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Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals
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We investigate the spontaneous radiation from a two-level atom embedded in a three-dimensional aniso-
tropic photonic crystal with two bands. The properties of the spontaneous emission are dependent strongly on
the position of the upper level. The faster and slower decay components can occur in the emitted field, but it
does not mean the existence of both accelerated and inhibited components for the atomic population decay. The
radiation spectrum is dependent on the location of the observer. We also study the influence of the existence of
the two bands on spontaneous emission, Lamb shift, the emitted field, and the radiation spectrum.
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I. INTRODUCTION

Photonic crystals investigated initially by Yablonovitc
and independently by John are periodic dielectric structu
which can lead to one or more than one band gap in
frequencies of electromagnetic radiation allowed to exist
propagate inside the material@1,2#. The electromagnetic field
with frequencies being within the band gap cannot propag
in all directions. The dispersion characteristics of radiat
waves traveling in a photonic crystal are changed, and
mode density of the electromagnetic field is deformed
comparison with that for free space vacuum field. This
because spontaneous emission from an excited atom is
pendent not only on the properties of the atom but also
the nature of the surrounding environment, specifica
on the density of electromagnetic vacuum modes. T
change of mode density and the inhibition of electromagn
wave propagation in photonic crystals provide a way to c
trol spontaneous emission, which may facilitate the advan
ment of optics and optoelectronics, and has many impor
applications@3#. Thus, the spontaneous emission from an
cited atom embedded in photonic crystals has attracted
of attention in recent years@4–12#. In the previous studies
for atoms embedded in photonic crystals, many interes
effects have been discovered when the resonant trans
frequencies of the atoms are near the band edge, for exam
localization of light @2,4#, photon-atom bound states@5–9#,
suppression and even complete cancellation of spontan
emission@8#, the enhancement of spontaneous emission
terference@7,9#, coherent control of spontaneous emissi
@10#, the occurrence of dark lines in spontaneous emiss
@11#, the quantum Zeno effect, the quantum anti-Zeno eff
in photonic crystals@12#, etc.

In many earlier studies, only one band~usually an upper
band! for photonic crystals was considered. When the atom
resonant transition frequency is very close to the edge of
band and the band gap is relatively large, the one-b
model is a good approximation. If the band gap is narrow,
must consider both upper and lower bands. In the pre
paper, we study the spontaneous emission from a two-l
atom embedded in an anisotropic photonic crystal with
upper band, a lower band, and a band gap. The influenc
the existence of the second band~the lower band! on spon-
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taneous emission, Lamb shift, the emitted field and the
diation spectrum are investigated. As to the time evolution
the atomic population in the excited state, the effect of
lower band is the same as the upper band because o
symmetrical distribution of density of states. Comparing
the single-band case, the coexistence of the upper and lo
bands leads to a faster decay of the population due to
stronger coupling between the atomic transition and the e
tromagnetic modes. The contribution of the upper band
Lamb shift is opposite to that for the lower band, and t
Lamb shift in the two-band case is smaller than that in
single-band case. The amplitude of characteristic locali
field is reduced due to existence of two bands. In a m
special case, the amplitude of the characteristic locali
field may be zero, and the singularity due to the localiz
field may vanish in the radiation spectrum.

Recently, there has been considerable experimental w
on radiative emission from active material embedded pho
nic crystals with pseudogaps@13#. Therefore, the traveling
behavior of the emitted field and the radiation spectrum
discussed. Most interestingly, the faster and slower de
components corresponding to the diffusion field and
propagating field, respectively, have then trail in the dec
process for the emitted field. Differing from the atomic dec
in free space or in a homogeneous medium, the coexiste
of the faster and slower decay components of the emi
field in photonic crystals does not mean the existence of b
accelerated and reduced decay rates for the atomic d
process of the excited-state population. In addition, the p
of the energy of the emitted field with frequencies bei
within the band gap cannot propagate in photonic cryst
the radiation spectrum of the excited atom in a photo
crystal is more complex, and depends on the location of
observer.

