We find that in contrast to
matched pulses, adiabatons decay for long propagation dis-
tances and we point out the relation between adiabatons and
the formation of matched pulses.

The paper is organized as follows. In Sec. II we derive the
Maxwell-Bloch equations in terms of adiabatic dark and
bright states. In Sec. III we analyze the dynamics of the
atomic system for a given pair of pulses under quasiadiabatic
conditions. In particular we study the dynamics of coherent
population transfer~STIRAP!. In Sec. IV we focus on the
evolution of the fields and discuss the formation and propa-
gation of matched pulses, simultons, and adiabatons.

II. MAXWELL-BLOCH EQUATIONS IN A BASIS OF
ADIABATIC DARK AND BRIGHT STATES

We consider here the interaction of two copropagating
pulses with three-levelL-type atoms as shown in Fig. 1. The
propagation direction isz. For the sake of simplicity and in
order to obtain analytical results, we restrict our model to the
bare essentials. We assume pulses with resonant carrier fre-
quencies, ignore transverse effects and inhomogeneous
broadening, and assume a symmetric situation of equal cou-
pling strength and radiative decay rates. A pulse of Rabi
frequencyV1(z,t) couples the transitionua&2ub1& and an-
other one with Rabi frequencyV2(z,t) couples the
ua&2ub2& transition. The population in the upper levelua&
decays radiatively into levelsub1,2& with a rateg8 and to
some other states with rateg. The decay rate of the optical
coherences is denoted byg'>g81g/2. The density matrix
equations for the atomic system are given in a rotating frame
by

ṙaa52Graa2 i ~V1* rab12c.c.!2 i ~V2* rab22c.c.!, ~1!

ṙb1b15g8raa1 i ~V1* rab12c.c.!, ~2!

ṙb2b25g8raa1 i ~V2* rab22c.c.!, ~3!

ṙb1b25 iV1* rab22 iV2rab1
* , ~4!

ṙab152g'rab12 iV1~raa2rb1b1!1 iV2rb1b2
* , ~5!

ṙab252g'rab22 iV2~raa2rb2b2!1 iV1rb1b2, ~6!

whereG52g81g.
It is well established that in the case of cw-fields in two-

photon resonance, the atom-field interaction is best described
in terms of the coupled~‘‘bright’’ u1&) and decoupled
~‘‘dark’’ u2&) superposition states of the lower levels:

u1&5
1

V
@V1* ub1&1V2* ub2&], ~7!

u2&5
i

V
@V2ub1&2V1ub2&], ~8!

where

V~z,t ![@ uV1~z,t !u21uV2~z,t !u2#1/2 ~9!

is the total Rabi frequency. In terms of these states the atom-
field interaction Hamiltonian reads

H52\Vua&^1u1H.a. ~10!

The stateu2& is decoupled from the interaction for which
reason it is called dark state.

In the case of pulses,u1& and u2& are generally time-
dependent. A description in terms of these states is neverthe-
less useful. If we write the density matrix equations of the
atomic system~which we call Bloch equations in the follow-
ing! in terms of u6&, new terms appear due to the explicit
time-dependence. In a rotating frame we find

ṙaa52Graa2 iV~ra12c.c.!, ~11!

ṙ115g8raa1 iV~ra12c.c.!1 i ~V2* r212c.c.!, ~12!

ṙ225g8raa2 i ~V2* r212c.c.!, ~13!

ṙ1252iDr121 iVra22 iV2* ~r112r22!, ~14!

ṙa152~g'1 iD!ra12 iV~raa2r11!2 iV2ra2 ,
~15!

ṙa252~g'2 iD!ra21 iVr122 iV2* ra1 , ~16!

where we have introduced the ‘‘Rabi frequency’’V2 of a
formal nonadiabatic coupling betweenu1& and u2&,

V2[
V̇1*V2*2V̇2*V1*

V2 ~17!

and a~space and time-dependent! detuning

D5
ḟ1uV1u21ḟ2uV2u2

V2 . ~18!

FIG. 1. Atomic system in bare-state representation. Two reso-
nant pulses with Rabi-frequenciesV1 andV2 couple upper level
a to b1 andb2 .
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HereV j5uV j ueif j ( j51,2). The Bloch equations~11!–~16!
correspond to the situation of a three-level system driven by
two fields. One ‘‘field’’ with Rabi frequencyV couples the
upper levelua& to the bright stateu1&, and another ‘‘field’’
with Rabi frequencyV2 couples the two superposition states
u1& and u2&. This is illustrated in Fig. 2.

