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We investigate the process of intracavity photoassociation of Bose-Einstein-condensed atoms to form a
molecular condensate. As shown previously, this process can only be successfully described by a quantum
treatment of all the interacting fields. We extend our previous work by representing the full quantum aspects of
the problem using an extension of the positReepresentation to model non-Wiener noises. This allows the
mapping of a generalized Fokker-Planck equation with third-order derivatives onto a set of coupled stochastic
difference equations. We also investigate parameter regimes not covered previously, as well as the effects of
spontaneous dissociation of the condensed molecules.
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[. INTRODUCTION The equation of motion for the pseudoprobability distri-
bution of the system in question is not of the standard
There are now a number of dynamical situations that havé&okker-Planck form, as it contains third-order derivatives.
been investigated for dilute gas Bose-Einstein condensatédthough formal methods are known for dealing with these
(BEC) that are described incorrectly in a mean-field ap-[8], they are not easy to use except in some special cases
proach using Gross-PitaevskisPE-type equationgl]. Al-  [9,10l. An approximation that is commonly made, especially
though it is obvious by definition that a GPE-type approachn the Wigner representation, is to truncate the equation at
can predict little about the quantum statistics of a process, ifécond order; this is exactly how we proceedel7ip This
these situations it does not even make successful predictio@@proximation has been shown to be accurate for the dynam-
for the mean-field behavior. These begin with the evaporaics and quadrature variances of second-harmonic generation
tive cooling by which a BEC is produce®] and include (SHG) [11] and for calculating first-order correlation func-
molecular association of an atomic BEC using both lasetions in trapped BEQ12], although it is not accurate for the
light [3,4] and Feshbach resonand&$, as well as the pho- calculation of higher-order correlations in traveling-wave
todissociation of a molecular condensgé SHG [13] and may give misleading results for the optical
What all these works have in common is that a full quan-parametric oscillatof14-16. This truncation is usually jus-
tum treatment of all the interacting fields is still not neces-tified by claiming that the coefficients of the third-order
sary. For examp|e, in evapora’[ive Coo|ing, the radio fre.termS are smaller than the other coefficients in the equation,
quency scalpel that is used to remove the hotter atoms neéhich is certainly the case in our present paper. However,
not be treated quantum mechanically to obtain good result$inless we know the exact solutions, obtained by including
In the treatments of photoassociation,r&lcet al. [3] use a  the third-order terms, this remains an uncontrolled approxi-
multimode approach but in a semiclassical, linearized waymation. In this paper, we extend the positReepresentation
Hope and Olserj4] treat the laser field classically while to include third-order noises, using methods described else-
Holland et al.[5] treat the molecules classically. In the work Where[17—20. This allows us to examine the validity of our
on photodissociation, a process that will not begin in a meanPrevious truncation.
field description, Poulsen and Noer [6] treat the molecular
fleld' as infinite, analogoysly to t.he undep!eteq pump approxi- Il THE SYSTEM
mation of quantum optics. This approximation necessarily
means that any results are at best valid for short times only. The system we consider is with a trapped atomic conden-
In a previous paper, we have shown that there is a simplsate held in an electromagnetic cavigee Fig. 1 Our for-
dynamical process for which a quantum treatment of all the

interacting fields is necessary; namely, the intracavity coher- %
ent photoassociation of an atomic condensate to form a mo- e A

lecular condensatg7]. For this system, we have demon- é( © )
strated that there are parameter regimes in which the &
guantum solutions, obtained using positRaepresentation Y

equations truncated at second order, give qualitatively differ-

ent results to the semiclassical mean-field equations. In this

paper, we extend our analysis in two ways. We map the full FIG. 1. Schematic of the condensate, represented by the opera-
problem, without truncation, onto stochastic difference equatorsa andb, inside the electromagnetic cavity with field operagor
tions, and we include a phenomenological treatment of sporFhe classical cavity pumping is representedelgnd the cavity loss
taneous dissociation of the molecules. rate is represented by.
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malism is applicable to both microwave and optical transi- The interaction Hamiltonian for this system in the rotating
tions. The empty cavity is resonant at the frequency of thevave approximation is

transition between atomic and molecular states of the con- itig

densate. Here, we make the approximation that all three 3/ T[af 2he —a2hte]+ A y.al 2a2+h y,b' 2h2

fields may be represented as single modes, which is reason-

able as long as we are considering short interaction times oAb e $2
where the kinetic energy may be ignored. This approxima- tih(ee'—e*e)+1"e+ e, @

