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We show that drivenL-type atoms in a cell under conditions of electromagnetically induced transparency
squeeze the phase noise of a traveling-wave input field in a broad spectral region. The maximum squeezing is
about 41% below the shot-noise level.@S1050-2947~96!03910-8#

PACS number~s!: 42.50.Dv, 42.50.Lc

In the course of the search for sources of bright phase-
squeezed light we recently suggested the utilization of elec-
tromagnetically induced transparency@1#. The proposed
setup was based on an atomicL scheme driven on one tran-
sition as in the experiments of Harris and co-workers@2–5#
~see Fig. 1!. A medium consisting of such atoms placed in-
side a cavity was shown to reduce the phase noise of an
injected field up to 50%~in the output of the cavity! under
optimum conditions.

The use of cavity setups has, however, technical draw-
backs~necessity of correct frequency locking, etc.! and leads
to a noise reduction only in a relatively narrow band deter-
mined by the cavity width. In the present report we show that
squeezing is also possible in a traveling-wave configuration.
If we shine traveling-wave laser light onto a cell containing
the transparent medium, the input light is shown to be phase
squeezed up to about 41% at the output under optimum con-
ditions. The bandwidth of noise reduction is thereby deter-
mined by the width of theL resonance which, in the case of
strong driving, is the Rabi frequency of the driving field.

The method we employ to obtain a propagation equation
for the mean value and the fluctuations of the probe field
closely follows the formulation of Ref.@8# based on the
original approach of Ref.@9#. In exactly the same way as
described in Ref.@8#, we define a slowly varying space- and
time-dependent field annihilation operatora(z,t) that obeys
the propagation equation
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]zDa~z,t !5 igNs0~z,t !, ~1!

whereN is the total number of atoms interacting with the
field. Here we have assumed that the carrier frequency
n is resonant with the atomic transitionua&→ub&. g
5`An/2\e0AL is the corresponding coupling strength, with
` representing the atomic dipole moment andAL the quan-
tization volume~which we here identify with the cell volume
for simplicity!. s0(z,t) is a space- and time-dependent col-
lective variable describing the atomic dipole. The collective
atomic variables are related to the single atom operators

s0
i 5ub&^au i , ~2!

s1
i 5ub&^cu i , ~3!

s2
i 5uc&^au i , ~4!

sx
i 5ux&^xu i , ~5!

by means of the following definition. The interaction vol-
ume of total lengthL is divided into 2M11 layers, each
of thickness L/(2M11) with the center at zl5 lL /
(2M11), (l52M ,...,M ). Then the space- and time-
dependent variables are

sm~z,t !5
1

N
lim
M→`

~2M11!(
j

sm
j ~ t !U

zl→z

, ~6!

where the sum overj is to be taken over all atoms in the
layer l aroundz. These collective atomic operators inherit
the Heisenberg equations of motion from their one-atom
counterparts„Eqs.~3a!–~3e! of Ref. @1#…

ṡa52~g1g8!sa2 i ~V8*s22H.a.!

2 ig~a†s02H.a.!1Fa , ~7!

ṡb5gsa1gcsc1 ig~a†s02H.a.!1Fb , ~8!

ṡ052 1
2 ~g1g8!s01 iga~sb2sa!1 iV8s11Fs0

, ~9!

FIG. 1. Atomic level scheme. A quantized probe fieldE couples
to the transitionua&2ub&, whose upper state is coupled to leveluc&
by a classical driving field of Rabi frequencyV8. g, g8, andgc are
longitudinal relaxation rates.
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ṡ152 1
2gcs12 igas2

†1 iV8*s01Fs1
, ~10!

ṡ252 1
2 ~g1g81gc!s21 iV8~sc2sa!1 igas1

†1Fs2
.

~11!

V8 is the Rabi frequency of the driving-field resonant with
the ua&→uc& transition. In the present paper, the driving field
is treated as a classical or coherent field with undepleted
amplitude. This approximation is justified if we assume that
the coupling on theua&→uc& transition is much weaker than
the coupling on theua&→ub& transition, which impliesg8!g.