A problem for the solution of the Bloch equations is the
space and time-dependent detuningD. We note, however,
that the Rabi-frequenciesV1 andV2 of the two fields remain
real throughout the interaction process, if they are real ini-
tially, and if the initial values ofrb1b2 and irab1,2 are real as
well. Under these conditions we have

V25
V̇1V22V̇2V1

V2 ~19!

and

D50, ~20!

and the Bloch equations simplify considerably. This is the
situation we will focus on in the following.

The Maxwell equations for the propagation of the two
‘‘fields’’ expressed in terms of the Rabi frequenciesV and
V2 read in the slowly-varying-amplitude-and-phase ap-
proximation

S ]

]t
1c

]

]zDV~z,t !52g2NIm@ra1# ~21!

and

S ]

]t
1c

]

]zDV2~z,t !5g2N
]

]t S ra2

V D . ~22!

Here g5(`/\)A\n/2«0 is the strength of the atom-field
coupling;` being the dipole moment,n the transition fre-
quency, andN is the density of atoms. As ususal for pulse-
propagation problems, we introduce moving coordinates
j5z and t5t2z/c, such that the wave operator
]/]t1c]/]z becomesc]/]j.

The solution of the coupled system of dressed-state Bloch
equations~11!–~16! and dressed-field Maxwell equations
~21! and ~22! is sufficient to determine the evolution of the
two pulses.V andV2 are related to the Rabi-frequencies of
the original pulses by

V1~j,t!5V~j,t!sinH E
2`

t

dt8V2~j,t8!J , ~23!

V2~j,t!5V~j,t!cosH E
2`

t

dt8V2~j,t8!J , ~24!

where we have assumed thatV1 /V2→0 for t→2`.

III. POPULATION DYNAMICS

In the present section we study the dynamical evolution of
the atomic system in a given time-dependent field. Although
a generalization is straightforward, we disregard here spon-
taneous transitions into the lower levels, i.e., setG5g and
assumeg'5g/2. In this case we may describe the atomic
evolution with a Schro¨dinger-type equation for the state am-
plitudes$c2 ,ca ,c1%:

d

dt S c2

ca

c1

D 5S 0 0 iV2

0 2g' iV

iV2 iV 0
D S c2

ca

c1

D . ~25!

We now introduce a dimensionless unitt̄5t/T, whereT is a
characteristic time of the pulses, and separate an overall time
dependenceV(t)5V0f (t). With this we find

e
d

dt̄ S c2

ca

c1

D 5S 0 0 i eV̄2

0 2g' /V0 i f ~ t̄ !

i eV̄2 i f ~ t̄ ! 0
D S c2

ca

c1

D .
~26!

Here e[(V0T)
21 is a small parameter characterizing the

nonadiabaticity of the interaction process andV̄2 follows
from Eq. ~19! with d/dt replaced byd/dt̄.

For the cases in which we are interested here, the adiaba-
ticity parametere is small. For this reason one might try an
approximate solution of Eq.~26! using a perturbation expan-
sion in e. It is well known, however, from the theory of
adiabatic processes in two-state systems, that such a pertur-
bation must be handled with care. If the system starts from
one of the instantaneous eigenstates of the Hamiltonian, the
nonadiabatic loss from this state is small beyond any order in
e and cannot be obtained from a perturbation expansion@7#.
The same problem occurs here forg50, in which case the
three-level system can be mapped onto a two-state system
@5#. The presence of the decay term in Eq.~26! however,
changes the situation substantially. If we lete→0 keeping
g' /V0 fixed, the left-hand side~lhs! of the equation of mo-
tion of ca vanishes:

e
d

dt̄
ca52

g'

V0
ca1 i f ~ t̄ !c1 . ~27!

More precisely ife!g' /V0 or T@g'
21 we may neglect the

lhs of Eq.~27! as compared to the first term on the rhs since
ca changes on a time-scale of unity. This gives

ca5
iV0f ~ t̄ !

g'

c1 . ~28!

Substituting this result into the equation forc1 we obtain

FIG. 2. L-system in dressed state representation.
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e
d

dt̄
c152

V0f
2~ t̄ !

g'

c11 i eV̄2~ t̄ !c2 . ~29!