tion has previously been shown to be valid in an analysis ofyhere g represents the effective coupling strength between
molecular formation using Bose-stimulated Raman adlabatli:.ne condensates and the electromagnetic fel@b) is the

passagg?21], where a single-mode approach was found tonninijation operator for the atomienoleculay condensate
capture the relevant physics over short-time scales. As we

have also found this approach to be qualitatively accurate fo
traveling-wave superchemistry over short-time scales, an
the most interesting physics happens over the first few cavit i : ;

lifetimes, we feel thgaf th%s approi)(Fi)mation is justified here. We umping O.f the cavity, andl is a bath operator for the elec-
also ignore the vibrational and rotational levels of the mo-tromagnetic field.
lecular state, as the energy spacing between these is more
than the laser linewidth. We also make the normal zero-
temperature approximation of quantum optics, as conden- Following the standard method22], we find a partial
sates exist at temperatures of the order of nanokelvins.  differential equation for thé distribution of this system,

nde is the annihilation operator for the intracavity electro-
agnetic field. They; represent the self-interaction terms
etween the atoms or moleculesrepresents the classical

Ill. GENERALIZED POSITIVE P EQUATIONS
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wherey represents the loss rate of the optical field from the
cavity. Aat=
As this equation contains mixed third-order derivatives, it
is not amenable to standard phase-space technjg@gsor \/a
to the methods used in Ref®,10]. An alternative approach + — BN (pting) +V2ixaa' %7
based on techniques of the quantum field theory was intro- 2
duced in Refs[17-2(. Following these methods, we may
map Eg.(2) onto the following set of coupled stochastic
differenceequations in an extended positireepresentation,
[with a(t+ At)=a(t) + Aa(t), and so on for the other vari-
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9 We also note here that the above equations are by no
€ — ye*+§a2,8’f+ Voa(m,—in,) means a unique mapping of the third-order equation for the
pseudoprobability distribution. Although there may be many
ways to factorize the diffusion matrix of a normal Fokker-
At, 3) Planck equation, there is an even larger degree of freedom in
representing the third-order terms. Essentially, following the
methods of Ref[20], we find that the second-order noise
whereu is a free parametefsee below. These equations terms proportional tap; and 75 in the truncated equations
imply an equal discretization of the time axis, willt being  used in Ref[7] are replaced by
the step of the time grid. It should be noted here that there is

Aef=

u
+E(§3+i§4)

no limit of these equations as stochastic differential equa- Aa=[ - -+pyt+trp*+..-]At,
tions[20], although this does not prevent their being solved
numerically. In the above, all noise sources are real and have Ae=[---+qp+up*+---]At, (5)

the properties
E— _ where » and %’ are independent complex Gaussian noise

(=0, 7()p(t") =S S(t—1), sources with the properties
§i()=0, &(&(t")=ojo(t—t"). (4) POt =75"(t) 7' (t')=0,
The & function is to be understood in accordance with the _
time discretizationg(t—t") = &, /At, wheredy. is the Kro- (O p* () =75"(1)p *({t)=58(t—t"). (6)

necker symbol. As in the usual positie representation,

there is a correspondence between theumber variables This means thaty= (7, +1i 773)/\/5, cf. Ref.[7], while '
[a,a",8,8,e,e'] and the operatorfa,a’,b,b',e,e'], al-  =(&+i&,)/\2 is needed for the third-order noises. Setting
though a variable such as' is not complex conjugate ta n' =0 is equivalent to truncation to second order as in Ref.
(except in the mean over a large number of stochastic traje¢7]. The quantitie,r,q, andu obey the relations

tories, due to the independence of the noise sources. We

should note here that the above equations, although they qr=ga'B,

would exhibit a formal similarity to those used to describe

traveling-wave SHG with an additiongf®) nonlinearity[ 23] 2pr=gB(et+ 7' Iu). 7)

if the &; were deleted, exhibit one important difference. In-

stead of a constan, the effectivey(® interaction used in At first glance, there seems to be no connection between

[23], we now have the field dependegé. Another differ-  Eqg. (2) for the positiveP distribution and Egs(5). Consider,
ence in our present case would be that we now have a terfmowever, the characteristic function of the incremefusth
(9/2)a' 2B in the equation for the electromagnetic field.  all powers ofAt shown explicitly

