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Generalized positiveP representation with third-order noise in intracavity coherent
photoassociation of Bose-Einstein condensates
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We investigate the process of intracavity photoassociation of Bose-Einstein-condensed atoms to form a
molecular condensate. As shown previously, this process can only be successfully described by a quantum
treatment of all the interacting fields. We extend our previous work by representing the full quantum aspects of
the problem using an extension of the positiveP representation to model non-Wiener noises. This allows the
mapping of a generalized Fokker-Planck equation with third-order derivatives onto a set of coupled stochastic
difference equations. We also investigate parameter regimes not covered previously, as well as the effects of
spontaneous dissociation of the condensed molecules.
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I. INTRODUCTION

There are now a number of dynamical situations that h
been investigated for dilute gas Bose-Einstein condens
~BEC! that are described incorrectly in a mean-field a
proach using Gross-Pitaevskii~GPE!-type equations@1#. Al-
though it is obvious by definition that a GPE-type approa
can predict little about the quantum statistics of a process
these situations it does not even make successful predic
for the mean-field behavior. These begin with the evapo
tive cooling by which a BEC is produced@2# and include
molecular association of an atomic BEC using both la
light @3,4# and Feshbach resonances@5#, as well as the pho-
todissociation of a molecular condensate@6#.

What all these works have in common is that a full qua
tum treatment of all the interacting fields is still not nece
sary. For example, in evaporative cooling, the radio f
quency scalpel that is used to remove the hotter atoms n
not be treated quantum mechanically to obtain good res
In the treatments of photoassociation, Go´ral et al. @3# use a
multimode approach but in a semiclassical, linearized w
Hope and Olsen@4# treat the laser field classically whil
Hollandet al. @5# treat the molecules classically. In the wo
on photodissociation, a process that will not begin in a me
field description, Poulsen and Mo” lmer @6# treat the molecular
field as infinite, analogously to the undepleted pump appro
mation of quantum optics. This approximation necessa
means that any results are at best valid for short times o

In a previous paper, we have shown that there is a sim
dynamical process for which a quantum treatment of all
interacting fields is necessary; namely, the intracavity coh
ent photoassociation of an atomic condensate to form a
lecular condensate@7#. For this system, we have demo
strated that there are parameter regimes in which
quantum solutions, obtained using positiveP representation
equations truncated at second order, give qualitatively dif
ent results to the semiclassical mean-field equations. In
paper, we extend our analysis in two ways. We map the
problem, without truncation, onto stochastic difference eq
tions, and we include a phenomenological treatment of sp
taneous dissociation of the molecules.
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The equation of motion for the pseudoprobability dist
bution of the system in question is not of the standa
Fokker-Planck form, as it contains third-order derivative
Although formal methods are known for dealing with the
@8#, they are not easy to use except in some special c
@9,10#. An approximation that is commonly made, especia
in the Wigner representation, is to truncate the equation
second order; this is exactly how we proceeded in@7#. This
approximation has been shown to be accurate for the dyn
ics and quadrature variances of second-harmonic genera
~SHG! @11# and for calculating first-order correlation func
tions in trapped BEC@12#, although it is not accurate for th
calculation of higher-order correlations in traveling-wa
SHG @13# and may give misleading results for the optic
parametric oscillator@14–16#. This truncation is usually jus-
tified by claiming that the coefficients of the third-ord
terms are smaller than the other coefficients in the equat
which is certainly the case in our present paper. Howe
unless we know the exact solutions, obtained by includ
the third-order terms, this remains an uncontrolled appro
mation. In this paper, we extend the positiveP representation
to include third-order noises, using methods described e
where@17–20#. This allows us to examine the validity of ou
previous truncation.