Following Ref.@1#, we now resort to ac-number formu-
lation of the problem. To this end we introduce a generalized
P distribution @10# by choosing a normal operator ordering

a†,s2
† ,s1

† ,s0
† ,sa ,sb ,sc ,s0 ,s1 ,s2 ,a. ~12!

Using standard scaling arguments@10#, we obtain a Fokker-
Planck-type equation of motion forP, which is equivalent to
a set ofc-number stochastic differential equations formally
identical to the operator equations. Then the field variable
a(z,t) obeys the equation
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]zDa~z,t !52g2NS0~z,t !, ~13!

where we used the variableS0(z,t) defined through
iga(z,t)S0(z,t)5s0(z,t) in analogy to Ref.@1#. In order to
simplify the problem, we restrict our analysis to field fluc-
tuations slow compared to the time scale of the atomic evo-
lution. In this limit we may eliminate the atomic degrees of
freedom adiabatically and find in the limit of strong driving
~uV8u2@ggc ,g8gc!

S0~z,t !5S̄0~z,t !1FS~z,t !, ~14!

whereFS(z,t) is the effective Langevin force corresponding
to FS(t) in Eq. ~14! of Ref. @1# and

S̄0~z,t !5
gc

2

@ uV~z,t !u21uV8u2#g1uV~z,t !u2g8

@g8uV~z,t !u21guV8u2#@ uV~z,t !u21uV8u2#
.

~15!

Here we have usedV(z,t)5ga(z,t). In the limit g8!g and
for uV(z,t) u;uV8u, we have

S̄0~z,t !5
gc

2uV8u2
. ~16!

We proceed by assuming stationary conditions and small
fluctuations of the field around the semiclassical steady-state
value a0(z), a(z,t)5a0(z)1da(z,t). With Eqs. ~13! and
~16! we find for the semiclassical amplitude the equation of
motion

c
d

dz
a0~z!52

g2Ngc

2uV8u2
a0~z!, ~17!

which corresponds to linear absorption with rateg1
5g2Ngc/~2uV8u2!, i.e.,

a0~z!5a0~0!e2g1z/c. ~18!

On the other hand, the propagation equation for the Fou-
rier transform of the field fluctuations is

c
d

dz
dã~z,v!52~g12 iv!dã~z,v!

2g2ANa0~z!F̃(~z,v!. ~19!

We now define the Fourier transform of the phase fluctuation

df̃~z,v!5
1

2i S dã~z,v!

a0~z!
2

dã* ~z,2v!

a0* ~z! D , ~20!

and the corresponding noise operator

F̃f~z,v!5g2AN
F̃(~z,v!2F̃(

* ~z,2v!

2i
. ~21!

F̃f(z,v) has the correlation function@1,8#

^F̃f~z,v!F̃f~z8,v8!&5^FfFf&Ld~z2z8!2pd~v1v8!,
~22!

where the diffusion coefficient̂FfFf& is given in the limit
uV(z,t) u!g by @1#

^FfFf&52
g2g1

uV8u2@11k2~z!#2
. ~23!

k(z) is the ratio of the probe Rabi frequency to the driving-
field Rabi frequencyk(z)5uV(z)/V8u.

From Eq.~19! we see thatdf̃(z,v) is governed by

c
d

dz
df̃~z,v!5 ivdf̃~z,v!2F̃f~z,v!. ~24!

Formally integrating this differential equation, we find for
the correlation function of the phase fluctuations

^df̃~z,v!df̃~z,v8!&5^df̃~0,v!df̃~0,v8!&

3ei ~v1v8!z/c1
1

c2 E0
z

dz8E
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z
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3^F̃f~z8,v!F̃f~z9,v8!&

3eiv~z2z8!/c1 iv8~z2z9!/c

52
2pd~v1v8!Lg2g1

c2uV8u2

3E
0

z

dz8
1

@11k2~z8!#2
. ~25!