Now again in the limite→0 the lhs is negligible as com-
pared to the first term on the rhs yielding

c15 i e
g'

V0

V̄2~ t̄ !

f 2~ t̄ !
c2 . ~30!

Substituting this result into the equation forc2 we eventu-
ally arrive at

d

dt̄
c252e

g'

V0

V̄2
2 ~ t̄ !

f 2~ t̄ !
c2 , ~31!

that has the simple solution

c2~ t̄ !5c2~2`!expH 2e
g'

V0
E

2`

t
d t̄8

V̄2
2 ~ t̄8!

f 2~ t̄8!
J . ~32!

We point out that the nonadiabatic loss, 12uc2( t̄)/
c2(2`)u2, can be expanded into a power series ine and is
notexponentially small in 1/e. This particular property of the
dissipative system makes it possible to study the quasiadia-
batic situation using a perturbation approach in the nonadia-
batic coupling. In fact the failure of this procedure for a
three-level system without decay and inhomogeneous broad-
ening seems to be an artifact of the idealization of the true
situation. Recently Shapiro gave a description of coherent
population transfer into a flat continuum beyond the adia-
batic approximation@15#. Also in this case, the nonadiabatic
losses can be expanded in powers ofe.

A. Coherent population transfer for T@g'
21

We now discuss the coherent population transfer from
level ub1& to ub2& by a counterintuitive pulse sequence for
characteristic times large compared to the decay time from
the excited state. If the atomic system is initially inub1& and
the two overlapping pulses are applied such thatV2 is
switched on and off first~counterintuitive sequence!, u2& is
identical to ub1& for t52` and to ub2& for t51`. In the
adiabatic limite→0 the system stays in the dark state and all
population is transferred fromub1& to ub2&.

For T@g'
21 the history of the transition process is given

by Eqs.~28!–~32!:

ca~ t !52
V2~ t !

V~ t !
c2~ t !, ~33!

c1~ t !5
ig'V2~ t !

V2~ t !
c2~ t !, ~34!

c2~ t !5expH 2g'E
2`

t

dt8
V2

2 ~ t8!

V2~ t8! J . ~35!

The asymptotic nonadiabatic loss, i.e., the amount of popu-
lation not transfered, is

12uc2~`!u2512expH 2gE
2`

`

dt8
V2

2 ~ t8!

V2~ t8! J . ~36!

We note that according to Eqs.~23! and~24! for a complete
population transfer fromub1& to ub2& with a counterintuitive
pulse sequence,

E
2`

`

dtV2~ t !5
p

2
. ~37!

One recognizes from Eq.~35! that in the case of a popu-
lation transfer slower than the coherence decay, the popula-
tion in the dark state decreases smoothly and monotonically
from unity to its final value. During this process, population
is built up in the excited and bright states proportional to the
Rabi frequency of the nonadiabatic coupling. We have illus-
trated this in Fig. 3 for the example of ramped pulses
V15Vsin@ 12arctan(gt/10)1p/4], V25Vcos@ 12arctan(gt/10)
1p/4], such thatV510g andV250.05g/@11(0.1gt)2#.
Shown are the populations in all levels according to Eqs.
~33!–~35! and following from a numerical calculation.

B. Coherent population transfer for T<g'
21

If the characteristic pulse time is on the order of, or short
compared to, the upper level decay time, we can no longer
neglect the time-derivatives in Eq.~26!. We may, however,

FIG. 3. Coherent population transfer forT@g'
21 . ~a! Dark-state

population from analytical approximation~dark line! and numerical
calculation~dashed line!. ~b! Population inu1& and ua&. The ana-
lytical approximation and exact numerical results are almost indis-
tinguishable. The inset in~a! shows the form of the incident ramped
pulses.
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solve the equations of motion perturbatively in the nonadia-
batic coupling. In lowest order and with the initial condition
c2(2`)51, we find

c2~ t !511 i E
2`

t

dt8V2~ t8!c1~ t8!, ~38!

wherec1 follows from

d

dt S cac1
D 5S 2g' iV~ t !

iV~ t ! 0 D S cac1
D 1 iV2~ t !S 01D . ~39!

These equations can be solved analytically only for
V5const. We will therefore restrict ourselves in the follow-
ing to this case. We find for the amplitudes of the adiabatic
dressed states

ca~ t !52
V

V8
E
0

`

djV2~ t2j!e2 g'/2 jsin~V8j!, ~40!

c1~ t !5 i E
0

`

djV2~ t2j!