II. THE SYSTEM

The system we consider is with a trapped atomic cond
sate held in an electromagnetic cavity~see Fig. 1!. Our for-

FIG. 1. Schematic of the condensate, represented by the op

tors â andb̂, inside the electromagnetic cavity with field operatorê.
The classical cavity pumping is represented bye and the cavity loss
rate is represented byg.
©2001 The American Physical Society01-1
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malism is applicable to both microwave and optical tran
tions. The empty cavity is resonant at the frequency of
transition between atomic and molecular states of the c
densate. Here, we make the approximation that all th
fields may be represented as single modes, which is rea
able as long as we are considering short interaction tim
where the kinetic energy may be ignored. This approxim
tion has previously been shown to be valid in an analysis
molecular formation using Bose-stimulated Raman adiab
passage@21#, where a single-mode approach was found
capture the relevant physics over short-time scales. As
have also found this approach to be qualitatively accurate
traveling-wave superchemistry over short-time scales,
the most interesting physics happens over the first few ca
lifetimes, we feel that this approximation is justified here. W
also ignore the vibrational and rotational levels of the m
lecular state, as the energy spacing between these is
than the laser linewidth. We also make the normal ze
temperature approximation of quantum optics, as cond
sates exist at temperatures of the order of nanokelvins.
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The interaction Hamiltonian for this system in the rotati
wave approximation is

H5
i\g

2
@ â† 2b̂ê†2â2b̂†ê#1\xaâ† 2â21\xbb̂† 2b̂2

1 i\~eê†2e* ê!1G†ê1Gê†, ~1!

whereg represents the effective coupling strength betwe
the condensates and the electromagnetic field,â (b̂) is the
annihilation operator for the atomic~molecular! condensate
and ê is the annihilation operator for the intracavity electr
magnetic field. Thex j represent the self-interaction term
between the atoms or molecules,e represents the classica
pumping of the cavity, andG is a bath operator for the elec
tromagnetic field.

III. GENERALIZED POSITIVE P EQUATIONS

Following the standard methods@22#, we find a partial
differential equation for theP distribution of this system,
]P

]t
5H ]

]a
@2ge* a* b12ixaa* a2#1

]

]a*
@2geab* 22ixaa* 2a#1

]

]b Fg

2
a2e12ixbb* b2G

1
]

]b*
Fg

2
a* 2e* 22ixbb* 2bG1

]

]e F2
g

2
a* 2b1ge2eG1

]

]e*
F2

g

2
a2b* 1ge* 2e* G

1
1

2 F ]2

]a2
~gbe* 22ixaa2!1

]2

]a* 2
~gb* e12ixaa* 2!1

]2

]b2
~22ixbb2!1

]2

]b* 2
~2ixbb* 2!

1
]2

]a]e
~2ga* b!1

]2

]a* ]e*
~2gab* !G2

1

6 F ]3

]a2]e
~3gb!1

]3

]a* 2]e*
~3gb* !G J P~a,b,e,t !, ~2!
whereg represents the loss rate of the optical field from
cavity.

As this equation contains mixed third-order derivatives
is not amenable to standard phase-space techniques@22#, nor
to the methods used in Refs.@9,10#. An alternative approach
based on techniques of the quantum field theory was in
duced in Refs.@17–20#. Following these methods, we ma
map Eq. ~2! onto the following set of coupled stochast
differenceequations in an extended positiveP representation,
@with a(t1Dt)5a(t)1Da(t), and so on for the other vari
ables#

Da5F22ixaa†a21ge†a†b1
Ag

2 S e†1
j11 i j2

A2u
D

3~h11 ih3!1
Ag

2
b~h12 ih3!1A22ixaa2h5GDt,
e

t

o-

Da†5F2ixaa† 2a1geab†1
Ag

2 S e1
j32 i j4

A2u
D ~h22 ih4!

1
Ag

2
b†~h21 ih4!1A2ixaa† 2h6GDt,

Db5F22ixbb2b†2
g

2
a2e1A22ixbb2h7GDt,

Db†5F2ixbb† 2b2
g

2
a† 2e†1A2ixbb† 2h8GDt,

De5F e2ge1
g

2
a† 2b1Aga†~h11 ih3!

1
u

A2
~j12 i j2!GDt,
1-2
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GENERALIZED POSITIVEP REPRESENTATION WITH . . . PHYSICAL REVIEW A 64 063601
De†5F e* 2ge†1
g

2
a2b†1Aga~h22 ih4!

1
u

A2
~j31 i j4!GDt, ~3!

where u is a free parameter~see below!. These equations
imply an equal discretization of the time axis, withDt being
the step of the time grid. It should be noted here that ther
no limit of these equations as stochastic differential eq
tions @20#, although this does not prevent their being solv
numerically. In the above, all noise sources are real and h
the properties

h i~ t !50, h j~ t !hk~ t8!5d jkd~ t2t8!,

j i~ t !50, j j~ t !jk~ t8!5d jkd~ t2t8!. ~4!