P(Lnile)= eXP( Atzt: {Za(O[P) 7(t) +r(t) n* () ]+ LD a(t) n(t) +u(t) 77’*('[)]}) , 8

where the averaging is over the statistics of #haoises,

L Lo
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t

. [j dZn'(t)e*Atlﬂ'(t)let (10

™ It is now evident that there is a one-to-one correspondence
between terms witn derivatives in Eq.2) and nth order
cumulantsof the increments in Eq945), n=2,3. With the
exception of Gaussian statistics, there do not exist random
variables with finite sets of nonzero cumulants. Luckily, to
match Egs(2) and(5), we only need cumulants of the in-
Sincep,q,r, andu do not depend om, in each time slice in  crements themselves. Cumulants mixing increments with
Eq. (8), we may take a simple Gaussian integral ow€t).  their complex conjugates are inessential for this matching,
Using Eg.(7) to simplify the result, we recover a Gaussianand it is easily verified that the set of these cumulants is
integral overzn’(t) per time slice. On taking these integrals indeed infinite. We should note here that to specify a finite
and once more using E¢7), we arrive at subset of nonzero cumulants would require a doubling of the
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phase space if we were working with a space of normal _ x10°
dimensions such as in the Wigner representation, for ex-
ample[19]. As we are using the positivie-representation 9
here, we are already in a doubled phase space.

The freedom of choice of the inessential cumulants mani-
fests itself as freedom of choice of the paramepergr, and 7
u. Equations(3) correspond tdwith u remaining a free pa-
rametey

number
(3,
T
\

p=\g/2(e"+ 7' Iu), (12)
r=pg/2, (12) 3t :

2
q= al 29, (13 PR molecules

but there are certainly many other possible choices. For the o S -
conjugated equations, everything is conjugated in the posi- © 1 2 q1 4 5 6
tive P representation sense. ty)

. . ) — T
B I/nA ?,fr §|mulat|ons,ﬁtheu S hwere cfllosen a;u u h FIG. 2. Occupation numbers of the atomic and molecular con-
= 1/At™. The powers oidt are then evenly spread over the densates as a function of time according to 0° quantum trajec-

third-order contributions in Eq$3), which all scale as.itl’f‘. tories. The parameters ag=10"°, |¢?=1CF, y,,=10"° and
By also rescaling, we could reduce this tat", which is |a(0)|2=1CP. All quantities plotted in this and the following graphs
the best one can do, but we preferred to preserve the convegre dimensionsless.
tional scaling of the second-order noises. The scaling of the
third-order noises is the formal reason why E@.have no In Fig. 2, we show the time development of the atomic
limit as stochastic differential equations as—0 [20]. and molecular fields as the cavity pumping is turned on, for
However, the absence of a continuous limit is not a problemhe parameterg=10°,|€e|?=10, x,,=10°, and|a(0)|?
in practice. As these phase-space methods are generally ordy10°, which are all scaled in terms of the cavity loss rate.
used when analytical methods are difficult, the equations wilWe have taken the means ovex 30° stochastic trajectories,
almost always be solved numerically by computer. In thiswhich was more than sufficient to ensure excellent conver-
case,At always remains nonzero and there is no problengence. We can obtain some insight into the behavior exhib-
(except for the usual ones when integrating positRe ited here when we examine the dynamics of the intracavity
equations electromagnetic field, as shown in REf). We find an initial
build up of intensity in the cavity, with this field also becom-
V. RESULTS ing oscillatory and eventually almost vanishing completely.
As the cavity continues to be pumped at the same rate, what
We have solved Ed3) numerically for a range of param- we see is that it has become opaque. That is, a photon block-
eters and found behavior of the mean fields that is strikinglyade effect is operating®5,26], as seen previously in systems
different from that found in the usual mean-field approxima-that develop an effective giant® nonlinearity. The mean
tion, as well as regimes where the mean-field approach ibehavior of these three fields is identical to that found in
valid. Unlike many situations in quantum optics or in the Ref.[7].
study of condensates, the stochasticity of the problem may For comparison, we showed the solutions of E).with
be important even when we do not wish to consider quantunthe noise terms removed in Ré¢f]. The disagreement be-
statistical properties. tween quantum and semiclassical solutions is even more
In our simulations, we begin with an atomic condensatestriking than that previously found for pure traveling-wave
inside an optical cavity that begins to be pumped-ad. SHG[11]. One way of explaining the photon blockade effect
Initially, neither molecules nor electromagnetic field areis by considering that the interaction detunes the cavity. The
present, with the atomic field being treated as initially in alinearized equation for the electromagnetic field contains a
coherent state. We present the results here of numerical inerm (g/2)a" 2B, which will have some imaginary compo-
vestigations of two different regimes. In what we may con-nent due to the self-interaction terms of the atomic and mo-
sider the strong-interaction regime, the dynamics always execular fields. However, this term by itself cannot cause the
hibits short-time oscillations and photon blockade. In theblockade. What is needed is noise. In this respect, it is inter-
weak-interaction regime, which may be reached by decreassting to note that solution of the truncated Wigner equations
ing the strength ofj or the number of atoms, the solutions for this system gives the same results as the posRigelu-
approach those found by treating all fields semiclassicallytions. This indicates that the noise required need not be
The solutions for atom and molecule number are then remideeply quantum, as the truncated Wigner is equivalent to the
niscent of those found in superchemisf4] for traveling-  semiclassical theory of stochastic electrodynarh®.
wave photoassociation or in traveling-wave second-harmonic In what we call the weak-interaction regime, obtained via
generation 11]. either a weaker-coupling constant or a smaller number of
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FIG. 3. Occupation numbers of the atomic and molecular con- FIG. 4. Occupation numbers of the atomic and molecular con-
densates calculated quantum mechanically in the weak-interactioensates calculated quantum mechanically in the strong-interaction
regime, with parameters as in Fig. 2, but wji(0)|?=10°. The regime, with parameters as in Fig. 2, but wifg=0.1y, for 10*
number of trajectories was>210*. trajectories.