3e2 g'/2 jFcos~V8j!1
g'

2V8
sin~V8j!G , ~41!

c2~ t !512E
2`

t

dtV2~t!E
0

`

djV2~t2j!

3e2 g'/2 jFcos~V8j!1
g'

2V8
sin~V8j!G , ~42!

whereV85@V22(g'/2)
2#1/2. To discuss the history of the

population transfer we consider the exampleV510,
V250.5/(11t2), and g51022 ~now all in arbitrary time
units!. In Fig. 4 we have plotted the population in the adia-
batic dark and bright states and in the upper level according
to the results from first order perturbation and following
from an exact numerical calculation. In contrast to the case
studied in the preceding subsection, the population now un-
dergoes a large excursion away from the dark state and even-
tually returns to it. One also recognizes that almost all of this
population is driven into levelua& while the bright state re-
mains virtually empty. The physical mechanism of this pro-
cess is a Raman-type transition betweenu2& andua& via the
two ‘‘fields’’ V andV2 . Most of the population is thereby
trapped in a superposition state;(Vu2&2V2ua&) that rep-
resents the uncoupled dressed state in a~first-order! supera-
diabatic basis@16#.

ExpandingV2(t2j) in Eqs. ~40!–~42! into powers of
j one can evaluate the integrals. A scaling analysis shows
that all but the first few terms are higher order in the adia-
baticity parametere. Keeping only the lowest order terms we
find the simple analytic expressions for the history of the
dressed-state amplitudes:

ca~ t !52
V2~ t !

V
1

g'

V

V̇2~ t !

V2 , ~43!

c1~ t !5 i
g'

V

V2~ t !

V
1 i

V̇2~ t !

V2 S 12
g'
2

V2D , ~44!

c2~ t !512g'E
2`

t

dt
V2

2 ~t!

V2 2
V2

2 ~ t !

2V2 S 12
g'
2

V2D .
~45!

In the limit t→1` only the first two terms inc2 survive.
This yields an expression for the asymptotic nonadiabatic
loss which is identical to the result of the last subsection in
lowest order of the nonadiabatic coupling:

c2~`!512g'E
2`

`

dt
V2

2 ~ t !

V2 . ~46!

In Table I we have compared the asymptotic values of
c2 according to Eq.~46! with exact numerical results for the
example of Fig. 4 for values ofg/V ranging from 0.1 to
1026. We note the excellent agreement even for very small
damping rates. A substantial deviation from the exact result
occurs only if the nonadiabatic loss according to Eq.~46! is
less than the value following from the superadiabatic ap-
proach of Ref.@8# for g50. The exponentially small diabatic
loss in this case is (824A2)e220'4.8331029. The regime
of very small decay, such thateg'<Vexp$22/e%, cannot be

FIG. 4. Coherent population transfer forT<g21. Shown are the
populations in the dark state~a!, the upper level~b!, and the bright
state~c! following from analytical approximation~dark line! and
numerical calculation~dashed line!.
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described by the present approach, since then the major con-
tributions to the nonadiabatic losses are nonpolynomial in
e. For most practical applications the upper level decay is,
however, larger than the critical value at which the validity
of the perturbation approach breaks down.

IV. PULSE PROPAGATION

A. Adiabatic limit, V250

The dark stateu2&, Eq. ~8!, is truly decoupled from the
laser fields if it is not explicitly time-dependent, that is, if
V250. One can easily see that this is the case when

V̇1

V1
5

V̇2

V2
. ~47!

This condition implies that the two pulses can have arbitrary
strength but need to have identical shapes.

If the medium is initially prepared in a coherent superpo-
sition of lower levels, such thatr22(0)51, pulse pairs that
fulfill the condition V2(0,t)50 will propagate loss free
through the medium which is optically thick for each of the
individual pulses. Since the system stays in the dark state
u2& we havera15ra250 and hence

c
]

]j
V~j,t!50, ~48!

c
]

]j
V2~j,t!50. ~49!

This is the situation ofmatched pulsesdiscovered by Harris
@10#. It was also shown by Harris and Luo@11# that the
pulses self-generate the required atomic coherence if the
atom is initially in one of the lower states,ub1,2&. The physi-
cal mechanism of this preparation is a coherent population
transfer at the front end of the pulses.