The d function is to be understood in accordance with t
time discretization,d(t2t8)5d tt8 /Dt, whered tt8 is the Kro-
necker symbol. As in the usual positiveP representation,
there is a correspondence between thec-number variables

@a,a†,b,b†,e,e†# and the operators@ â,â†,b̂,b̂†,ê,ê†#, al-
though a variable such asa† is not complex conjugate toa
~except in the mean over a large number of stochastic tra
tories!, due to the independence of the noise sources.
should note here that the above equations, although
would exhibit a formal similarity to those used to descri
traveling-wave SHG with an additionalx (3) nonlinearity@23#
if the j j were deleted, exhibit one important difference. I
stead of a constantk, the effectivex (2) interaction used in
@23#, we now have the field dependentge. Another differ-
ence in our present case would be that we now have a
(g/2)a† 2b in the equation for the electromagnetic field.
n
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We also note here that the above equations are by
means a unique mapping of the third-order equation for
pseudoprobability distribution. Although there may be ma
ways to factorize the diffusion matrix of a normal Fokke
Planck equation, there is an even larger degree of freedo
representing the third-order terms. Essentially, following
methods of Ref.@20#, we find that the second-order nois
terms proportional toh1 and h3 in the truncated equation
used in Ref.@7# are replaced by

Da5@•••1ph1rh* 1•••#Dt,

De5@•••1qh1uh8*1•••#Dt, ~5!

where h and h8 are independent complex Gaussian no
sources with the properties

h~ t !h~ t8!5h8~ t !h8~ t8!50,

h~ t !h* ~ t8!5h8~ t !h8* ~ t8!5d~ t2t8!. ~6!

This means thath5(h11 ih3)/A2, cf. Ref. @7#, while h8
5(j11 i j2)/A2 is needed for the third-order noises. Setti
h850 is equivalent to truncation to second order as in R
@7#. The quantitiesp,r ,q, andu obey the relations

qr5ga†b,

2pr5gb~e†1h8/u!. ~7!

At first glance, there seems to be no connection betw
Eq. ~2! for the positiveP distribution and Eqs.~5!. Consider,
however, the characteristic function of the increments,~with
all powers ofDt shown explicitly!
F~za ,ze!5expS Dt(
t

$za~ t !@p~ t !h~ t !1r ~ t !h* ~ t !#1ze~ t !@q~ t !h~ t !1u~ t !h8* ~ t !#% D , ~8!
nce

om
to
-
ith

ng,
is

ite
the
where the averaging is over the statistics of theh noises,

@•••#5)
t

F E d2h8~ t !e2Dtuh8(t)u2Dt

p

3E d2h~ t !e2Dtuh(t)u2Dt

p
G @•••#. ~9!

Sincep,q,r , andu do not depend onh, in each time slice in
Eq. ~8!, we may take a simple Gaussian integral overh(t).
Using Eq.~7! to simplify the result, we recover a Gaussia
integral overh8(t) per time slice. On taking these integra
and once more using Eq.~7!, we arrive at
F~za ,ze!5expFDt(
t

S za
2

2
gbe†1zazegba†1

za
2

2
zegb D G .

~10!

It is now evident that there is a one-to-one corresponde
between terms withn derivatives in Eq.~2! and nth order
cumulantsof the increments in Eqs.~5!, n52,3. With the
exception of Gaussian statistics, there do not exist rand
variables with finite sets of nonzero cumulants. Luckily,
match Eqs.~2! and ~5!, we only need cumulants of the in
crements themselves. Cumulants mixing increments w
their complex conjugates are inessential for this matchi
and it is easily verified that the set of these cumulants
indeed infinite. We should note here that to specify a fin
subset of nonzero cumulants would require a doubling of
1-3
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M. K. OLSEN, L. I. PLIMAK, AND M. J. COLLETT PHYSICAL REVIEW A 64 063601
phase space if we were working with a space of norm
dimensions such as in the Wigner representation, for
ample @19#. As we are using the positive-P representation
here, we are already in a doubled phase space.

