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The light-matter-wave Sagnac interferometer based on ultraslow light proposed recently in Zimmer and
Fleischhauer, Phys. Rev. Lett. 92, 253201 �2004�, is analyzed in detail. In particular the effect of confining
potentials is examined and it is shown that the ultraslow light attains a rotational phase shift equivalent to that
of a matter wave, if and only if the coherence transfer from light to atoms associated with slow light is
associated with a momentum transfer and if an ultracold gas in a ring trap is used. The quantum sensitivity
limit of the Sagnac interferometer is determined and the minimum detectable rotation rate calculated. It is
shown that the slow-light interferometer allows for a significantly higher signal-to-noise ratio as possible in
current matter-wave gyroscopes.
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I. INTRODUCTION

In contrast to inertial motion, rotation of an object is ab-
solute in the sense that it can be defined intrinsically, i.e.,
independent of any inertial frame of reference. Rotation can
be detected, e.g., by means of the Sagnac effect �1�, i.e., the
relative phase shift ��rot of counterpropagating waves in a
ring interferometer of area A attached to the laboratory frame
rotating with angular velocity �,

��rot =
4�

�v
� · A , �1�

where � is the wavelength and v is the phase velocity of the
wave. Depending on the nature of the wave phenomena em-
ployed, one distinguishes two basic types of Sagnac interfer-
ometer: laser �2–4� and matter-wave gyroscopes �5�. The Sa-
gnac phase shift per unit area in a matter-wave device
exceeds that of laser-based gyroscopes by the ratio of rest
energy per particle to photon energy mc2 /�� which for al-
kali atoms and optical photons is of the order of 1011 �6,7�.
Despite this very large number, matter-wave gyroscopes
have only recently reached the short-time sensitivities of la-
ser based devices �8,9�. This has mainly two reasons: First of
all, laser-based gyroscopes, especially fiber-optics interfer-
ometers, can have a much larger area than matter-wave sys-
tems �10�. Second, the large flux of photons achievable in
optical systems leads to a much lower shot-noise level as
compared to matter-wave devices �3,11�. Thus in order to
make full use of the much larger rotational sensitivity per
unit area in a matter-wave device one needs to find ways to
increase �i� the interferometer area and �ii� the particle flux.
While a substantial increase of the interferometer area in
matter-wave devices is difficult, the use of novel cooling
techniques has led to high-flux atom sources which improved
the performance of atom interferometers �5,12�. With particle
throughputs which can now reach 108 s−1 as compared to a
few atoms per second in the first atomic interferometers, the
noise level is, however, still much higher than that achiev-
able in fiber-optics gyroscopes with photon counting rates on
the order of 1016 s−1 �5,11�. Continuously loaded Bose-
Einstein condensates �BECs� could provide a source for co-

herent atoms with larger flux values, and substantial progress
has been made in this direction over the past few years �13�.

We recently proposed a light-matter-wave hybrid interfer-
ometer based on slow-light propagation in ultracold gases of
three-level atoms �14�. We argued that this interferometer
would combine the large rotational phase shift of matter-
wave systems with the large area typical for optical gyro-
scopes. To this end the simultaneous coherence and momen-
tum transfer associated with ultraslow light in cold atomic
gases with electromagnetically induced transparency �EIT�
�15� was utilized. As the reduction of the group velocity of
light in three-level EIT media is based on the change of
character of the dressed eigenmodes of the systems from
electromagnetic excitations to atomic Raman excitations
�16�, light waves can coherently be transformed into matter
waves. These matter waves pick up a Sagnac phase shift per
unit area which is orders of magnitude larger than the corre-
sponding value for electromagnetic fields.

In the present paper we present a detailed theoretical de-
scription of the light–matter-wave hybrid interferometer. In
particular we discuss the effect of confining potentials for the
atoms. We find that in contrast to the case of an infinitely
extended medium or of periodic boundary conditions, which
have been assumed in �14�, the wave functions of all three
internal states acquire the same matter-wave contribution to
the Sagnac phase when in motional equilibrium with a trap-
ping potential �17�. As a consequence the matter-wave con-
tribution to the rotational phase shift vanishes. Only if peri-
odic boundary conditions for the ground-state wave function
can be maintained a nonvanishing matter-wave contribution
to the rotational phase shift emerges. This can be realized,
e.g., in a circular-waveguide BEC �18,19�. The need for a
circular atomic waveguide puts more stringent restrictions on
the possible interferometer area then assumed in �14� and
thus partially invalidates the advantages of the hybrid inter-
ferometer stated in that paper. We will show, however, that
despite this restriction the minimum detectable rotation rate
at the shot-noise limit can exceed the current state of the art.
It corresponds to that of a matter-wave gyroscope with a
rather large particle flux given by the high density of the
ultracold gas, e.g., a BEC, multiplied by the recoil velocity.
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To determine the quantum sensitivity limit of the hybrid in-
terferometer the saturation of the Sagnac phase shift with the
probe-light intensity as well as probe-field absorption will be
taken into account. It will be shown that the Sagnac phase
attains a maximum value for a certain value of the probe
power. Optimum parameter values for a maximum signal-to-
noise ratio �SNR� will be determined and the minimum de-
tectable rotation rate �min per unit area derived.