The outline of this paper is as follows. In Sec. II, th
model and the basic theory to investigate the spontane
emission are given. In Sec. III, the properties of the tim
evolution of the population trapped in the excited state, a
the influences of the two bands on the population decay
the Lamb shift are studied in detail. In Sec. IV we discuss
properties of the emitted field and its traveling behavior. T
spontaneous spectrum is calculated in Sec. V.
©2003 The American Physical Society05-1
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II. BASIC THEORY

We consider a two-level atom with an upper levelu1& and
a lower level u0& embedded in a three-dimensional anis
tropic photonic crystal, which has an upper band, a low
band, and a forbidden gap. The cutoff frequencies of
upper band edge and the lower band edge arevc1

andvc2
,

respectively. The gap widthvc1
2vc2

is assumed much

smaller thanvc1
, vc2

. The upper level is coupled by vacuu
modes to the ground level. The resonant frequency betw
levelsu1& andu0& is v1, which is assumed to be near the tw
band edges. The energy of the lower levelu0& is set to be
zero. Performing the rotating wave approximation for t
interaction, the Hamiltonian of this system takes the form

H5\v1u1&^1u1(
k

\vkbk
†bk

1 i\(
k

gk~bk
†u0&^1u2bku1&^0u!, ~1!

wherebk (bk
†) is the annihilation~creation! operator for the

kth reservoir mode with frequencyvk . The coupling con-
stant between the atomic transitionu1&→u0& and thekth
electromagnetic mode isgk5v1d1 /\A\/(2«0vkV0)ek•ud ,
wherek represents both the momentum and polarization
the modes,d1 and ud are the magnitude and unit vector
the atomic dipole moment of the transition,V0 is the quan-
tization volume,ek are the transverse unit vectors for th
reservoir modes, and«0 is the Coulomb constant. For
three-dimensional anisotropic photonic crystal with an
lowed point-group symmetry, the dispersion relation near
two band edges could be expressed approximately@5# by

vk5H vc1
1C1uk2k10

i u2 ~vk.vc1
!,

vc2
2C2uk2k20

j u2 ~vk,vc2
!.

~2!

Here k10
i and k20

j are two finite collections of symmetry re
lated points, which are associated with the upper and lo
band edges, respectively.C1 and C2 are the model-
dependent constants.

We assume the atom initially in the upper levelu1&, and
the radiation field is in the vacuum state. The wave funct
of the system at arbitrary timet may be written as

uc~ t !&5A1~ t !e2 iv1tu1,$0%&1(
k

Bk~ t !e2 ivktu0,$1k%&,

~3!

with A1(0)51 andBk(0)50. The state vectoru1,$0%& de-
scribes the atom in its excited stateu1& with no photons in all
reservoir modes, and the state vectoru0,$1k%& represents the
atom in its ground stateu0& and a single photon inkth mode
with frequency vk . From the Schro¨dinger equation
i\(]/]t)uc(t)&5Huc(t)&, we can obtain the following first-
order differential equation for the amplitudesA1(t) and
Bk(t):
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]t
A1~ t !52(

k
gke

i (v12vk)tBk~ t !, ~4a!

]

]t
Bk~ t !5gke

2 i (v12vk)tA1~ t !. ~4b!

Formally integrating Eq.~4b!, and then substituting into Eq
~4a!, we have

]

]t
A1~ t !52(

k
gk

2E
0

t

ei (v12vk)(t2t8)A1~ t8!dt8. ~5!

With the help of the Laplace transform, we can solve t
above equation. The Laplace transformA1(s) for the ampli-
tudeA1(t) is

A1~s!5
1

s1G
, ~6!

whereG5(kgk
2/@s1 i (vk2v1)#. Using the dispersion rela

tion ~2!, and converting the mode sum over transverse pl
waves into an integral and performing the integral, w
haveG52 ib1

3/2/@Avc1
1A2 is2(v12vc1

)#1 ib2
3/2/@Avc2

1Ais1(v12vc2
)#, with b1

3/25(v1d1)2( jsin2uj /

(8pe0\C1
3/2) and b2

3/25(v1d1)2( jsin2wj /(8pe0\C2
3/2) ~see

Appendix A!. Hereu j (w j ) is the angle between the dipol
vector of the atom and thej th k10

j ( j th k20
j ). The phase angle

of s is defined by2p,arg(s),p, and the phase angles o
A2 is2(v12vc1

) and Ais1(v12vc2
) are defined by

2p/2,arg@A2 is2(v12vc1
)#,p/2, and 2p/2

,arg@Ais1(v12vc2
)#,p/2. The amplitudeA1(t) can

then be obtained by the inverse Laplace transform

A1~ t !5
1

2p i Es2 i`

s1 i`

A1~s!estds, ~7!