For a pulse pair with identical shapes@V2(0,t)50# and
all initial population in statesua& andu1& instead ofu2&, the
propagation problem reduces to that of a two-level atom in a
single field of Rabi frequencyV. Since the dark state is
decoupled from the coherent interaction and can only be
reached by spontaneous transitions fromua&, we have

ra2[0 ~50!

and

c
]

]j
V2~j,t!50. ~51!

Hence the dark state remains decoupled throughout the inter-
action. The reduced set of Bloch equations for the nonvan-
ishing density matrix elements reads

ṙaa52graa2 iV~ra12c.c.!, ~52!

ṙ1151 iV~ra12c.c.!, ~53!

ṙa152g'ra12 iV~raa2r11!, ~54!

and the total Rabi frequency evolves according to

c
]

]j
V~j,t!52g2N Im@ra1#. ~55!

For a two-level system interacting with a single field, a
couple of soliton solutions that preserve the initial pulse
shape and display anomalously small energy loss are known.
The most famous one is the McCall-Hahn 2p-hyperbolic
secant pulse of self-induced transparency@17#:

V~j,t8!5
1

T
sechFt8

T G , ~56!

wherej5z and t85t2z/v. v is the group velocity of the
pulses

1

v
5
1

c
~11g2NT2!. ~57!

This means, if the atomic system is initially prepared in the
bright stateu1&, a pair of pulses with the same hyperbolic
secant shape and a total pulse area of 2p will propagate
formstable through the three-level medium. The correspond-
ing dynamics of the atomic system in the absence of decay is
given by

raa2r1152sech2Ft8

T G21, ~58!

ra152 isechFt8

T G tanhFt8

T G . ~59!

If we transform Eqs.~56!–~59! back into the original basis
we obtain thesimultonsolutions first found by Konopnicki
and Eberly@13#,

V1~j,t8!5
a1

T
sechFt8

T G , ~60!

V2~j,t8!5
a2

T
sechFt8

T G , ~61!

wherea1,2 are arbitrary real constants witha1
21a2

251. The
corresponding solutions of the Bloch equations are

rab1,252 ia1,2sechFt8

T G tanhFt8

T G , ~62!

rbmbm
5am

2 S 12sech2Ft8

T G D , ~63!

TABLE I. 12c2(`).

g/V analytical from Eq.~46! numerical

1021 1.963531023 1.978831023

1022 1.963531024 1.980731024

1023 1.963531025 1.981931025

1024 1.963531026 1.991931026

1025 1.963531027 2.092631027

1026 1.963531028 3.100931028
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rb1b25a1a2S 12sech2Ft8

T G D . ~64!

We have seen that the dark state of theL-system is de-
coupled from the interaction with the fields if both pulses
have the same shape. There are two cases in which a form-
stable pulse propagation is possible. If initially all population
is in the dark state it is completely hidden from the fields and
the pulses ‘‘see’’ no atoms at all. The strength and the form
of the pulses are irrelevant as long as they are matched. The
propagation of thesematched pulsesis completely unaf-
fected by losses from the excited state. In the complementary
case where all initial population is in the subsystem formed
by the bright stateu1& and the upper stateua&, the system
reduces to a two-level–single-field problem. For such a sys-
tem formstable propagation is possible, if the conditions for
self-induced transparency in the adiabatic dressed state basis
are fulfilled. This means both pulses must have a hyperbolic
secant shape and the total field must have a pulse area of
2p. In contrast to matched pulses, thesesimultonsare af-
fected by the decay from the upper level. Eventually all
population will end up in the dark state due to spontaneous
transitions and the matched-pulse situation is reached.

B. Quasiadiabaticity, zV2z!V

We now consider the case of a nonvanishing but small
nonadiabatic coupling. For slowly varying pulse shapes, such
that

uV2u!V or uV̇1V22V̇2V1u!V3, ~65!

the coupling between the dark and bright dressed states is
weak compared to the coupling ofu1& to the upper level
ua&. As shown in Sec. III, we may treat theV2-coupling
perturbatively in this case. We recognize from Eqs.~11!–
~16! and ~22! that condition~65! can only be maintained, if
initially all population is in the decoupled state:

r22~0!51. ~66!