condensed atoms, the quantum solutions and the semiclassally reasonable choice of spontaneous dissociation rate.
cal solutions become indistinguishable. The atomic and mowhat we see is that the behavior has changed, with the atom
lecular numbers undergo giant oscillations reminiscent ohumber undergoing an oscillatory decrease, while the mol-
traveling-wave second-harmonic generafibh| or semiclas-  ecule number undergoes an oscillatory increase. The intrac-
sical BEC superchemistiy24] and the optical field attains a avity light field starts to revive as the atom number goes
steady value as shown in Rdf7]. The dynamics of the down, with the whole dynamics eventually becoming closer
atomic and molecular condensates are as in Fig. 3, beginning that of the weak-interaction regime. This is to be expected,
with 10° condensed atoms. All other parameters are as in thas we have less interacting matter inside the cavity as the
strong-interaction regime. This is consistent with our de-molecules are damped. However, to develop this picture any
scribing the blockade effect as being due to the noise terms$urther would begin to exceed the limits of our single-mode-
as the second-order noise in the equations for the electraype approach. What is interesting is that we can see, by
magnetic field is proportional to the amplitude of the atomiccomparing Fig. 4 with Fig. 5, that the semiclassical predic-
field, as can be seen from E@®). tions are still qualitatively wrong. The semiclassical light
field again rises monotonically to its steady state value, so

V. SPONTANEOUS MOLECULAR DISSOCIATION

One of the approximations made in the previous waik 10
and so far in this paper, is that we are considering times ove
which there will not be significant spontaneous dissociation
of the excited molecules. Hence, we have so far ignored this  8r
factor in the dynamics. We will now relax this assumption by
adding a phenomenological Born-Markovian damping term
to the Hamiltonian for the molecular field, 6r

or

number
(4]
T

Hspon=T§b+Tb". (14) molecles
In the normal manner, this results in loss terms,8 and
— v,8" being added to the equations fBrand 8. In many
situations, dissipation will act to destroy quantum effects, so 2
it is also of interest to see if the discrepancies between the
full and semiclassical solutions remain so pronounced with
molecular losses included. 0
In Fig. 4, we show the positive representation result for

parameters as in the strong-interaction regime of Fig. 2, but
with molecular loss ratey,=0.1y. As optical cavity loss FIG. 5. Occupation numbers of the atomic and molecular con-
rates are generally of the order of megahertz, this is a physdensates as for Fig. 4, but calculated semiclassically.
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that the differences should again be easily experimentally 20

detectable. 18

VI. THIRD-ORDER EFFECTS AND QUANTUM 16
STATISTICS 1

An interesting question is, what effect does the third-order 12
noise have on this system? The short answer is that we wer—;,
not able to detect any difference between the full and theS 107
truncated calculations for the mean fields, the variances o g
the intensities, the first- and second-order coherence func
tions for the three fields and even cumulants up to sixth order  ©
[8] in the field amplitudes. Interestingly enough, a Wigner ,
representation truncated to second order also gives essel
tially the same results for all these quantities. 2

Upon examination of Eq(3) we see that the third-order 0
terms (represented by thé;) are needed for spontaneous 0
breakup of a molecule into two condensed atoms and one
photon. We therefore investigated the sixth-order field cumu- g, 6. TheX quadrature variances of the atomic field in the

lant, strong-interaction regime, with and without molecular loss rate of

I o A o vp=0.1y. These results and those of Fig. 7 were calculated using

((a"%a%e’e))=(a' %a%e’e)— 12(a'a)?(e'e) + 8(a'a)((e) 5X 10° trajectories. The normalized number variance for this field
is identical on this scale. The dashed line represents the standard

x(a'ae’)+(ef)(a'ae)) +4((e'e)(a’a)? quantum limit.