II. DYNAMICS IN THE ROTATING FRAME

An intrinsic sensor attached to the laboratory frame de-
tects the rotation of the frame without any reference to some
other, nonrotating frame of reference. Thus it is most natural
to describe this system from the point of view of a corotating
observer. We will give here a microscopic description of the
gyroscope which consists of an ensemble of three-level at-
oms with internal states �1�, �2�, and �3� in a ring interferom-
eter, coupled by two laser fields with �complex� Rabi fre-
quencies �c and �p in a Raman configuration as shown in
Fig. 1 �left�. The probe field �p is assumed to propagate
clockwise and counterclockwise with respect to the rotation
axis ez with its beam path bound to a circle of radius R as
depicted in Fig. 1 �right�. The control field �c, which is
assumed to have a much larger Rabi frequency than the
probe field, propagates in a different direction such that the
corresponding wave vectors are �nearly� perpendicular. The
ensemble as well as the laser sources are attached to the
laboratory frame rotating with angular velocity ��t�
=��t�ez �20�. The center-of-mass motion of the atoms shall
also be confined to the periphery of the circular loop. Fur-
thermore, it is assumed that ���R	c such that nonrelativistic
quantum mechanics applies.

Under conditions of two-photon resonance, the control
field �c generates EIT for the probe field associated with a
substantial reduction of its group velocity �21–23�. The
group velocity reduction which is due to the coupling of the
probe light to the atomic Raman coherence corresponds in a
quasiparticle picture to the formation of so-called dark-state
polaritons, a superposition of light, and matter degrees of
freedom �16,24�. The smaller the group velocity the larger
the contribution of the matter component in the polariton.

The atoms are here described in second quantization by

three Schrödinger fields 
̂1�r , t�, 
̂2�r , t�, and 
̂3�r , t� cor-
responding to the three internal states. In order to describe
the propagation of the probe light and the three matter-wave
fields in the corotating frame, we need to transform the
Hamiltonian of the system into the rotating frame.

As the starting point we choose the standard atom-light
interaction Hamiltonian of quantum optics in Coulomb
gauge and after the Power-Zienau-Wolley transformation
�25�. Adding the free Hamiltonian of a three-component non-
relativistic Schrödinger field, the Hamiltonian reads in a non-
rotating frame

Ĥ = Ĥ�A� + Ĥ�F� + Ĥ�I�

= �
�
� d3r
̂�

† �r�	−
�2

2m
�2 + ��� + V�

ext�r,t�

̂��r�

+
�0

2
� d3r�	 �̂�r�

�0

2

+ c2��  Â��r��2�
+ �

�,�
� d3r
̂�

† �r�d�� · � �̂�r�
�0

− Eext�r,t���
̂��r� .

�2�

Ĥ�A� describes the motion of atoms in an external, possibly
state- and time-dependent trapping potential V�

ext�r , t�, E�

=��� is the energy of atoms in state ���. The free Hamil-

tonian of the radiation field is denoted by Ĥ�F�, where Â��r�
is the transverse part of the vector potential and �̂�r� is its

conjugate momentum. Finally Ĥ�I� describes the interaction
of the atoms with the quantized electromagnetic field and
additional external fields in dipole approximation, where d��

is the vectorial dipole matrix element between internal states
��� and ���. For notational simplicity we will drop the sub-
script “�” in the following.

The transition to a frame rotating with angular velocity
��t� is done via the unitary transformation

U�t� = exp	−
i

�
�

t0

t

d����� · L̂
 , �3�

where L̂ is the total angular momentum operator of light and
matter. By choosing �=�ez we restrict ourselves to a rota-
tion about the fixed z axis. In this case only the vector com-
ponent parallel to that axis, i.e.,

L̂z = L̂z
�A� + L̂z

�F� =
�

i
�
�
� d3r
̂�

† ��
̂�

−
1

2�
j
� d3r��̂ j���Âj� + ���Âj��̂ j� , �4�

is relevant. In Eq. �4� the index � denotes the three internal
states and the index j the three spatial dimensions. The
Hamiltonian in the rotating frame is hence given by

Ω

γ

p

∆

  2, p +hk
p

3, p +h   k

1, p

c

Ω

x

R

p z

Ω c

Ω
Ω

FIG. 1. �left� atomic level scheme. p denotes the momentum of
the atoms and kp is the wave vector of the probe field along the
periphery �x� of the circular loop depicted in the right part of the
figure. kc

� in the component of the control-field wave vector along x,
and �k=kp−kc

� . �right� Schematic setup of the hybrid Sagnac inter-
ferometer with vapor cell �grey box� attached to the rotating frame
with angular velocity �.
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Ĥrot = U�t�ĤU†�t� + ��t�L̂z. �5�

Since L̂z
�A� and L̂z

�F� commute, the unitary transformation Eq.
�3� can be decomposed into two operators which act on the
matter-wave and electromagnetic fields, respectively. One
finds

Ĥrot
�A� = ��t�L̂z

�A� + �
�
� d3r�
̂�

† �r��	−
�2

2m
��2 + ���

+ V�
ext�r��

̂��r�� , �6�

Ĥrot
�F� = ��t�L̂z

�F� + Ĥ0
�F� + �

�,�
� d3r�
̂�

† �r��d�� · � �̂�r��
�0

− Eext�r�,t���
̂��r�� . �7�

Here the prime denotes that the variables are given with re-
spect to the rotating coordinates

r� = r + �
t0

t

d�e�R���� , �8�

with R being the distance from the rotation axis. For all field

operators F̂� �
̂ ,�̂ , Â� holds:

UF̂�r�U† = F̂	r + �
t0

t

d�e�R����
 . �9�

The center-of-mass dynamics of the matter-wave fields is
then governed by the following Heisenberg equations of mo-
tion in the corotating frame:

i���t + ��t����
̂��r�,t� �10�

=	−
�2

2m
��2 + ��� + V�

ext�r��

̂��r�,t�

+ �
�

d�� · � �̂�r��
�0

− Eext�r�,t��
̂��r�,t� . �11�

Correspondingly the equations of motion for the conjugate

momentum �̂ and the transversal vector potential Â read

��t + ��t������̂�r�,t� = −
1

�0
�� ��� Â�r�,t�� ,

�12�

and

��t + ��t�����Â�r�,t� =
1

�0
�̂�r�,t� +

1

�0
P̂�r�,t� . �13�

In Eq. �13� we have introduced the transversal polarization

P̂�r , t�=��,�
̂�
† �r , t�d��
̂��r , t�. It is immediately obvious

that the transformation to the rotating frame just amounts to
the replacement �t→�t+��t���. For notational simplicity we

will omit in the following the prime that indicates rotating
coordinates.