This can be realized either by preparing the atoms in a co-
herent superposition of the bare states with weights given by
the Rabi-frequencies or by adjusting the pulse shapes at the
front end according to the initial atomic configuration. The
second situation is the favorable one, if the energy splitting
between the lower states is larger than the thermal energy,
such that only one of them, sayub1&, is populated initially. In
this case one has to ensure thatV2 is switched on first since
thenu2& is identical toub1&. Note that in any case the atoms
must be initially in a pure state.

If the conditions given in Eqs.~65! and~66! are fulfilled,
the set of coupled nonlinear Maxwell-Bloch equations may
be solved analytically by a perturbation expansion in
e;uV2u/V. Since initially all population is inu2&, only
coherences between the statesu1& and u2& and between
ua& and u2& are built up in first order ofe. We therefore
have

ra1
~1!50, ~67!

raa
~1!50, ~68!

r11
~1! 50. ~69!

Equation~67! has the immediate consequence that the total
Rabi frequency is undisturbed,

c
]

]j
V~j,t!50. ~70!

This means that under quasiadiabatic conditions, the total
‘‘energy’’ of the pulses remains the same for propagation
distances large compared to the one-photon absorption
length of the medium. In this limit the photons are redistrib-
uted between the fields by stimulated Raman scattering and
the effect of dissipation on the total field is negligible.

In order to determine the field dynamics we have to solve
the remaining equations of motion forV2 , ra2 , and
r12 :

c
]

]j
V2~j,t!5g2N

]

]t S ra2
~1!

V
D ~71!

and

]

]t
ra2

~1! ~t !52g'ra2
~1!1 iVr12

~1! , ~72!

]

]t
r12

~1! ~t !5 iVra2
~1!1 iV2 . ~73!

As we have shown in Sec. III, the optical coherence can be
eliminated adiabatically if the characteristic time of changes
in the fields, in particular inV2 , is long compared to the
decay time of the upper level. Note that no assumption about
the strength of the coupling is required. This yields

ra2
~1!5

iV

g'

r12
~1! . ~74!

Second, we introduce a nonlinear time-stretch similar to that
used in Ref.@14#,

T[
1

V0
2E

2`

t

dt8V2~0,t8!, ~75!

whereV0 is some appropriately chosen average value of the
total Rabi frequency. If the total Rabi frequency is constant
for a long time period, one could take this value forV0 . T is
a nonlinear but monotonic function oft. Using~70! and~74!
the equations of motion in terms ofT can be written as

c
]

]j
F~j,T!5 i

g2N

V0
2g'

]

]T
r12

~1! ~T!, ~76!

]

]T
r12

~1! ~T!52
V0

2

g'

r12~T!1 iV0
2F~j,T!, ~77!

whereF(j,T)[V2(j,T)/V
2(0,T). Thus by applying a per-

turbation approach in the nonadiabatic coupling and a non-
linear time-stretch we have transformed the original set of
coupled nonlinear equations into a pair of linear, first-order,
partial differential equations with constant coefficients. We
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can very easily solve these equations by a Fourier-
transformation with respect toT. Note thatF as well as
r12 are quadratically integrable inT. We eventually arrive
at

F~j,v!5F~0,v!expH 2g2NF ivV0
2

V0
41v2g'

2 1
v2g'

V0
41v2g'

2 Gjc J .
~78!

The first term in the exponent of Eq.~78! describes a disper-
sive propagation of the ‘‘pulse’’F. The second term de-
scribes an absorption of the high-frequency components of
F. If all relevant Fourier-frequencies are sufficiently small,
such thatv!V0

2/g' , the absorption term and the nonlinear
correction to the dispersion can be neglected. In this case,
Eq. ~78! describes the propagation of the ‘‘pulse’’F in a
linear dispersive medium. HenceF propagates formstable
with a group velocity

1

v
5
1

c S 11
g2N

V0
2 D , ~79!

F~j,T!5FS 0,T2
g2N

V0
2

j

cD . ~80!

These solutions of the nonlinear Maxwell-Bloch equations in
the quasiadiabatic limit are theadiabatons introduced by
Grobe, Hioe, and Eberly in Ref.@14#. They are not restricted
to certain types of pulse shapes as long as condition~65! is
fulfilled. It should be noted, however, that Eq.~80! describes
formstable propagation with respect toT and not to the ac-
tual timet. Only if V is constant over a period of time long
compared to the extention of the adiabaton is the propagation
formstable in the usual sense. In this case, the pulse enve-
lopes have a complementary shapeV1

25const2V2
2 .