—(a'ac’)(a'ac)—(a'a)(a'ae'e)) On the other hand, in Fig. 7 we show the atomic intensity
2R o At A b oro Atn and X, quadrature variances in the weak-interaction regime.

+2(a' “a’)(e’)(e)—(a' “a’)(e'e) These are very reminiscent of the variances predicted in

(AT 23%8)(a")— (AT 2A2"(3), (15) traveling-wave SHG with an addeg® nonlinearity[23,2§.

In that case, the mean intensities were also described well by
where the terms that vanish for our system are not explicitlysfOIUtlon of the mean-ﬁelq equa.t|ons..We see that the §t0m|c
field develops excess noise as it begins to grow following an

included. almost complete conversion to molecules, due to the semi-
What we found was that, within the parameter regime P !

where the physical approximations we have made retail§pontaneous nature of this process. The molecular field also

some validity, there is no observable difference in the expec?Xh'b'tS statistics reminiscent of traveling-wave SHG. Inter-

tation value of this cumulant, whether calculated with orestingly enough, it is in this regime that the stochastic inte-
without third-order noises. Where there is a difference is
when we turn off the pump and begin with only condensed
molecules present. In this case, there is an effect present, bt
it does not manifest itself until at least twenty cavity life- 1
times have passed, which is well beyond the region where
our single-mode-type approach can be considered reliable. 4l

Examining the quantum statistics may, however, give
some insight into the behavior of the mean fields. In the §
strong-interaction regime, we find almost no suppression o1& 06
guantum noise when we consider the quadrature and numbe
variances of the three fields. In fact, the three fields almost , ,|
always exhibit excess noise, which supports our claim that
the detuning effect is noise driven. As can be seen in Fig. 6,
which shows the time development of th¢ quadrature 02
variances for the atomic field with and without spontaneous
molecular dissociation, there is a very small amount of noise . A s . . .
supression at some times. The molecular dissociation actst  © 0.5 1 15 2 25 3 35
destroy even this small amount. Over the time scale shown, 1)

the normalized intensity variance, or Fano factor, of the kG, 7. The atomic field quadrature and number variances in the
atomic field is identical to the quadrature variance. This iSyeak-interaction regime, with and without molecular losses. The
the quadrature of least noise, with all the other quantum corcontinuous and the dotted lines aréx,) andV(N,), respectively,
relations we investigated in this regime being well above theawithout molecular losses. The dashed line and the dash-dotted line
standard quantum limit. are the same variances with molecular loss nate 0.1y.

1.2 : . . . — ;
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gration was least stable, diverging shortly after the maximunof the approximations made in that work. We have seen from
time shown in Fig. 3. The modeling of the third-order termsnumerical investigations that the quantum solutions become
did not make this much worse. In all results of stochasticcloser to the semiclassical solutions as the number of atoms
integration that we show here, the sampling errors were sor the coupling decrease. This is a sign of the nonlinearity of
small over the ensembles that error bars would be barelthe quantum dynamics, where noise-driven correlations are
visible. In the weak-interaction regime, when the divergenceébuilt up between the three fields in a manner that has no
appeared, it appeared very rapidly, hinting at a possible exsemiclassical mean-field description.

ponential divergence in phase space as found with integra- We have also shown how the third-order terms that had
tion of the one-dimensional BEC equations of Ra2]. As  been dropped from the equations of motion of the earlier
is common with the positiv® representation, the addition of work can be modeled. As these terms were found to have no
the damping term acted to stabilize the numerics, allowingioticeable effect within the limits of our model, the trunca-
integration over a time period approximately 15% greatettion used in the previous work has been shown to be justi-
before divergences occurred. The only quantum statisticdied, hence, removing a previously uncontrolled approxima-
properties that we were not able to calculate accuratelyion. In regimes where the quantum and semiclassical
were the variances of the electromagnetic field in the strongredictions were earlier shown to be different, we have dem-
interaction regime. Even after 4Qrajectories, these were onstrated that the inclusion of spontaneous molecular disso-
still so noisy that it was difficult to predict quantative prop- ciation still leaves the quantum solutions qualitatively differ-
erties. What we can say is that they did not exhibit noiseent. The experimental signature of this difference can be
suppression. measured in a very simple manner; with photodetection of

the light emitted by the optical cavity.
VII. CONCLUSION
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