As we work in the Coulomb gauge we have �̂�r , t�=

−D̂�r , t� �25�. Using this and D̂�r�=�0Ê�r�+ P̂�r� we find for
the wave equation of the electric field in the rotating frame

���t + ��t����2 − c2��Ê�r,t� = −
1

�0
��t + ��t����2P̂�r,t� .

�14�

We now introduce slowly varying variables for the
transverse field as well as polarization by

Ê�r , t�=E�+��x ,r� , t�e−i��pt−kpx�+h.a. and P̂�r , t�
=P�+��x ,r� , t�e−i��pt−kpx�+h.a., where x=R� is the arc length
on the circle. Restricting ourselves to propagation along the
periphery of the interferometer we find within the slowly
varying envelope approximation and by neglecting terms
O��R /c�

��t + c�x + ikp�R�E�+��x,t� = +
i�p

2�0
P�+��x,t� . �15�

The term proportional to the rotation rate � is responsible
for the rotation induced Sagnac phase shift in the pure light
case, i.e., without any influence from the medium polariza-
tion. As shown in �14� and in the next section the polariza-
tion leads to an additional phase shift.

Introducing also slowly varying amplitudes for the matter

fields 
̂1=�̂1, 
̂2=�̂2e−i��pt−kpx� and 
̂3=�̂3e−i���t−�kx� with
��=�p−�c and �k=kp−kc

� , where kc
� is the wave vector

projection of the control field onto the x axis, we find

�D1 − V1�x���̂1 = ��p
*�̂2, �16�

�D2 + ���2 − kp�R� − V2�x���̂2 = ��p�̂1 + ��c�̂3,

�17�

�D3 − V3�x� + ���3 − �kp�R���̂3 = ��c
*�̂2 �18�

with

D� = i��t +
�2�x

2

2m
+ i���R + ��vrec��x. �19�

Here we have used the definitions �2=�p−�2−�rec and �3
=��−�3−�2�rec for the one- and two-photon detuning in-
cluding the recoil shift ��rec=�kp

2 /2m�. vrec=�kp /m is the
single-photon recoil velocity. We have also introduced the
dimensionless parameter �=�k /kp which describes the mo-
mentum transfer from the light fields to the atoms in state �3�
as well as the abbreviation ��=��,2+���,3. Finally the defi-
nitions �p,c=−dp,c ·Eext

�p,c� for the probe and control-field Rabi
frequencies were applied. The shortened wave equation �15�
and the matter-wave field equations �16�–�18� are the basis
of the following study of the sensitivity enhancement of the
light-matter-wave hybrid Sagnac interferometer.
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III. SAGNAC PHASE SHIFT AND INFLUENCE
OF EXTERNAL TRAPPING POTENTIALS

In this section we will calculate the stationary Sagnac
phase shift for the hybrid interferometer in the perturbative
limit of low probe-light intensities. In particular we will ana-
lyze the effects of a trap potential which confines the atoms
to certain regions in the direction of the interferometer path.

For simplicity we assume a constant rotation rate, i.e., �̇
=0, and consider the stationary state. All atoms are assumed
to be initially, i.e., before applying any probe field, in the

internal state �1�. This amounts to set �̂2
�0��t=0�=�̂3

�0��t=0�
=0. In the perturbative limit of small probe field intensity, �̂1
is not changed by the atom-light interaction, i.e., it obeys the
equation

	�2�x
2

2m
+ i��R�x + ��1 − V1�x��
�̂1

�0��x� = 0, �20�

where �1 is the energy in the stationary state. Assuming
��c �� ��2 � ,kp �� �R , �V2�x� � /� one finds in first order from
Eq. �17�

�̂3
�1��x� = −

�p�x�
�c

�̂1
�0��x� , �21�

which amounts to an adiabatic elimination of the excited
state. Using this and Eq. �18� we find

�̂2
�1� = �kp

�R

��c�2
�̂1

�0��p�x� −
1

��c�2
	 �

2m
�x

2 + i��R + �vrec��x

+
�3 − V3�x�

�

�̂1

�0��p�x�

= �
�̂1

�0�

��c�2
�− ivrec�x ln �̂1

�0� + kp�R��p�x� −
�̂1

�0�

��c�2

���x
2

2m
+ i	�R + �vrec − i

�

m
�x ln �̂1

�0�
�x��p�x� ,

�22�

where we have in addition assumed two-photon resonance,
i.e., �3=0. In deriving the second equation, which is useful
for later discussions, we have made use of Eq. �20� and as-
sumed equal trapping potentials for the internal states V1
=V3. Furthermore, an unimportant constant energy term pro-
portional to �1−�3 has been dropped. One recognizes that the

fields �̂2
�1� and �̂3

�1� and thus the medium polarization in first
order of perturbation follow straight forwardly from the so-
lution of Eq. �20�.

We will now consider two cases. In the first case no con-
fining potential for atoms in state �1� is assumed, which is
equivalent to translational invariance on a ring. In the second
case, discussed later, a trapping potential in the longitudinal
direction x is taken into account. We will see that both cases
lead to quite different results.