In the second equation the term containing
^df̃(0,v)df̃(0,v8)& has been dropped, because it leads to
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no contribution for coherent input light. The squeezing spec-
trumS(z,v), normalized such thatS(z,v)51 corresponds to
no squeezing at all andS(z,v)50 corresponds to perfect
squeezing, is given in terms of our quantities by

S~z,v!5114a0* ~z!a0~z!
c

L

3E dv8

2p
^df̃~z,v!df̃~z,v8!&. ~26!

Inserting Eq.~25! into Eq. ~26! and subsequent integration
yields

S~z,v!5112k2~0!e22zH 1

11k2~0!e22z2
1

11k2~0!

1 lnF @11k2~0!#e22z

11k2~0!e22z G J , ~27!

where we introduced the dimensionless propagation length
z5g1z/c. This is the main result of the present paper. We
see that the squeezing spectrum depends only on the
propagation length and the ratio of the probe input inten-
sity to the driving-field intensity at the entrance plane of the
medium. The spectrum does not depend onv as a con-
sequence of the adiabatic limit and is valid for Fourier
frequencies smaller than the reciprocal values of typical
atomic time scales. Depending on the atomic parameters,
the corresponding spectral width may be of the order of
the drive-field Rabi frequency and thus substantially broader
than in our previously analyzed cavity-based setup, where
it is determined by the cavity-decay rate@1#. In Fig. 2, we
plot the behavior ofS(z,v) for several different values of
the ratiok~0! as a function of the normalized propagation
length.

At the pointz0 of maximum squeezing, the spectrum can
be shown to take the form

S~z0 ,v!512
2k2~0!e22z0

@11k2~0!e22z0#2
, ~28!

wherez0 is the solution of

21k2~0!e22z

~11k2~0!e22z!2
2

1

11k2~0!
1 lnF @11k2~0!#e22z

11k2~0!e22z G50.

~29!

For example, for k~0!52, we find z0.1.14 and
S~z0,v!.0.59. In this case, the coherent amplitude of the
input is attenuated to aboute21.14.1/3. It can be seen that
S~z,v! does not reach considerably below 41% squeezing.
Thus we have found a scheme in which for reasonably strong
input intensities, an attenuated but possibly still bright trans-
mitted signal displays squeezed phase noise of at best 41%
below the shot-noise level.

A seeming drawback of the present scheme is the
relatively large attenuation of the input field proportional to
e22z. However, as pointed out in a recent work by Gheri,
Walls, and Marte @6#, the optimum conditions under
which squeezing occurs in the cavity setup are such
that destructive interference of the circulating and the re-
flected component of the field lead to a small coherent
amplitude at the output@7#. In fact one finds, that under
otherwise optimum conditions squeezing and output-
amplitude reduction scale in the same way with the cavity
and medium loss rate:

S~v50!5
u^Eout&u2

u^Ein&u2
5

~g02g1!
2

~g01g1!
2 , ~30!

whereg0 represents the cavity-loss rate andg1 the effective-
loss rate due to theL medium. In Fig. 3 we have plotted the
maximum achievable squeezing atv50 as a function of the
loss in coherent amplitude for both configurations, the cavity
setup~dashed line! and the traveling-wave configuration~full
line!. Except for the region of very large losses both curves
are identical, showing that both schemes are equally efficient
in generating bright squeezed output. However, the band-
width of noise reduction in the traveling-wave setup can be
made much larger as compared to the cavity scheme.
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of Naval Research, the Texas Advanced Research Pro-
gram, and the Welch Foundation. U.W.R. would like to
acknowledge support by the Studienstiftung des deutschen
Volkes.

FIG. 2. Squeezing spectrum over normalized propagation depth
for different values ofk~0!. In the order of stronger squeezingk~0!
51/2,1,2,...,9.

FIG. 3. Maximum achievable squeezing atv50 vs loss in co-
herent amplitude for traveling-wave configuration~full line! and
cavity setup~dashed line!.
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