where the real numbers is chosen so thats5s lies to the
right of all the singularities~poles and branch points! of the
function A1(s). For the sake of simplicity, we assumeb1
5b25b. With the help of complex function integration an
the residue theorem, we can obtain the expression of
amplitudeA1(t),

A1~ t !5(
j

exj
(1)bt

G8~xj
(1)!

1(
j

exj
(2)bt

F8~xj
(2)!

1(
j

exj
(3)bt

K8~xj
(3)!

1
1

pE0

`F i 1/2Axei (v12vc1
)t

@M ~x!AVc1
2 i #22 iM 2~x!x

1
i 21/2Axei (v12vc2

)t

@N~x!AVc2
1 i #21 iN2~x!xGe2xbtdx, ~8!
5-2
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SPONTANEOUS EMISSION FROM A TWO-LEVEL ATOM . . . PHYSICAL REVIEW A68, 043805 ~2003!
where these functionsM (x), N(x), G(x), F(x), andK(x)
are defined in Appendix B.xj

(1)are the roots of the equatio
G(x)50 in region @Re(x).0# or @V12Vc1

,Im(x),V1

2Vc2
#, xj

(2) are the roots of the equationF(x)50 in region

@Re(x),0 and Im(x).(V12Vc2
)], and xj

(3) are the roots

of K(x)50 in region @Re(x),0 and Im(x),(V12Vc1
)].

G8(x), F8(x), andK8(x) are derivatives of those function
G(x), F(x), andK(x), respectively.

From the expression of the amplitudeA1(t), we can see
that these roots are important in the study of the dynam
properties of the excited atom. The number and characte
tics of these roots are dependent on the separation of the
bands and the relative position of the upper level of the a
from the two band edges. With the help of numerical cal
lation, we found that there is at most only one root: one p
imaginary root or one complex root. According to the nu
ber and the value of the root, we have five regions in
space of (V1 , Vc1

2Vc2
). In Fig. 1 we plot the five regions

for Vc1
1Vc2

5200. In region I, there is one pure imagina

root with its imaginary part in the range (V12Vc1
,V1

2Vc2
). In region II, there is one complex rootx(2) with a

negative real part and an imaginary part larger thanV1
2Vc2

. In region III, we have one complex rootx(3) with a

negative real part and an imaginary part smaller thanV1
2Vc1

. No root exists in regions IV and V. For the pu
imaginary root, it can be proven analytically that there is o
and only one purely imaginary root as

Vc2
1

1

AVc1
1AVc1

2Vc2

2
1

AVc2

<V1<Vc1
1

1

AVc1

2
1

AVc2
1AVc1

2Vc2

.

If x( j ) does not exist, the corresponding term in Eq.~8! will
be replaced by zero. The last term in the right of Eq.~8!
comes from the single-valued branch cut contribution.

FIG. 1. Five-region distribution for roots withvc1
1vc2

5200b.
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The amplitude of the radiation field at a particular spa
point r can be calculated fromBk(t) via A(t) in the standard
way ~see Appendix D! @14#:

E~r ,t !5(
k
A \vk

2«0V0
e2 i (vt2k•r )Bk~ t !ek . ~9!

The emission spectrumS(r ,v) can be obtained by using
the Fourier transform of the radiation field~see Appendix E!,

S~r ,v…ÄzF~r ,v…z2, ~10!

with F(r ,v)5(1/2p)*0
`E(r ,t)eivtdt.

III. SPONTANEOUS EMISSION

The influence of the two bands on the spontaneous de
can be observed by examining the time evolution of
population in the upper level, which is

P~ t !5uA1~ t !u2. ~11!