A. Periodic boundary conditions in state �1‹

Let us consider the case that atoms in state �1� do not
experience any confining potential in the x direction. Since x
is the coordinate along the periphery of the interferometer,
this amounts to considering a ring-trap configuration with

periodic boundary conditions �̂1
�0��x+2�R�=�̂1

�0��x�. The
principle setup is shown in Fig. 2. With V1�x��0, Eq. �20�
has the eigensolutions

�̂1n
�0��x� = �̂0 exp�i

n

R
x�, �n = n�� +

n2�2

2mR2 ,

where �̂0 is a constant. Taken as a continuous function of n,
the spectrum ��n� is a parabola with minimum at

nmin = −
m�R2

�
. �23�

This is illustrated in Fig. 3. Taking into account that n must
be a positive or negative integer, the state with the lowest
energy corresponds to n=0 as long as �nmin��1/2, i.e., as
long as the Sagnac phase shift per round trip is smaller than
�.

1. Bose-Einstein condensate

We now assume that only the lowest motional energy
state in the internal state �1� is initially excited, e.g., a Bose-
Einstein condensate in the ring trap. In this case there is a

FIG. 2. Setup of a Sagnac interferometer with ring-shaped trap
configuration supporting a superfluid ultracold gas �BEC�. The sym-
metric interferometer setup allows for a distinction of rotational
from linear acceleration.

En

nmin

0 1 2−1−2−3 n

FIG. 3. Parabolic spectrum �n with minimum at nmin=
−m�R2 /� when taken as a function of the continuous parameter n.
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uniform phase over the whole ring and we can set �̂1
�0��x�

=�̂0. It is important to note that the particles in the ground
state do not attain a rotational phase shift in this case. This
yields with Eq. �22�

�̂2
�1��x� = �kp

�R

��c�2
�̂0�p�x� −

i��R + �vrec��̂0

��c�2
�x�p�x�

−
1

��c�2
�̂0

�

2m
�x

2�p�x� . �24�

Substituting the expressions for �̂2
�1� and �̂1

�0� into the sta-
tionary, shortened wave equation, Eq. �15�, for the expecta-
tion value of the probe field expressed in terms of �p,

�c�x + ikp�R��p�x� = − ig2��̂1
�0�†�x��̂2

�1��x�� , �25�

where g=d12
��p /2��0F, d12 being the dipole matrix element

of the �1�↔ �2� transition and F the transversal cross section
of the probe beam, we find

	�c cos2 � + ��vrec + �R�sin2 ���x − i sin2 �
��x

2

2m

�p�x�

= − ikp�R�cos2 � + � sin2 ���p�x� . �26�

Here we have introduced the mixing angle � through tan2 �

=g2� / ��c�2, where �= ��̂0
†�̂0� is the density of atoms in

state �1�. Equation �26� has a very intuitive interpretation. It
describes the propagation of the probe field with the group
velocity

vgr = c cos2 � + �vrec sin2 � �27�

in the rotating frame. The propagation of light in an EIT
medium is associated with the formation of a dark-state po-
lariton, a superposition of electromagnetic and matter-wave
components �16�. If we neglect the atomic motion, the group
velocity of this quasiparticle is proportional to the square of
the weight factor cos � of the electromagnetic part of the
polariton. However, if the coherence transfer from light to
atoms is accompanied by a finite momentum transfer of
�mvrec, there is also a matter-wave contribution to the total
group velocity �27�. This contribution is again proportional
to the square of the weight factor sin � of the matter-wave
part. Due to the admixture of the matter wave, the equation
of motion �26� attains a term corresponding to the kinetic
energy of this component which leads to a dispersive spread-
ing of the probe field along its propagation direction. This
term becomes important in the limit tan2 �� tan2 �crit
�c /vrec, i.e., when the light wave essentially turns into a
propagating spin polarization. The right-hand side of Eq.
�26� describes the light and matter-wave contributions to the
rotational phase shift. The matter-wave contribution to the
phase shift is nonzero only if there is a finite momentum
transfer, i.e., if ��0. In the limit of small rotation, ���R
	vgr, which is the case of interest here, Eq. �26� can easily
be solved. Neglecting the second-order derivative the equa-
tion reduces to Eq. �11� of Ref. �14�,

�x ln �p�x� = − i
2��R

�c
	 ��x�
��x� + �

+
mc2

��p

�

��x� + �

 ,

�28�

where

��x� �
cot2 �

cot2 �crit
�

vgr�x�
vrec

− � . �29�

The last approximate equation is only valid for vgr	c. When
� is large the group velocity is much larger than the recoil
velocity, while � approaching zero means that the group ve-
locity is comparable to the recoil velocity. Equation �28� de-
scribes a phase shift of the probe field in a medium without
absorption, which is canceled due to EIT. Hence two coun-
terpropagating probe fields will experience the Sagnac phase
shift

�� =
2��R

�c
� dx

��x�
��x� + �

+
�R

�/m
� dx

�

��x� + �
. �30�

This is the result obtained in �14�. It has two terms, a light
contribution and, if ��0, a matter-wave contribution. Its
most important consequence is that if the group velocity be-
comes comparable to the recoil velocity, i.e., for �→0, the
slow-light Sagnac phase approaches the matter-wave value!

2. Thermal gas

The ground-state solution �̂1
�0��x�=�̂1,n=0

�0� =�̂0=const
means that the atoms do not follow the motion of the trap.
This is strictly speaking only possible if the gas is superfluid.
In a normal gas collisions with wall roughnesses and be-
tween atoms, which are not taken into account here, would
accelerate the vapor particles in the initial phase of rotation.
Eventually an equilibrium state would be reached where the
atoms corotate with the trap. This can also be seen from a
different argument. In a thermal state with kBT���
+�2 /2mR2 many states in the spectrum of Fig. 3 will be
occupied. As a consequence the thermal gas in the ground
state attains an average rotational phase �x=2�R�

�� = − 2��n� → − 2�nmin =
2��R2

�/m
. �31�

This is just the matter-wave Sagnac phase and is in sharp
contrast to the case of a Bose-Einstein condensate, where the
ground state does not acquire any rotational phase. Since
now both, the ground state �1� and the excited state �2� attain
the same Sagnac phase shift, the matter-wave contribution to
the polarization is exactly canceled. Thus the extention to
thermal gases made in �14� is not correct.