ForV5 const, an analytic solution of the Maxwell-Bloch
equations~71!–~73! is also possible for characteristic pulse
times of the order of, or short compared to, the upper level
decay time. In this case, we can simply Fourier-transform the
corresponding equations and find

V2~j,v!5V2~0,v!expH 2g2NF iv~V22v2!

~V22v2!21v2g'
2

1
v2g'

2

~V22v2!21v2g'
2 G J . ~81!

We again recognize the presence of a dispersive and a high-
frequency-absorption term. The formstable adiabaton solu-
tion is obtained when the relevant Fourier-frequencies are
small compared toV andV2/g' .

In Fig. 5, an example of an adiabaton with complemen-
tary pulse envelopes is displayed. We show the analytical
result according to Eq.~81! and a numerical calculation. One
can recognize a formstable propagation over many one-
photon absorption lengthsja[g'c/g

2N5(g' /V0)j0 .
There are two mechanisms that limit the lifetime of an

adiabaton. First, since its group velocity is smaller thanc but
the total field propagates with the speed of light, the adiaba-
ton will eventually reach the back end of the pulses where
the adiabatic condition~65! is violated. Second, for longer

propagation distances the absorption term in Eq.~78! cannot
be neglected and the adiabaton decays. Eventually the
‘‘fields’’ F or V2 die away, such that

V̇1

V1
→

V̇2

V2
for j→`. ~82!

This means that the interaction with the medium generates
pulses with identical pulse shapes — a process first discov-
ered by Harris@12#. This correlation phenomenon has inter-
esting consequences also for the quantum fluctuations of the
fields @18#.

In Fig. 6, we illustrate the long time behavior of the adia-
baton for the example discussed in Fig. 5 but for a larger
decay rate. Again, the solution from Eq.~81! and from a
numerical beam-propagation code are shown.

We have seen that a perturbative solution of the nonlinear
Maxwell-Bloch equations for quasiadiabatic fields predicts
the existence of quasiformstable solutions for a constant total
Rabi frequency. The question arises, however, what is the
origin of this formstable propagation? We have already seen
that from the point of view of the dressed-state Bloch equa-
tions, the original system is identical to a three-level
L-system driven by the two fieldsV andV2 . We now note
that the first-order field equations also correspond to this
situation, if V5const, and if losses are neglected. In this
case, the loss-free propagation@for g'50 the loss term in
Eq. ~78! vanishes# of V2 can be understood as electromag-

FIG. 5. Propagation of an adiabaton for different propagation
distances within the medium in units ofj05(g2N/V0c)

21 for
g' /V050.1. The time t is measured in units oft05V0

21 .
V1(0,t)50.5V0exp@2(t250)2/100#, V2

25V22V1
2 , and V(0,t)

5V0exp@2((t2125)/100)80#. Analytical results are shown in~a!,
numerical results in~b!.

54 801PROPAGATION OF LASER PULSES AND COHERENT . . .



netically induced transparency~EIT! @19# on the u1&2u2&
transition due to the strong coupling of the ‘‘upper’’ level
u1& to the additional levelua&. In Fig. 7, we show a typical
linear susceptibility spectrum for EIT in aL-system with a
strong constant driving field. One recognizes a transparency
dip on resonance and a corresponding large linear dispersion.
The absence of absorption and the linear dispersion are re-
sponsible for the formstable propagation ofV2 with a group
velocity v,c. The perfect transparency is associated with a
population trapping in a coherent superposition of the
‘‘lower’’ levels that in our case is

u22&5
i

AV21V2
2 ~Vu2&2V2ua&), ~83!

u22& is the first-order superadiabatic dark state of the sys-
tem. One easily sees that in this state, the source terms in the
equations of motion ofV andV2 vanish. Using the pertur-
bative results of Sec. III,~43!–~45!, and lettingg→0 we find

c225
1

AV21V2
2 S V1

V2
2

2V D'12OF S V2

V D 4G , ~84!

which is indeed unity up to corrections of fourth order in
V2 /V. Thus we can understand the formstable propagation
of adiabatons as electromagnetically induced transparency in
the adiabatic dressed basis.