The properties of the excited atomic population decay is
pendent on the relative position of the upper level from
two bands. When the upper level is in the region I, we ha
one pure imaginary rootx(1)5 ib (1)/b with vc2

,v12b(1)

,vc1
. The first and last terms in the right of Eq.~8! exist,

and other terms are replaced by zero. The correspon
dressed state caused by the interaction between the atom
its own radiation occurs at frequencyv12b(1), which is
within the band gap. The dressed state without decay lead
a fractionalized steady-state population trapped in the up
level. The two branch cut contributions yield two quas
dressed states at the two band-edge frequenciesvc1

andvc2
,

respectively. The quasidressed states display behavio
power-law decay, and a fractionalized population in the u
per level decays to the lower level. When the upper leve
in region II ~III !, we have one complex rootx(2)5(a(2)

1 ib (2))/b @x(3)5(a(3)1 ib (3))/b# with v12b(2),vc2
(v1

2b(3).vc1
) anda(2),0 (a(3),0). The second~third! and

last terms in the right of Eq.~8! remain, and other terms
vanish. The dressed state occurs at frequencyv12b(2) (v1
2b(3)). Due to the fact that frequencies of the dressed s
and the quasidressed state are within the traveling bands
upper-level population decays. As the upper level in regio
~III !, the amplitude of the quasidressed state is negligi
small compared to the dressed state, and the quantum i
ference between the dressed state and the quasidressed
can be neglected. The spontaneous decay of the excited
displays a simple exponential decay behavior after a v
short time. When the upper level is in region IV~V!, there is
no root. Only the last term in the right of Eq.~8! remains.
The quasidressed state at frequencyvc2

(vc1
) is the only

part. The upper-level population decays in the manner o
power-law decay. In Fig. 2, we plot the time evolution of th
upper-level population withvc1

5101b and vc2
599b for

different relative positions of the upper level from the tw
bands. Comparing Fig. 2~a! with Fig. 2~b!, it is found that the
5-3
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YANG, FLEISCHHAUER, AND ZHU PHYSICAL REVIEW A68, 043805 ~2003!
time evolution of the excited-state population at symmetri
relative positions of the upper level from the gap center
almost the same. Due to the symmetrical distribution of d
sity of states, the influence of the lower band and the up
band on the atomic dynamic property is the same.

Because of the existence of both the upper and lo
bands, the coupling between the atomic transition and
electromagnetic modes strengthens, and the upper-l
population decay is faster compared with the single-b
case. In Fig. 3 we plot the time evolution and decay time
the excited-state population for fixed positions of the up
bandvc1

5101b and the upper levelv15101b, and differ-
ent positions of the lower band. It is obvious that the pop
lation decay becomes slower as the width of the band
increases. When the upper level is near one band edg
within band gap, the influence of the second band on
population decay is more obvious. On the other hand, w
the upper level is deeply in one band, the high density
modes causes a strong coupling between the atom and
electromagnetic modes of this band. Consequently, the in
ence of the another band is small~as shown in Fig. 4!.

The steady-state populationP0 can be obtained from Eq
~8!. When time goes to infinity, only the first term in Eq.~8!
contributes to the population, which stems from the p
imaginary root. When v1,vc2

1@b3/2/(Avc1

1Avc1
2vc2

)#2(b3/2/Avc2
) or v1.vc1

1(b3/2/Avc1
)

2@b3/2/(Avc2
1Avc1

2vc2
)#, there is no pure imaginary

FIG. 2. The excited-state population as a function of the sca
time bt for vc1

5101b, vc2
599b, and different positions of the

upper level.~a! v15102b ~solid curve! and 101.5b ~dashed curve!
in region III, v15101.011 507b ~dotted curve! in region V, v1

5101b ~dash-dotted curve! and 100b ~dash-dot-dotted curve! in
region I; ~b! v1598b ~solid curve! and 98.5b ~dashed curve! in
region II, v1598.986 725b ~dotted curve! in region IV, andv1

599b ~dash-dotted curve! and 100b ~dash-dot-dotted curve! in re-
gion I.
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root. As t→`, no population is trapped in the upper leve
P050. As vc2

1@b3/2/(Avc1
1Avc1

2vc2
)#2(b3/2/Avc2

)

<v1<vc1
1(b3/2/Avc1

)2@b3/2/(Avc2
1Avc1

2vc2
)# ~re-

gion I!, there is only one pure imaginary rootx(1). We have
P051/uG8(x(1))u2. In Fig. 5, we plot the steady-state pop
lation in the upper level as a function of the upper-lev
frequency with different widths of the band gap. It can
found that the steady-state population increases with
width of the band gap. The position of the upper-level fr
quency for the maximum upper-level population is close
the center of the band gap.

