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We discuss the quasi one-dimensional(1-D) scattering of two counterpropagating, dark-state polaritons
(DSPs), each containing a single excitation. DSPs are formed from photons in media with electromagnetically
induced transparency and are associated with ultraslow group velocities. State-dependent elastic collisions of
atoms at the same lattice site lead to a nonlinear interaction. It is shown that the scattering process in a deep
optical lattice filled by cold atoms generates a large and homogeneous conditional phase shift between two
individual polaritons. The latter has potential applications for a photonic phase gate. The quasi-1-D scattering
problem is solved analytically and the influence of degrading processes such as dephasing due to collisions
with ground-state atoms is discussed.
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A major challenge for quantum information processing
using individual photons as qubits is the implementation of
logic operations. Such operations require efficient nonlinear
interactions for pairs of photons, which cannot be achieved
in conventional optical materials. As the effect of the photon-
photon coupling depends on the nonlinear susceptibilities as
well as on the interaction time, it has been suggested to use
ultraslow light in resonant systems with electromagnetically
induced transparency(EIT), where the interaction time is
long and the nonlinear susceptibilities become large due to
resonance enhancement[1–3]. At the boundary of a station-
ary EIT medium, light pulses become spatially compressed
in the propagation direction by the ratio of group velocityvgr
to the vacuum speed of light[3]. As a consequence, the num-
ber of photons in the pulse decreases by the same factor.
Excitations are temporarily transferred to the medium by the
formation of quasiparticles, so-called dark-state polaritons
(DSPs), which are superpositions of electromagnetic and
atomic degrees of freedom[4]. As another consequence of
the pulse compression the interaction time in a head-on col-
lision stays constant irrespective of the value ofvgr. Thus, in
order to achieve long interaction times, copropagating pulses
were considered[5]. In this case, the interaction is, however,
not homogeneous and it is difficult to avoid spectral broad-
ening of the wave packet.

Here, we suggest a completely different mechanism for an
efficient nonlinear interaction between ultraslow light pulses.
The slow-down corresponds to a shift of the polariton com-
position from pure photons to matter-waves[4]. Further-
more, the pulse compression leads to an increasing density of
the matter component. Thus, collisional interactions between
atomic excitations can yield an effective nonlinear coupling
between two wave packets. To further enhance the strength
of this interaction, we consider a lattice potential in the tight-
binding limit. Starting from a fully quantized effective one-
dimensional(1-D) model of light propagation in a lattice, we
derive analytic solutions for the quantum scattering of two
single-photon wave packets in thes-wave scattering limit.
We show that the pulses attain a homogeneous conditional
phase shift that may be large enough for the implementation
of a quantum phase gate.

Let us consider a cold gas of bosonic, five-level atoms as
shown in Fig. 1 in a deep 3-D lattice potential under tight-
binding conditions. The atoms form anM-type system, with
the ground stateugl and the excited statesue±l coupled by
two orthogonal polarizations of a quantized probe fieldÊ±
propagating in the +z or −z direction, respectively. The ex-
cited states are, furthermore, coupled to metastable stateuq±l
by a classical probe field of Rabi frequencyV. All atoms are
initially in the ground stateugl. The atoms are described by
five Bose fieldsci, wherei P hg,e± ,q±j denotes the internal
state. The Hamiltonian of the system is given byH=Hat
+Hlat+Hat−f+Hcoll, where the atomic part reads

Hat = o
i=g,e±,q±

E d3rci
†S−

"2

2m
¹2 + "viDci . s1d

Hlat is the lattice potential, which is assumed to be the same
for all internal states. The interaction with electro-
magnetic field reads in rotating-wave approximation

Hat−f = −E d3r o
i=+,−

cei

† fmEi
s+dsr dgcg −E d3r o

i=+,−
cei

† "Vsr dcqi

+ H.c. s2d

Finally, we take into account collisions between atoms in the

FIG. 1. Top: Atomic five-level system with quantized probe
fieldsE± of opposite circular polarization and propagation direction.
V denotes the Rabi frequency of the classical, undepleted control
field. Bottom: The atoms are assumed to be confined in a 3-D lattice
potential with lattice constanta. In the tight-binding regime, they
occupy only the lowest Wannier state of effective widthl0.
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internal statesugl and uq±l as well as collisions between at-
oms in uq−l and uq+l in s-wave approximation:

Hcoll =
"ug

2
E d3rcg

†cg
†cgcg + o

i,k=+,−

"uik

2
E d3rcqi

† cqk

† cqk
cqi

+ o
i=+,−

"ugiE d3rcqi

† cg
†cgcqi

. s3d

Collisions of atoms in the excited state are irrelevant as these
states will attain a vanishingly small population. Here,
E±

s+dsr d are the positive frequency parts of the probe field
operators corresponding to the two orthogonal polarized
modes,Vsr d is the Rabi frequency of the control field, and
the u’s describe the collision strength, which can be ex-
pressed in terms of the correspondings-wave scattering
length ui =4pai" /m. The vi’s are the frequencies corre-
sponding to the electronic energy levels.

Using Eqs.(1)–(3), the Heisenberg equations for the field
operators can easily be obtained:

i"
] cg

] t
= S−

"2

2m
¹2 + V + "vgDcg − mpE−

s−dce−
− mpE+

s−dce+

+ "Sugcg
†cg + o

i=+,−
ugicqi

† cqiDcg, s4ad

i"
] ce±

] t
= S−

"2

2m
¹2 + V + "ve±Dce±

− mE±
s+dcg − "Vcq±

,

s4bd

i"
] cq±

] t
= S−

"2

2m
¹2 + V + "vq±Dcq±

− "Vpce±

+ o
k=+,−

"sugkcg
†cg + u±kcqk

† cqk
dcq±

. s4cd

We have not included decay from the excited states as these
states will attain only a negligible population. The above
operator equations are nonlinear and are thus impossible to
solve exactly. Therefore, approximations are needed.

First, it is assumed that both probe fields propagate along
the z axis and the control field in an orthogonal direction.
Thus, E±

s+dsr ,td=E±sr ,tdeis±kz−vtd ,Vsr ,td=V0stde−ivct. Here,
bothE±sr ,td andV0std are slowly varying functions ofr and
t. One also assumes that the probe field couplingmE± /" is
much weaker than the control field couplingV0. In this limit,
we may consider the control field undepleted and classical
and can thus setV0 constant. The assumption that all atoms
were initially in the ground stateg then also implies that only
a small fraction of atoms is excited to the statesq±.

The strength of the lattice is considered to be large
enough such that only the lowest energy level of each poten-
tial well is occupied and tunneling between the wells is neg-
ligible. In this limit the atomic field operators can be ex-
panded in the basis of(real) Wannier functions[6]. Since
only the lowest lattice state is occupied, only Wannier states
of the lowest Bloch bandWjsr d=W0sr −r jd survive in this
expansion. In a deep lattice Wannier functions of neighbor-

ing sites have only negligible overlap and one has
ed3rWisr dWksr d=dik. This expansion along with a separation
of fast oscillating terms yieldscg=o j Wjsr dgjstd, ce±
=o jWjsr de± jstdeis±kz−vtd, and cq±

=o jWjsr dq± jstde±ikz−isv−vcdt.
Here, the operatorsgj, e± j, and q± j are slowly varying int
and the summation runs over all lattice sites.

Substituting the Wannier expansion into Eqs.(4) yields
equations for the slowly varying atomic variables. Since the
Wannier functions are well localized, the slowly varying
functions remain almost constant within one lattice site:

ġj = i
m

"
E−

†sr jde−j + i
m

"
E+

†sr jde+j − isuggj
†gj + ug+q+j

† q+j

+ ug−q−j
† q−jd

f3

a3gj , s5ad

ė± j = − iDe±e± j + i
m

"
E±sr jdgj + iV0q± j , s5bd

q̇± j = − iDq±q± j + iV0
pe± j − isu±±q± j

† q± j + u+−q7 j
† q7 j

+ ug±gj
†gjd

f3

a3q± j , s5cd

with the detuningsDe±=ve±−v+"k2/2m, Dq±=vq±−v+vc
+"k2/2m, We have setvg=0. The factorf =a/ l0 describes
the confinement strength in the lattice and is defined as
ed3rWisr d4= f3/a3.