The freedom of choice of the inessential cumulants ma
fests itself as freedom of choice of the parametersp,q,r , and
u. Equations~3! correspond to~with u remaining a free pa-
rameter!

p5Ag/2~e†1h8/u!, ~11!

r 5bAg/2, ~12!

q5a†A2g, ~13!

but there are certainly many other possible choices. For
conjugated equations, everything is conjugated in the p
tive P representation sense.

In our simulations, theu’s were chosen asu5u†

51/Dt1/4. The powers ofDt are then evenly spread over th
third-order contributions in Eqs.~3!, which all scale asDt1/4.
By also rescalingr, we could reduce this toDt1/3, which is
the best one can do, but we preferred to preserve the con
tional scaling of the second-order noises. The scaling of
third-order noises is the formal reason why Eqs.~3! have no
limit as stochastic differential equations asDt→0 @20#.
However, the absence of a continuous limit is not a probl
in practice. As these phase-space methods are generally
used when analytical methods are difficult, the equations
almost always be solved numerically by computer. In t
case,Dt always remains nonzero and there is no probl
~except for the usual ones when integrating positiveP
equations!.

IV. RESULTS

We have solved Eq.~3! numerically for a range of param
eters and found behavior of the mean fields that is strikin
different from that found in the usual mean-field approxim
tion, as well as regimes where the mean-field approac
valid. Unlike many situations in quantum optics or in th
study of condensates, the stochasticity of the problem m
be important even when we do not wish to consider quan
statistical properties.

In our simulations, we begin with an atomic condens
inside an optical cavity that begins to be pumped att50.
Initially, neither molecules nor electromagnetic field a
present, with the atomic field being treated as initially in
coherent state. We present the results here of numerica
vestigations of two different regimes. In what we may co
sider the strong-interaction regime, the dynamics always
hibits short-time oscillations and photon blockade. In t
weak-interaction regime, which may be reached by decre
ing the strength ofg or the number of atoms, the solution
approach those found by treating all fields semiclassica
The solutions for atom and molecule number are then re
niscent of those found in superchemistry@24# for traveling-
wave photoassociation or in traveling-wave second-harmo
generation@11#.
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In Fig. 2, we show the time development of the atom
and molecular fields as the cavity pumping is turned on,
the parametersg51025,ueu25106,xa,b51029, and ua(0)u2
5106, which are all scaled in terms of the cavity loss ra
We have taken the means over 33105 stochastic trajectories
which was more than sufficient to ensure excellent conv
gence. We can obtain some insight into the behavior exh
ited here when we examine the dynamics of the intraca
electromagnetic field, as shown in Ref.@7#. We find an initial
build up of intensity in the cavity, with this field also becom
ing oscillatory and eventually almost vanishing complete
As the cavity continues to be pumped at the same rate, w
we see is that it has become opaque. That is, a photon bl
ade effect is operating@25,26#, as seen previously in system
that develop an effective giantx (3) nonlinearity. The mean
behavior of these three fields is identical to that found
Ref. @7#.

For comparison, we showed the solutions of Eq.~3! with
the noise terms removed in Ref.@7#. The disagreement be
tween quantum and semiclassical solutions is even m
striking than that previously found for pure traveling-wa
SHG @11#. One way of explaining the photon blockade effe
is by considering that the interaction detunes the cavity. T
linearized equation for the electromagnetic field contain
term (g/2)a† 2b, which will have some imaginary compo
nent due to the self-interaction terms of the atomic and m
lecular fields. However, this term by itself cannot cause
blockade. What is needed is noise. In this respect, it is in
esting to note that solution of the truncated Wigner equati
for this system gives the same results as the positiveP solu-
tions. This indicates that the noise required need not
deeply quantum, as the truncated Wigner is equivalent to
semiclassical theory of stochastic electrodynamics@27#.