We consider also the effect of the lower band on the La
shift of the atom. The Lamb shift is the difference betwe
the frequency of the dressed state~the frequency of the emit-
ted field! and the upper-level frequency minus the contrib
tion due to mass renormalization. The renormalization c
tribution is bIm(x8), with x8 being the root ofF̃(x)50
whereF̃(x) is the same asF(x) with V1 replaced by zero.
For different region of the upper-level position, the Lam
shift D can be written as

D5b* 5
Im~x(1)!2Im~x8! ~region I!

Im~x(2)!2Im~x8! ~region II!

Im~x(3)!2Im~x8! ~region III!

V12Vc2
2Im~x8! ~region IV!

V12Vc1
2Im~x8! ~region V!.

~12!

d

FIG. 3. ~a! The excited-state population and~b! the decay time
as functions of the scaled timebt for v15vc1

5101b and different
vc2

5100.5b ~solid curve!, 100b ~dashed curve!, 99b ~dotted
curve!, and 97b ~dash-dotted curve!, 95b ~dash-dot-dotted curve!.
5-4
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In Fig. 6, we plot the Lamb shift with different width of th
band gaps as the upper level is varied from being below
gap to above the gap. In Fig. 6~a!, we fix the upper band and
change the position of the lower band. When the upper le
is within the fixed upper band, the effect of the lower ba
on the Lamb shift becomes weak as the width of the b
gap increases, while the Lamb shiftD (D.0) increases with
the width of the band gap. It is to say that the Lamb shiftD
decreases due to existence of the lower band. On the
trary, in Fig. 6~b! we fix the lower band and change th

FIG. 4. ~a! The excited-state population and~b! the decay time
as a function of the scaled timebt for v15102b, vc1

5101b, and
different vc2

5100.5b ~dashed curve!, 95b ~dotted curve!.

FIG. 5. The steady-state atomic population as a function of
position of the upper level with different band gaps,vc1

5100.2b, vc2
599.8b ~solid curve!, vc1

5101b, vc2
599b

~dashed curve!, vc1
5102b, vc2

598b ~dotted curve!, vc1

5103b, vc2
597b ~dash-dotted curve!.
04380
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position of the upper band, and the Lamb shiftD (D,0)
decreases with the width of the band gap as the upper l
within the lower band. The upper band causes the Lamb s
D increasing~the absolute valueuDu of the Lamb shift de-
creasing!. Due to the opposite effects for the upper and low
bands, the absolute valueuDu of the Lamb shiftD in the
two-band case is more smaller than that in the single-b
case.

IV. THE EMITTED FIELD

From Eqs.~8! and~9! we can calculate the emission fie
under the approximationk•r@1 @14#. Corresponding to four
terms of Eq.~8!, the radiated field can be also written as t
sum of four parts,

E~r ,t !5E(1)~r ,t !1E(2)~r ,t !1E(3)~r ,t !1E(4)~r ,t !.
~13!

E(1)(r ,t) comes from the pure imaginary rootx(1), and
E(2)(r ,t) @or E(3)(r ,t)] stems from the complex rootx(2)

(x(3)). If the pure imaginary root~or the complex root! does
not exist, the relevant term in Eq.~13! will be replaced by
zero. E(4)(r ,t) comes from the last term~the power-law-
decay term! in Eq. ~8! and always exists.

When the upper level is within region I, we have one pu
imaginary root x(1)5 ib (1)/b, and E(r ,t)5E(1)(r ,t)
1E(4)(r ,t). From Eqs.~D11!, ~D12!, and~D15! we can re-
write the emission fieldE(r ,t) as follows:

e

FIG. 6. The Lamb shift in units ofb as a function of the upper
level position with different band gaps.~a! vc1

5101b and vc2

5100.5b ~solid curve!, 100b and ~dashed curve!, 99b ~dotted
curve!, 98b ~dash-dotted curve!; ~b! vc2

599b and vc1
599.5b

~solid curve!, 100b ~dashed curve!, 101b ~dotted curve!, and 102b
~dash-dotted curve!.
5-5
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E~r ,t !5El1
(1)~r ,t !1El2

(1)~r ,t !1Ed1~r ,t !1Ed2
(1)~r ,t !,

~14!

with

El1
(1)~r ,t !5

E10~r !