The need for a superfluid gas �e.g., BEC� in a ring trap
puts restrictions to the achievable interferometer area. Al-
though recently there has been substantial progress in realiz-
ing ring traps for BECs �18,19�, the area achieved is only on
the order of 10−1 cm2, which cannot compete with the values
reached in fiber-optical gyroscopes.
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B. Effect of longitudinal confinement

Let us now discuss the case of a longitudinal trapping
potential for atoms in state �1�, i.e., V1�x��0 in Eq. �20�. In
this case the substitution

�̂1
�0��x� = �̂0f�x�e−im�Rx/� �32�

leads to the steady-state equation

	�2�x
2

2m
+

m

2
�2R2 + �1 − V1�x�
 f�x� = 0. �33�

If one disregards the small centrifugal energy shift propor-
tional to �2, this equation is just the stationary Schrödinger
equation for a particle in the trap potential V1. The solution
of this equation is independent of the rotation rate �. �The
inclusion of the centrifugal term would lead to a higher-order
contribution to the Sagnac phase, which we are not interested
in.� If we substitute Eq. �32� into the second equation of Eq.
�22�, one recognizes that all terms containing the rotation
rate � vanish exactly:

�̂2
�1� = − i

�̂1
�0��x�

��c�2
	�vrec��x ln f�x���p�x� − i

��x
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�p�x�
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	�vrec − i
�

m
�x ln f�x�
�x�p�x� . �34�

Substituting this into the shortened wave equation for �p
yields

�c cos2 � + 	�vrec − i
�

m
�x ln f�x�
sin2 ��

�x�p�x� − i sin2 �
��x

2

2m
�p�x�

= − ikp�R cos2 ��p�x� − �vrec sin2 ���x ln f�x���p�x� .

�35�

Neglecting the term with the second-order derivative as well
as those containing �xf�x�, which amounts to assume that
f�x� is a slowly varying ground-state wave function of a
sufficiently smooth potential, Eq. �35� reduces to

�x ln �p�x� = − i
2��R

�c

cos2 �

cos2 � + �
vrec

c
sin2 �

= − i
2��R

�c

1

1 + �/�
, �36�

It is immediately obvious that only the light part of the Sa-
gnac phase survives. Thus in the EIT hybrid gyroscope a
matter-wave contribution to the Sagnac phase only emerges
in the absence of a confining potential or if periodic bound-
ary conditions apply as, e.g., in a ring trap.

The physical interpretation of this result is straightfor-
ward. In the presence of a confining potential the atoms in
state �1� are bound to the motion of the confining potential.
Hence they acquire a rotational phase shift by following the
motion of the trap attached to the rotating frame �17�. Atoms

in state �2� acquire the same phase shift since they are in the
same frame. Therefore the polarization attains no Sagnac
phase as it is a sesqilinear function of the wave functions of
states �1� and �2�. This is in contrast to a superfluid BEC in a
ring trap, where the order parameter does not acquire any
phase due to the periodic boundary conditions as long as the
rotation is sufficiently slow.

IV. QUANTUM LIMITED SENSITIVITY
OF THE SLOW-LIGHT GYROSCOPE

We now want to calculate the sensitivity of the slow-light
Sagnac interferometer in the case of periodic boundary con-
ditions, i.e., in the absence of any confining potential in the
propagation direction. For simplicity we consider the case
�=1, i.e., perpendicular propagation directions of probe and
control field.

To determine the sensitivity we assume that the error in
determining the Sagnac phase is entirely given by shot-noise
quantum fluctuations. If coherent laser light or Poissonian
particle sources are used the shot-noise limit of the phase
measurement is given by

��noise =
1

�nD

, �37�

where nD= IouttD is the total number of photons or atoms
counted at the detector during the measurement time tD �6�.
Here Iout is the photon or atom flux. The assumption that the
quantum noise limit is set by shot noise is justified by two
observations: First of all, it is well known that using nonclas-
sical light or sub-Poissonian particle sources does in general
not lead to an improvement of the signal-to-noise ratio in
interferometry since at the optimum operation point the am-
plitude reduction due to losses is typically of order e−1 and
thus quite substantial. These losses tend to quickly destroy
the fragile nonclassical and sub-Poissonian properties. Sec-
ond, as has been shown in �26,27�, atomic noise contribu-
tions in EIT-type interferometer setups are small and can be
neglected.