In order to solve the above equations of motion for the
matter-field operators, a weak-probe approximation will be
applied. In zeroth order of the probe field, the statesue±l and
uq±l remain unpopulated and one finds for the ground state
operators

ġj = − iug
f3

a3gj
†gjgj . s6d

If the lattice has a regular filling with a well defined number
Nj =N of atoms per site, we can make the replacementgj

†gj
→N in Eq. (6). A regular filling can be achieved, e.g., by
employing a Mott-insulator transition in a lattice[6,7]. In
this case, the self-phase modulation described by(6) can just
be absorbed in the definition of the energy of the ground-
state atoms. Furthermore, we can replace the ground-state
operator in the equations for the operators of the other states
by a constantgj →gj

s0d. With this, we obtain in first order of
the probe field

ė± j = − iDe±e± j + i
mgj

s0d

"
E±sr jd + iV0q± j , s7ad

q̇± j = − isDq± + ug± f3ndq± j + iV0
pe± j − iu±±

f3

a3q± j
† q± jq± j

− iu+−
f3

a3q7 j
† q7 jq± j , s7bd

where n=N/a3 is the average density of atoms. Next, we
assume resonance conditions, i.e.,De±=0 and Dq±+ug±nf3
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=0 and that the probe field varies sufficiently slowly. Under
these conditions, we can apply an adiabatic approximation.

In zeroth order of the adiabatic approximation, the time
derivative in the equations of motion for the atomic variables
(5) is neglected, which yields

q± jstd = −
mgj

s0d

"V0
E± j , s8ad

e± jstd =
u±± f3

V0
pa3q± j

† q± jq± j +
u+−f3

V0
pa3q7 j

† q7 jq± j , s8bd

with E± j ;E±sr jd. Thus,

e± j
s0dstd = − "u±± f3 mgj

s0d

u"V0u2
umu2n

u"V0u2
E± j

† E± jE± j

− "u+−f3 mgj
s0d

u"V0u2
umu2n

u"V0u2
E7 j

† E7 jE± j . s9d

Proceeding in the same manner with the first order of the
adiabatic approximation, we find that the operators corre-
sponding to the excited statesue±l contain a term propor-
tional to the time derivative of the probe fields

e± j
s1dstd = e± j

s0dstd +
imgj

s0d

"uV0u2
]

] t
E± j . s10d

Here, higher order terms inE± j containing a time derivative
were neglected as they correspond to higher order correc-
tions in both the probe field and the adiabaticity parameter.

The adiabatic solutions for the matter fields can now be
used to calculate the slowly varying amplitude of the probe-
field polarizations P±sr ,td=mpo juWjsr du2g± j

† stde± jstd. Since
the Wannier functions are strongly localized around the cen-
ter of the potential wells, the microscopic polarization
changes rapidly in space. On the other hand, in Maxwell’s
equations for the electric field, only the macroscopic polar-
ization enters. The macroscopic polarization can be obtained
by averaging over a volume small compared to the wave-
length. If the lattice constanta is sufficiently smaller than the
relevant wavelength of the probe field, the lattice structure
disappears in the polarization. In an optical lattice,a=ll /2,
where ll is the wavelength of the laser light used for the
optical potential. Unless the probe field is very much detuned
to the blue side ofll, effects from the lattice structure like
Bragg scattering can be neglected.

Using the macroscopic polarization, we find the following
equation of motion for the slowly varying amplitude of the
field operator

S ]

] t
± vgr

]

] z
DE± = − iu±±

l«0

"pvgr
f3E±

†E±E±

− iu+−
l«0

"pvgr
f3E7

† E7E±, s11d

with group velocity vgr=2c"uV0u2«0/ umu2vn (assumingvgr
!c). The appearance of the group velocity in the denomina-
tor of (11) suggests at first glance a diverging nonlinear in-

teraction when the group velocity approaches zero. One
should take into account, however, that due the pulse com-
pression the total photon numberNph,ed3rE†E is only a
fraction vgr/c of the input value. Equation(11) becomes
much more transparent if it is translated into an equation of
motion of the DSPs[4]

C±sz,td = cosuẼ±sz,td − sin uÎAc̃q±sz,td, s12d

whereE= ẼÎ"v /2«0A, A being the cross section of the light

beam,vgr=c cos2u, and c̃q± are the slowly varying ampli-
tudes of the matter fields. It may be worthwhile noting that
the DSPs in an optical lattice[Eq. (12)] have some resem-
blance to exciton-polaritons in a semiconductor. In the adia-
batic limit considered here, the orthogonal quasiparticles to

C±, the bright-state polaritons are not excited and thusẼ±
=C± cosu. With this, we find the following propagation
equation inside the medium

S ]

] t
± vgr

]

] z
DC± = − i

2a±±lvrec

A
f3C±

†C±C±

− i
2a+−lvrec

A
f3C7

† C7C±, s13d

where we have substituted thes-wave scattering lengthaij
and the recoil velocityvrec="v /mc. The polariton number
densitiesn±=C±

†szdC±szd undergo a sudden increase at the
boundary of the medium since the electric field is continuous
there. Inside the medium, they propagate form-stable with
vgr.