V. SUMMARY

In the present paper, we have discussed the interaction of
a pair of pulses with a resonant three-levelL-system under
conditions of quasiadiabaticity. For the description of the
interaction process, we introduce the basis of adiabatic dark
and bright states. This basis transformation turns the original
three-level system with bichromatic fields into a different
three-level system with two field couplings. Here one cou-
pling, characterized by the total Rabi frequency of the origi-
nal fields, is strong, while the other coupling is weak since it
is due to nonadiabatic corrections. We show that in the pres-
ence of decay from the upper level, this nonadiabatic cou-
pling can be treated perturbatively, which allows for an ap-
proximate analytical solution of the nonlinear Maxwell-
Bloch equations.

In the first part of the paper, we present the dynamics of
the coherent population transfer between the lower levels by
a counterintuitive sequence of pulses. We show that in the
adiabatic limit e→0, wheree is the small adiabaticity pa-
rameter, the nonadiabatic loss from the dark state scales like
eg' /V, whereg' is the decay rate of the optical coherence.
In contrast to a purely Hamiltonian system, here the nona-
diabatic loss is not exponentially small in 1/e and hence a
perturbation approach is feasible. We give simple analytical
expressions for the dynamical behavior of the state ampli-
tudes as well as for the asymptotic nonadiabatic losses. For
transfer times long compared to the upper level decay, the
dark state population decreases smoothly and monotonically
from unity to its asymptotic value. For shorter transfer times
the dark state amplitude undergoes a large excursion. This
behavior can be understood as a Raman-transition between
the adiabatic dressed-states. When the nonadiabatic coupling
is turned on, population is driven out of the dark state into
the upper level. Since the transfer time is short compared to
the decay from this state, the population has no time to decay
and will be driven back to the dark state when the nonadia-
batic coupling is turned off while the total field is still
present. The perturbation approach breaks down for rela-
tively large adiabaticity parameters, namely if
(1/e)exp$22/e% becomes comparable tog' /V. We note
that the validity condition is practically always fulfilled for
e,0.1.

Next we study the propagation of pulse pairs in three-
level L-media. The adiabatic dark state is truly decoupled
from the interaction with the two fields if the two pulses are
in two-photon resonance and have identical shapes~i.e., are
matched!. The nonadiabatic coupling vanishes in this case

FIG. 6. Decay of adiabaton of Fig. 5 for large upper level decay
g' /V052.5. Analytical results are shown in~a! and numerical
results in~b!.

FIG. 7. Typical spectrum of real~dark line! and imaginary
~dashed line! part of linear probe-field susceptibility for EIT in
three-levelL-system. The driving field Rabi frequency is equal to
the upper level decay rateg.
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and the problem reduces to a two-level system interacting
with one field plus one uncoupled state. There are then two
possibilities for a formstable loss-free propagation of the
pulse pair. If all population is initially in the dark state, it
will remain there and thematched pulses@10# do not interact
with the atoms. If in the opposite case no population is ini-
tially in the dark state, a formstable propagation with very
small losses is possible if the conditions for self-induced
transparency@17# of the total fieldV are fulfilled. The cor-
responding solutions are thesimultonsfound in Ref.@13#.

When the relative change of the two pulse shapes is slow
on a time scale set by the inverse total Rabi frequency, there
is a nonvanishing but weak nonadiabatic coupling. When the
pulse shapes are such that the atoms are initially in the dark
state, the nonadiabatic ‘‘field’’V2 propagates quasiform-
stable over many one-photon absorption lengths. These are
theadiabatonsolutions introduced in Ref.@7#. The physical
origin of the quasiformstable propagation of adiabatons is
electromagnetically induced transparency@19# in adiabatic
dressed states. The~positive! linear dispersion associated
with the induced transparency results in a group velocity for

V2 that can be much less thanc @20#. Since we are dealing
with pulses,V2(t) is not monochromatic. Its off-resonant
components experience an absorption that increases qua-
dratically with the detuning. This absorption process eventu-
ally leads to the decay of the adiabatons leaving the pulses in
a configuration with matched pulse shapes.

In conlcusion, we show that the adiabatic dressed state
picture is an appropriate tool to obtain analytic results for the
interaction of time dependent fields with three-level atoms
under quasiadiabatic conditions. It also provides simple ex-
planations for several quasiadiabatic phenomena, such as the
coherent population transfer and its limitations or the form-
stable propagation of matched pulses, simultons, and adiaba-
tons.
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