In the weak-signal limit discussed in the previous section,
the Sagnac phase accumulated is independent of the signal
field strength �14�, hence the signal-to-noise ratio could be-
come arbitrarily large when the input-laser power is in-
creased. In reality the Sagnac phase approaches a maximum
value at a certain optimum probe-laser power and decreases
for larger intensities. The optimum intensity is reached when
the number density of photons in the EIT medium ap-
proaches that of the atoms. Thus in order to calculate the
maximum sensitivity and to find optimum operation condi-
tions we have to calculate the Sagnac phase to all orders of
the signal Rabi frequency �p. Since in higher-order pertur-
bation the excited state �3� attains a finite population, decay
out of the excited state needs to be taken into account. The
decay leads to a population redistribution among the states of
the � system, see Fig. 4. It can also lead to loss out of the
system. We will disregard the latter process, however. Fur-
thermore, we assume that the density of the considered me-
dium is low enough that it is sufficient to describe the system
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by a set of equations for the single-particle density matrix

elements ����x ,x� , t�= ��̂�
†�x� , t��̂��x , t��. Here � ,�

� �1,2 ,3� denote the internal states. Since the medium po-
larization is determined by the local density-matrix element
�12�x ,x , t�, i.e., x�=x, we consider only local quantities. For
the density-matrix elements diagonal in the internal states we
find the equations of motion

�t�11�x,t� = �1�22�x,t� − i�p
*�x,t��21�x,t� + i�p�x,t��12�x,t�

− �R�x�11�x,t� , �38�

�t�22�x,t� = − �2�22�x,t� + i�p
*�x,t��21�x,t� − i�p�x,t��12�x,t�

+ i�c
*�x,t��23�x,t� − i�c�x,t��32�x,t�

− ��R + vrec��x�22�x,t� , �39�

�t�33�x,t� = �3�22�x,t� − i�c
*�x,t��23�x,t� + i�c�x,t��32�x,t�

− ��R + vrec��x�33�x,t� . �40�

Likewise we find for the local coherences

�t�12�x,t� = − �i��2 − �Rkp� + �2/2��12�x,t�

+ i�c
*�x,t��13�x,t� − i�p

*�x,t���22�x,t� − �11�x,t��

+ ��R + vrec��x�12�x,t� + vrec��̂2
†��x�̂1�� , �41�

�t�13�x,t� = − �i��3 − �Rkp� + �13��13�x,t� − i�p
*�x,t��23�x,t�

+ i�c�x,t��12�x,t� − ��R + vrec��x�13�x,t�

+ vrec��̂3
†��x�̂1�� , �42�

�t�23�x,t� = �i��2 − �3� − �2/2��23�x,t� − i�p�x,t��13�x,t�

− i�c�x,t���33�x,t� − �22�x,t��

+ ��R + vrec��x�23�x,t� , �43�

where �2��1+�3. In the following we determine the Sagnac
phase shift for arbitrary probe-field Rabi frequency based on
the above set of equations and the shortened wave equation.
To derive a transparent expression for the rotationally in-

duced phase shift further simplifications, are however, nec-
essary.

A. Nonlocal terms

One recognizes from Eqs. �41� and �42� that the local
off-diagonal matrix elements are coupled to nonlocal quanti-

ties of the form ��̂�
† �x���x�̂��x���. These terms cause the

buildup of coherences between different internal states and
different positions, which are zero in lowest-order perturba-
tion. We now want to argue that these terms can be ne-
glected. To this end we consider Eq. �22� again disregarding
second-order derives and set V3��3�0. Hence we have

�̂2 =
kp�R

��c�2
�̂1�p − i

�R + vrec

��c�2
�x��̂1�p� . �44�

Substituting this into the steady-state version of the equation

of motion for �̂1, Eq. �16�, remembering that there is no
confining potential for atoms in state �1� in the propagation
direction, we find

�x�̂1�x� = − is
�kp�R − i��R + vrec���x ln �p��

�R�1 + s� + vrecs
�̂1�x� ,

�45�

where s= ��p�2 / ��c�2 is a saturation parameter. Since the
probe field picks up a Sagnac phase shift, we have

�x ln �p � − i
�

c
kp�R . �46�

With the help of this we finally arrive at

�x�̂1 = − i
kp�R

vrec
	1 − �

vrec

c

�̂1 + O„��R�2

… . �47�

As a consequence the term vrec��̂2
†�x�̂1� in Eq. �41� is of the

order of

vrec��2
†�x�1� � − ikp�R	1 − �

vrec

c

�12 �48�

and is thus negligible as compared to �2�12/2. Using similar

arguments one finds that the term vrec��̂3
†�x�̂1� in Eq. �42� is

of the order of

vrec��3
†�x�1� � − ikp�R	1 − �

vrec

c

�13. �49�

Since ideally the ground-state coherence is long-lived, one
has �13→0. Hence neglecting this term is not as straightfor-
ward as for Eq. �48�. However, adiabatically eliminating the
fast decaying optical coherence �12 in Eq. �41� and substitut-
ing the resulting expression into the equation of motion of
�13, Eq. �42�, yields a term proportional to ��c�2�2�13/2
which is much larger than kp�R�13. Thus also the term

vgr��̂3
†�x�̂1� can be safely neglected. As a result of this ap-

proximation the density-matrix equations �38�–�43� are self-
contained and local.

|1

|2

|3

Ωp Ωc

γ13

γ1 γ3

FIG. 4. � configuration in which the Rabi frequency �p drives
the 1↔2 transition and �c the 3↔2 transition �solid lines�. Radia-
tive decay from the excited level to �1� or to �3� goes as �1 or �3,
respectively �dashed lines�. The dephasing rate of the 1–3 coher-
ence is denoted by �13.
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B. Perturbation theory with respect to characteristic length

In the following we assume one- and two-photon reso-
nance, i.e., �2=�3=0, and solve the above system of equa-
tions for the coherence of the �1�↔ �2� transition in steady
state to all orders in �p. The density matrix equations
�38�–�43� can, neglecting terms proportional to �R�x, be
written in compact form as

�̇�x,t� = �M�x� + vrecD�x���x,t� , �50�

where M and D are 99 matrices. Even under stationary
conditions we are still left with a set of first-order linear
differential equations with space dependent coefficient. Thus
in order to find an analytic solution further approximations
are needed. To this end, we make use of the fact that the
off-diagonal density-matrix elements are only slowly varying
in space. Let L and T be their characteristic length and time
scales. Normalizing time and space to these units by �
=x /L and �= t /T, Eq. �50� reads

��� = 	M̃ +
vrecT

L
D̃��
� , �51�

where typical matrix elements of M̃=MT read as kpR�T,

with kpR , ��T��1, and those of D̃=DT are of order unity.
Since vrecT /L is typically small compared to unity we can
apply a perturbation expansion in this parameter.