Equation(13) leads to a self- and cross-phase modulation
of the DSPs. If initially only one polariton of each sort is
excited, the self-phase modulation vanishes. To solve the
quasi-1-D scattering problem, it is convenient to introduce
the two-particle wave function

wsz,z8,td = k0uC+sz,tdC−sz8,tdufl, s14d

where ufl is the initial state vector of the system andu0l
corresponds to the polariton vacuum. One can show that in
the case considered here, namely, where only one polariton
of each class is initially excited, all information is contained
in w. In terms of center-of-mass and difference coordinates
R=sz+z8d /2 andj=z−z8, the equation of motion forw reads

S ]

] t
+ 2vgr

]

] j
Dw = − 2i

dsjda+−lvrec

A
f3w. s15d

This equation has a simple interpretation. The left-hand side
describes the propagation of the two components in opposite
directions. The right-hand side describes an interaction for
z=z8, i.e., when the two polaritons meet. The interaction con-
serves the center-of-mass of the two polaritons and the solu-
tion of (15) reads

wsR,j,td = wsR,j − 2vgrt,0dexpf− iDfQsjdg, s16d

whereQsjd is the Heaviside step function. One recognizes
that the shape of the two-photon wave function remains un-
changed by the collisions and there is only a homogeneous
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collision phase. This is illustrated for the caseDf=p in
Fig. 2.

The conditional phase shift between the polaritons that
originate from two single-photon wave packets is then trans-
ferred back to two photons at the exit of the medium. In this
way, a quantum phase gate between two individual photons
could be implemented, if the conditional phase shift can
reach the value ofp. The collision phase in(16) is given by

Df =
a+−l

A

vrec

vgr
f3. s17d

It is interesting to note thatDf does not depend on the pulse
parameters. It is not necessary that the two pulses have a
certain length or the same shape. Both should, however, oc-
cupy the same transverse mode. One also recognizes that the
use of a lattice potential has two important effects. First of

all, phase diffusion of the individual DSPs caused by the
scattering of atoms in statesuq±l with ground-state atoms is
eliminated by the regular filling. Secondly, the local enhance-
ment of the density leads to an enhancement factorf3. In a
deep lattice,f can be as large as 10. To give an estimate of
achievable phase shifts, let us assumea+−=10 nm, vgr
=10vrec, A=l2, l=800 nm, andf =10. This yields a phase
shift on the order of unity, which is of the required order of
magnitude.

The main limitation of the present scheme is set by the
dephasing of the DSPs during their propagation timeT in the
medium.T can be chosen as small as the initial pulse length,
but needs to be sufficiently large such that the compressed
pulse length in the mediumL=vgrT is still sufficiently larger
than the wavelengthl. Assuming for the above given param-
etersT<50 msec, which is typical for the experiments in
[8–10], andvrec<5 cm/sec, one findsL<25 mm, which ful-
fills L@l. Since in the light-“stopping” experiments[9,10]
dephasing times of milliseconds have been observed, the
dephasing of the dark polariton should not be an issue.

In summary, we have shown that scattering of ultracold
atoms in a deep three-dimensional lattice together with the
transfer of excitations between photons and atomic excita-
tions through dark-state polaritons can be used for a condi-
tional homogeneous phase shift between individual photons.
An essential requirement to obtain sufficiently large phase
shifts is the transverse focusing of the polaritons to a cross
section comparable tol2 and sufficiently long dephasing
times.
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FIG. 2. Snapshots of two-particle wave-functionwsR,j ,td at
equidistant times as function of center-of-mass coordinateR and
difference coordinatej=z−z8. j,0 sj.0d corresponds to polari-
tons propagating toward(away from) each other. Overlapping com-
ponents generate a phase flipDf, which is taken to bep.
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