G8~x(1)!

p

C1
e2 i (v12b(1))t2r / l 1QS t2

r

v f 1
(1)D ,

El2
(1)~r ,t !52

E20~r !

G8~x(1)!

p

C2
e2 i (v12b(1))t2r / l 2QS t2

r

v f 2
(1)D ,

Ed1~r ,t !5E(4)~r ,t !,

Ed2
(1)~r ,t !5

E10~r !

G8~x(1)!
ef1J1~r ,t,x(1)!

1
E20~r !

G8~x(1)!
ef2J2~r ,t,x(1)!,

E10~r !5
v1d1

8p2«0ri
(

j
eik10

j
•rFud2

k10
j ~k10

j
•ud!

~k10
j !2 G ,

E20~r !5
v1d1

8p2«0ri
(

j
eik20

j
•rFud2

k20
j ~k20

j
•ud!

~k20
j !2 G ,

J1~r ,t,x!

5E
2`

` @re(3/4)p i1~r /2C1t !#e2C1tr2

~vc1
2v12 ixb!1C1S re(3/4)p i1

r

2C1t D
2 dr,

J2~r ,t,x!

5E
2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

~v11 ixb2vc2
!1C2S re2(3/4)p i2

r

2C2t D
2 dr.

Here f152 i @vc1
t2(r 2/4C1t)#1 1

4 p i , f252 i @vc2
t

1(r 2/4C2t)#2 1
4 p i , and Q(x) is the Heaviside step func

tion. The frequency of both the fieldsEl1
(1)(r ,t) andEl2

(1)(r ,t)
is v12b(1), which is within band gap. Obviously, thos
fields represent localized fields without decay in time. T
amplitudes of the localized fieldsEl1

(1)(r ,t) and El2
(1)(r ,t)

drop exponentially with increasing distance from the atom
e2r / l 1 and e2r / l 2, respectively. The localization lengths a
l 15AC1 /(vc1

2v11b(1)) and l 25AC2 /(v12vc2
2b(1)),

and the front velocities of the localized fields arev f 1
(1)

52AC1(vc1
2v11b(1)) and v f 2

(1)52AC2(v12vc2
2b(1)).

From the calculation of the localized fields,El1
(1)(r ,t) and

El2
(1)(r ,t) come from the contribution of the upper and low

bands, respectively, whileEd1(r ,t) andEd2
(1)(r ,t) are the dif-

fusion fields, which have power-law decay and are with
fixed phase difference between two space points. The exp
04380
e

s

t
s-

sion ofEd1(r ,t) is given in Eq.~D15!, which comes from the
two branch-point contributions, whileEd2

(1)(r ,t) comes from

the coherent termex(1)bt/G8(x(1)) in Eq. ~8!.
Supposing the symmetry ink space around pointsk10

i are
the same as related tok20

j , we haveE10(r )5E20(r ). The
phase difference between the localized fieldsEl1

(1)(r ,t) and
El2

(1)(r ,t) is p. Consequently, the amplitude of the localize
field El1

(1)(r ,t)1El2
(1)(r ,t) becomes small due to exis

ence of the two bands. For special casesC15C25C
and v15v05(vc1

1vc2
)/21b3/2/@Avc1

1A(vc1
2vc2

)/2#

2b3/2/@Avc2
1A(vc1

2vc2
)/2#, we have l 15 l 2 , v f 1

(1)

5v f 2
(1) , El1

(1)(r ,t)1El2
(1)(r ,t)50. This result is different from

that for single-band case. We would like to emphasize t
the population calculation is exact, while in the calculati
for the field an approximationk•r@1 is taken, i.e., the resul
for the radiation field is far away from the atom. The vanis
ing of the far away field does not mean no field very near
atom. Therefore, we have that the characteristic locali
field far away from the atom may vanish and the steady-s
population trapped in the upper level has the maximum.