In zeroth order we disregard the term containing D. Hence
in steady state we have to solve M�ss

�0�=0 with the constraint
������x�=n�x�, which reflects the conservation of probabil-
ity.

In first order we find

�� ss
�1��x� = �1� − vrecM�

−1D� �x��� ss
�0��x� . �52�

Here M� is a reduced 88 matrix obtained from M by in-
corporating the constraint ������x�=n�x� and �� ss

�0� is the cor-
responding zeroth-order density matrix. The explicit expres-
sions of all matrices and vectors can be obtained from Eqs.
�38�–�43� in a straightforward manner. They are, however,
lengthy and will not be given here.

C. Steady-state Maxwell-Bloch equation

To obtain the rotationally induced phase shift we expand
Eq. �52� up to first order in the angular velocity � and use
the time-independent Maxwell equation �15� in the rotating
frame,

�c�x + ikp�R��p�z� = − ig2N�21
ss . �53�

To determine �21
ss we furthermore neglected terms O��13

2 � and
�13�p

n with n�N since we assume a long-lived coherence
between the two lower states �1� and �3�. In addition to this
we made use of the EIT condition �c

2��13�1 �15� and as-
sumed for simplicity �1=�3=�.

With these assumptions we arrive at the following expres-
sions for the real and imaginary part of the susceptibility,
which determine the dispersion and absorption of the me-
dium,

����p� = − �−1�R

c
	1 + g2N

�c
2

��c
2 + ��p�2�2
 , �54�

����p� = − �−1�13

kpc
g2N

�c
2

��c
2 + ��p�2�2 �55�

with

���p� = 1 +
vrec

c
g2N

�c
4

��c
2 + ��p�2�3 . �56�

The imaginary part of the complex susceptibility ���p�=��
+i�� can be further simplified. One can easily see that the
absorption constant is bounded from above by

 = kp��!
�13

c

g2N

�c
2 =

�13

vrec
�−1. �57�

In this limiting case the following equation arises:

�z ln �p�z� = −
�13

c
tan2 � − ikp����p� . �58�

The first term in Eq. �58� describes absorption losses due to
the nonvanishing decay of the ground-state coherence, the
second term the rotationally induced or Sagnac phase. Since
the saturation of the absorption for increasing probe-field
intensities is not taken into account, the losses are slightly
overestimated.

D. Quantum limit of gyroscope sensitivity

Solving the shortened Maxwell equation �58� for the
probe field with the all-order susceptibility, Eq. �54�, we can
now determine the minimum detectable rotation rate �min of
the slow-light gyroscope. This is done by maximizing the
signal-to-noise ratio �SNR� of the interferometer with respect
to the system parameters and set it equal to unity. The rela-
tive rotational phase shift of two polaritons propagating in
opposite directions is given by

��sig =� dxkp�����,�p�x�� − ���− �,�p�x��� . �59�

Using this and Eq. �54� we find

��sig =
2��R

�c
� dx

��x�
��x� + 1/�1 + s�x��3

+
�R

�/m
� dx

1

�1 + s�x��2

��x� + 1/�1 + s�x��3 , �60�

where s�x�= ��p�x��2 /�c
2 is the saturation parameter intro-

duced before, and ��x�, defined in Eq. �29�, determines the
character of the polariton. One recognizes that the matter-
wave part of the signal phase—the second line of Eq. �60�—
decreases for increasing input probe intensity. The light
part—the first term in Eq. �60�—approaches a constant value
in this limit. At the same time the shot-noise phase error
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��noise =
1

�nD

�61�

is inversely proportional to ��p�0��exp�− LM�, where LM is
the length of the medium and the probe field’s source is
located at x=0. As a consequence of the different depen-
dence of the signal and noise terms on the probe-field
strength, the signal-to-noise ratio SNR=��sig /��noise has
the qualitative behavior shown in Fig. 5. For very large laser
fields the SNR becomes arbitrarily large, as the light contri-
bution to the Sagnac phase becomes intensity independent
and the shot-noise level decreases steadily. For small probe
intensities the SNR has a local maximum due to the satura-
tion of the matter-wave phase shift. As the matter-wave con-
tribution to the Sagnac phase is orders of magnitude larger
than the light contribution, extremely large input intensities
would be required to exceed the sensitivity at the first local
maximum. �Note that Fig. 5 is not drawn to scale.� We thus
consider only this first maximum when determining the
quantum-limited sensitivity of the slow-light gyroscope.

Although it is rather straightforward to calculate numeri-
cally, on the basis of the above given equations the minimum
detectable rotation rate, we are interested here in an analytic
estimate. For this we make some simplifying assumptions:
First of all we consider the propagation of polaritons through
a homogeneous medium. We furthermore ignore the space
dependence of the functions ��x� and s�x� in the expression
�60� for the signal phase, which amounts to replacing ��p�x��
by its input value ��p�0�����p�. As will be seen this only
slightly overestimates the saturation of the signal at the op-
timum operation point. We also ignore the saturation of the
probe-field absorption, which again merely slightly overesti-
mates the probe-field losses at the operation point. Finally
we only consider the dominant matter-wave contribution to
the signal phase. Thus we have

��sig =
�RL

�/m

�1 + s�
��1 + s�3 + 1

. �62�

In order to estimate the signal-to-noise ratio SNR
=��sig /��noise we now express the shot-noise expression