In what we call the weak-interaction regime, obtained v
either a weaker-coupling constant or a smaller number

FIG. 2. Occupation numbers of the atomic and molecular c
densates as a function of time according to 33105 quantum trajec-
tories. The parameters areg51025, ueu25106, xa,b51029, and
ua(0)u25106. All quantities plotted in this and the following graph
are dimensionsless.
1-4
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GENERALIZED POSITIVEP REPRESENTATION WITH . . . PHYSICAL REVIEW A 64 063601
condensed atoms, the quantum solutions and the semicl
cal solutions become indistinguishable. The atomic and m
lecular numbers undergo giant oscillations reminiscent
traveling-wave second-harmonic generation@11# or semiclas-
sical BEC superchemistry@24# and the optical field attains
steady value as shown in Ref.@7#. The dynamics of the
atomic and molecular condensates are as in Fig. 3, begin
with 105 condensed atoms. All other parameters are as in
strong-interaction regime. This is consistent with our d
scribing the blockade effect as being due to the noise ter
as the second-order noise in the equations for the elec
magnetic field is proportional to the amplitude of the atom
field, as can be seen from Eq.~3!.

V. SPONTANEOUS MOLECULAR DISSOCIATION

One of the approximations made in the previous work@7#,
and so far in this paper, is that we are considering times o
which there will not be significant spontaneous dissociat
of the excited molecules. Hence, we have so far ignored
factor in the dynamics. We will now relax this assumption
adding a phenomenological Born-Markovian damping te
to the Hamiltonian for the molecular field,

Hspon5Gb
†b̂1Gbb̂†. ~14!

In the normal manner, this results in loss terms2gbb and
2gbb† being added to the equations forb andb†. In many
situations, dissipation will act to destroy quantum effects,
it is also of interest to see if the discrepancies between
full and semiclassical solutions remain so pronounced w
molecular losses included.

In Fig. 4, we show the positiveP representation result fo
parameters as in the strong-interaction regime of Fig. 2,
with molecular loss rategb50.1g. As optical cavity loss
rates are generally of the order of megahertz, this is a ph

FIG. 3. Occupation numbers of the atomic and molecular c
densates calculated quantum mechanically in the weak-intera
regime, with parameters as in Fig. 2, but withua(0)u25105. The
number of trajectories was 23104.
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cally reasonable choice of spontaneous dissociation r
What we see is that the behavior has changed, with the a
number undergoing an oscillatory decrease, while the m
ecule number undergoes an oscillatory increase. The int
avity light field starts to revive as the atom number go
down, with the whole dynamics eventually becoming clos
to that of the weak-interaction regime. This is to be expect
as we have less interacting matter inside the cavity as
molecules are damped. However, to develop this picture
further would begin to exceed the limits of our single-mod
type approach. What is interesting is that we can see,
comparing Fig. 4 with Fig. 5, that the semiclassical pred
tions are still qualitatively wrong. The semiclassical lig
field again rises monotonically to its steady state value,

-
on

FIG. 4. Occupation numbers of the atomic and molecular c
densates calculated quantum mechanically in the strong-intera
regime, with parameters as in Fig. 2, but withgb50.1g, for 104

trajectories.

FIG. 5. Occupation numbers of the atomic and molecular c
densates as for Fig. 4, but calculated semiclassically.
1-5
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that the differences should again be easily experiment
detectable.

VI. THIRD-ORDER EFFECTS AND QUANTUM
STATISTICS

An interesting question is, what effect does the third-or
noise have on this system? The short answer is that we w
not able to detect any difference between the full and
truncated calculations for the mean fields, the variance
the intensities, the first- and second-order coherence fu
tions for the three fields and even cumulants up to sixth or
@8# in the field amplitudes. Interestingly enough, a Wign
representation truncated to second order also gives es
tially the same results for all these quantities.

Upon examination of Eq.~3! we see that the third-orde
terms ~represented by thej j ) are needed for spontaneou
breakup of a molecule into two condensed atoms and
photon. We therefore investigated the sixth-order field cum
lant,

^^â† 2â2ê†ê&&5^â† 2â2ê†ê&212̂ â†â&2^ê†ê&18^â†â&~^ê&

3^â†âê†&1^ê†&^â†âê&!14~^ê†ê&^â†â&2

2^â†âĉ†&^â†âĉ&2^â†â&^â†âê†ê&!

12^â† 2â2&^ê†&^ê&2^â† 2â2&^ê†ê&

2^â† 2â2ê&^ê†&2^â† 2â2ê†&^ê&, ~15!

where the terms that vanish for our system are not explic
included.