When the upper level gets into region II, we have on
one complex root x(2)5(a(2)1 ib (2))/b with v12b(2)

,vc2
and a(2),0. The radiation fieldE(r ,t)ÄE(2)(r ,t)

1E(4)(r ,t) and can be rewritten as@see Eq.~D13!#

E~r ,t !5Eld
(2)~r ,t !1Ep

(2)~r ,t !1Ed1~r ,t !1Ed2
(2)~r ,t !,

~15!

with

Eld
(2)~r ,t !5

E10~r !

F8~x(2)!

p

C1

3e2 i (v11 ix(2)b)t2rA(vc1
2v12 ix(2)b)/C1

3QS t2
r

v f 1
(2)D ,

Ep
(2)~r ,t !5

E20~r !

F8~x(2)!

p

C2

3e2 i (v12b(2))(t2r /vp
(2))1a(2)(t2r /ve

(2))QS t2
r

v f 2
(2)D ,

Ed1~r ,t !5E(4)~r ,t !,

Ed2
(2)~r ,t !5

E10~r !

F8~x(2)!
ef1J1~r ,t,x(2)!

1
E20~r !

F8~x(2)!
ef2J2~r ,t,x(2)!,

where vp
(2)5(v12b(2))AC2/Im(Av12vc2

1 ix (2)b), the

energy velocity ve
(2)52a(2)AC2/Re(Av12vc2

1 ix (2)b),

and the front velocities v f 1
(2)52AC1(Re
5-6
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2Im)Avc1
2v12 ix (2)b and v f 2

(2)522AC2(Re

1Im)Av12vc2
1 ix (2)b. The frequency of bothEld

(2)(r ,t)

and Ep
(2)(r ,t) is v12b(2), which is within the lower band

Eld
(2)(r ,t) comes from the contribution of the upper band, a

is localized around the atom. If the lower band does
exist, the frequency will be in band gap, and the fie
Eld

(2)(r ,t) will be localized field without time decay. Now th
lower band exists, and the frequency ofEld

(2)(r ,t) is within
the lower band. In result, the amplitude ofEld

(2)(r ,t) drops
exponentially with increasing time and distance from t
atom, i. e.,Eld

(2)(r ,t) is a localized decaying field. For larg
time t or distancer, the amplitude ofEld

(2)(r ,t) will be very
small, and can be neglected.Ep

(2)(r ,t) stems from the contri-
bution of the lower band. It represents a propagating fie
which can travel away coherently from the atom in the fo
of a traveling pulse with the energy velocityve

(2) . Ed1(r ,t)
andEd2

(2)(r ,t) represent the diffusion fields.
Similarly, when the upper level gets into region III, w

can obtain one complex rootx(3)5(a(3)1 ib (3))/b with v1
2b(3).vc1

and a(3),0. The radiation field

E(r ,t)ÄE(3)(r ,t)1E(4)(r ,t) and can be rewritten as@see Eq.
~D14!#

E~r ,t !5Ep
(3)~r ,t !1Eld

(3)~r ,t !1Ed1~r ,t !1Ed2
(3)~r ,t !,

~16!

with

Ep
(3)~r ,t !5

E20~r !

K8~x(3)!

p

C1
e2 i (v12b(3))(t2r /vp

(3))1a(2)(t2r /ve
(3))

3QS t2
r

v f 1
(3)D ,

Eld
(3)~r ,t !52

E20~r !

K8~x(3)!

p

C2

3e2 i (v11 ix(3)b)t2rA(v12vc2
1 ix(3)b)/C2

3QS t2
r

v f 2
(3)D ,

Ed1~r ,t !5E(4)~r ,t !,

Ed2
(3)~r ,t !5

E10~r !

K8~x(3)!
ef1J1~r ,t,x(3)!

1
E20~r !

K8~x(3)!
ef2J2~r ,t,x(3)!.