�61� in terms of the parameters � and s. The number of probe
photons at the detector can be written in terms of the probe-
field Rabi frequency at the source via

nD =
PDt

��p
=

2�0Fc

��p
	��p�0�

�dp� 
2

te−2 LM , �63�

where F is the cross section of the signal beam, t the detec-
tion time interval, and  =�13/ �vrec�� the absorption coeffi-
cient introduced before. The radiative decay rate �=�1 and
the dipole matrix element �dp� contained in the Rabi fre-
quency �p�0� are related through

� =
1

4��0
	4

3

�dp�2�p
3

�c3 
 , �64�

i.e., according to the Einstein A coefficient �28�. After a
straightforward calculation we find

nD = F�vrect�se−2a/�, �65�

where � is the density of atoms in the EIT medium, and

a �
�13LM

vrec
�66�

characterizes the absorption due to a finite lifetime of the
ground-state coherence. Since typical values of �13 are in the
kHz regime and vrec�1 cm/s, a is typically large compared
to unity for LM�10−3 cm. With the above expressions we
find for the signal-to-noise ratio

SNR =
�A

�/m
�F�vrect�1/2�

1/2s1/2�1 + s�
��1 + s�3 + 1

e−a/�. �67�

The first two factors in Eq. �67� are the signal-to-noise ratio
of a pure matter-wave gyroscope with interferometer area
A=RLM and a flux of atoms corresponding to a density of
atoms � passing through an area F with recoil velocity vrec.
In conventional atomic interferometers based on cold or ul-
tracold atoms the flux that contributes to the interference
signal of the device is rather low. It is on the order of
108 atoms/s in comparison with 1016 photons/s in a conven-
tional fiber-optics gyroscope �11�. However, in the case stud-
ied here, the flux can be at least two orders of magnitude
higher than in an atom interferometer.

The second factor can be modified by optimizing the
probe-field strength �s� and the group velocity in the medium
���. In Fig. 6 we have plotted the optimum values of s and �
derived by maximizing the signal-to-noise ratio for different
values of the loss parameter a.

One finds that in the typical parameter regime a�1 the
maximum SNR is attained for

sopt =
1

3
and �opt = 2a . �68�

Note that this approximation is still quite good even when
a=1. The optimum group velocity is given by

vgr
opt = 2�13L + vrec � 2�13LM , �69�

i.e., a maximum SNR is achieved if the velocity is chosen
such that during the propagation over the entire medium
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FIG. 5. Schematic dependence of SNR on input probe-field Rabi
frequency. The dash-dotted line indicates the contribution of the
matter-wave term, the dashed line that of the light term. The solid
line is the sum of both contributions.
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length LM, a fraction of 1 /�e of the initial polariton gets
absorbed. Setting SNR=1 we eventually obtain the mini-
mum detectable rotation rate

�min =
�/m

A

1

�F�vrect�1/2 f�a , �70�

where f �7.2 is a numerical prefactor resulting from the op-
timization of the term in the second line of Eq. �67�. Apart
from the term �a and the unimportant numerical prefactor f ,
the minimum detectable rotation rate corresponds to that of a
matter-wave interferometer with atoms propagating at recoil
velocity. The densities achievable in the present setups, e.g.,
if we consider BECs in ring trap configurations, are, how-
ever, much larger than those in typical atomic beams.

To be more precise we give an estimate for the minimum
detectable rotation rate of the slow-light gyroscope achiev-
able with current technology. To this end we consider two
state-of-the-art circular waveguides for Bose-Einstein con-
densates �18,19�. Furthermore, we assume that the atomic
density of the BECs is �=1014 cm−3 with a cross section
�smaller circle of the toroidal BEC� of F�10−2 cm2. In case
of the work of Gupta et al. �18� the diameter of the larger
circle of the toroidal waveguide is dGupta�3 mm and in the

case of Arnold et al. �19� it is dArnold�96 mm. Hence we
find in the first case the minimum detectable rotation rate to
be �min

Gupta�1.410−9 s−1 Hz−1/2 and in the latter case
�min

Arnold�1.410−12 s−1 Hz−1/2. These values should be com-
pared to the state of the art which for optical gyroscopes is
210−10 rad s−1 Hz−1/2 �29� and for matter-wave gyroscopes
610−10 rad s−1 Hz−1/2 �30�.

V. CONCLUSION

We have analyzed in detail a different type of light-
matter-wave hybrid Sagnac interferometer based on ul-
traslow light in media with electromagnetic induced trans-
parency �EIT� proposed by us in �14�. In particular the
influence of confining potentials was investigated and the
shot-noise limited sensitivity and the minimum detectable
rotation rate determined. By combining features of light and
matter-wave devices the hybrid interferometer yields a mini-
mum detectable rotation rate which is potentially better than
the currect state of the art by up to two orders of magnitude.
We have shown that as opposed to claims in earlier proposals
for slow-light gyroscopes �31�, it is not sufficient to utilize
only the dispersive properties of EIT media to achieve an
enhancement of the rotation sensitivity. It is rather necessary
to employ simultaneously coherence and momentum transfer
in the associated Raman transition. Moreover, we have
shown that the medium has to be prepared in a state in which
it does not acquire any rotational phase shift. This can be
achieved, for example, by using a superfluid BEC in a ring
trap as EIT medium. The requirement for periodic boundary
conditions reduces the potential of the hybrid interferometer
idea as compared to the statements in �14� as it is not pos-
sible to build large area interferometers under this condition
with current technology. However, the potential large flux of
the proposed slow-light interferometer leads to a substantial
reduction of the shot noise as compared to state-of-the-art
matter-wave gyroscopes and thus leads, nevertheless, to a
substantial sensitivity enhancement.
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there is only a small deviation in the optimum parameters.
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