What we found was that, within the parameter regim
where the physical approximations we have made re
some validity, there is no observable difference in the exp
tation value of this cumulant, whether calculated with
without third-order noises. Where there is a difference
when we turn off the pump and begin with only condens
molecules present. In this case, there is an effect present
it does not manifest itself until at least twenty cavity lif
times have passed, which is well beyond the region wh
our single-mode-type approach can be considered reliab

Examining the quantum statistics may, however, g
some insight into the behavior of the mean fields. In
strong-interaction regime, we find almost no suppression
quantum noise when we consider the quadrature and num
variances of the three fields. In fact, the three fields alm
always exhibit excess noise, which supports our claim t
the detuning effect is noise driven. As can be seen in Fig
which shows the time development of theXa quadrature
variances for the atomic field with and without spontaneo
molecular dissociation, there is a very small amount of no
supression at some times. The molecular dissociation ac
destroy even this small amount. Over the time scale sho
the normalized intensity variance, or Fano factor, of
atomic field is identical to the quadrature variance. This
the quadrature of least noise, with all the other quantum
relations we investigated in this regime being well above
standard quantum limit.
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On the other hand, in Fig. 7 we show the atomic intens
andXa quadrature variances in the weak-interaction regim
These are very reminiscent of the variances predicted
traveling-wave SHG with an addedx3 nonlinearity@23,28#.
In that case, the mean intensities were also described we
solution of the mean-field equations. We see that the ato
field develops excess noise as it begins to grow following
almost complete conversion to molecules, due to the se
spontaneous nature of this process. The molecular field
exhibits statistics reminiscent of traveling-wave SHG. Int
estingly enough, it is in this regime that the stochastic in

FIG. 6. TheX quadrature variances of the atomic field in th
strong-interaction regime, with and without molecular loss rate
gb50.1g. These results and those of Fig. 7 were calculated us
53105 trajectories. The normalized number variance for this fie
is identical on this scale. The dashed line represents the stan
quantum limit.

FIG. 7. The atomic field quadrature and number variances in
weak-interaction regime, with and without molecular losses. T
continuous and the dotted lines areV(Xa) andV(Na), respectively,
without molecular losses. The dashed line and the dash-dotted
are the same variances with molecular loss rategb50.1g.
1-6
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gration was least stable, diverging shortly after the maxim
time shown in Fig. 3. The modeling of the third-order term
did not make this much worse. In all results of stochas
integration that we show here, the sampling errors were
small over the ensembles that error bars would be ba
visible. In the weak-interaction regime, when the divergen
appeared, it appeared very rapidly, hinting at a possible
ponential divergence in phase space as found with inte
tion of the one-dimensional BEC equations of Ref.@12#. As
is common with the positiveP representation, the addition o
the damping term acted to stabilize the numerics, allow
integration over a time period approximately 15% grea
before divergences occurred. The only quantum statist
properties that we were not able to calculate accura
were the variances of the electromagnetic field in the str
interaction regime. Even after 106 trajectories, these wer
still so noisy that it was difficult to predict quantative pro
erties. What we can say is that they did not exhibit no
suppression.

VII. CONCLUSION

We have described and analyzed a situation in which
Gross-Pitaevski approach does not describe adequately
dynamics of a Bose-Einstein condensate. The differences
not of the order of the inverse of the system size, but
qualitative. We have extended the results of Ref.@7# into
different parameter regimes, examining the validity of so
v.

n,

.

.

s.

06360
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e

e
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e

e

of the approximations made in that work. We have seen fr
numerical investigations that the quantum solutions beco
closer to the semiclassical solutions as the number of at
or the coupling decrease. This is a sign of the nonlinearity
the quantum dynamics, where noise-driven correlations
built up between the three fields in a manner that has
semiclassical mean-field description.

We have also shown how the third-order terms that h
been dropped from the equations of motion of the ear
work can be modeled. As these terms were found to have
noticeable effect within the limits of our model, the trunc
tion used in the previous work has been shown to be ju
fied, hence, removing a previously uncontrolled approxim
tion. In regimes where the quantum and semiclass
predictions were earlier shown to be different, we have de
onstrated that the inclusion of spontaneous molecular di
ciation still leaves the quantum solutions qualitatively diffe
ent. The experimental signature of this difference can
measured in a very simple manner; with photodetection
the light emitted by the optical cavity.
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