Herevp
(3)5(v12b(3))AC1/Im(Avc1

2v12 ix (3)b), the en-

ergy velocity ve
(3)52a(3)AC1/Re(Avc1

2v12 ix (3)b),

and the front velocities v f 1
(3)52AC1/(Im

2Re)Avc1
2v12 ix (3)b and v f 2

(3)52AC2/(Im
04380
d
t

,

1Re)Av12vc2
1 ix (3)b. The frequency of both fields

Ep
(3)(r ,t) andEld

(3)(r ,t) is v12b(3).vc1
, which is within the

upper band.Ep
(3)(r ,t) comes from the contribution of the

upper band, and represents a propagating field with the
ergy velocity ve

(3) . Eld
(3)(r ,t) is the localized decayed field

and can be neglected.Ed1(r ,t) and Ed2
(3)(r ,t) are the diffu-

sion fields.
As the upper level is in region IV or V, no pure imagina

or complex root exists. The emitted fieldE(r ,t)ÄE(4)(r ,t)
5Ed1(r ,t). Only diffusion field exists in regions IV or V.
Regions IV and V are caused by the anisotropic dispers
relation and do not exist for an isotropic dispersion relatio
For isotropic case, the one-dimensional dispersion rela
results in a singularity in the density of state~DOS!, and any
weak potential will lead to localization@15#. So localized
field always exists in the isotropic case. For anisotropic ca
there is no singularity in the DOS, and localization require
potential larger than a certain value@15#. When the upper
level moves from gap into the upper~or lower! band, the
frequency of the localized field approachesvc1

~or vc2
).

When the frequency of the localized field isvc1
~or vc2

), the
localized field disappears, and diffusion field appears, but
a coherent propagating field because the number of elec
magnetic modes near the atomic transition frequency is
not large enough.

Although both of the fieldsEd1(r ,t) andEd2(r ,t) are the
diffusion fields, their contributions to the emitted field
different region of the upper level are different. In Fig. 7 w
plot the amplitudes of the diffusion fieldsEd1(r ,t) and
Ed2(r ,t) as functions of the position of the upper level f
the fixed distance from atomr 5r 05AC/b and at the fixed
time t5t055/b. In Fig. 7~a! it is shown that the amplitude
of Ed1(r ,t) in regions IV and V are almost constant an
extremely strong~several hundred times stronger than
other regions! due to the existence of onlyEd1(r ,t). The
amplitude of the diffusion fieldEd2(r ,t) is zero for the upper
level being in regions IV and V, but, it is not zero and mu
larger than the amplitude ofEd1(r ,t) for the upper level
being in regions I–III@see Fig. 7~b!#. When the upper level is
far away from the regions IV and V, the amplitude
Ed2(r ,t) is small @but much larger thanEd1(r ,t)] because
the diffusion fieldEd2(r ,t) has already decayed at timet0.

From the above discussion we know that the main part
the emission field can be written as

E~r ,t !.5
El1

(1)~r ,t !1El2
(1)~r ,t !1Ed2

(1)~r ,t ! ~region I!

Ep
(2)~r ,t !1Ed2

(2)~r ,t ! ~region II!

Ep
(3)~r ,t !1Ed2

(3)~r ,t ! ~region III!

Ed1~r ,t ! ~regions IV, V!.
~17!

When the upper level goes deeply into the lower or up
bands~region II or III!, the population trapped in the excite
state has an exponential decay after a very short time.
free space, the exponential decayet/t of the atomic excited
state means that the emission field is a propagating fiel
form of A/re2 iv(t2r /vp)2(t2r /ve)/tQ(t2r /v f) with a fixed
5-7
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frequencyv, a fixed phase velocityvp , a fixed energy ve-
locity ve , and a fixed front velocityv f . In the free space the
maximum amplitudeA does not decay with the distance fro
the atom due tove5v f , and all energy of the emitted fiel
can coherently propagate out in the form of a traveling pu
The so-called ‘‘coherently’’ means that the phase differen
between any two points in the space is fixed. For an atom
a photonic crystal, the relation between the population of
upper level and the emitted field is more complex. From
~17! we can see that there are two different fields in
emitted field, the propagating fieldEp(r ,t) and the diffusion
field Ed2(r ,t). Both of Ep

(2)(r ,t) andEd2
(2)(r ,t) @or Ep

(3)(r ,t)
and Ed2

(3)(r ,t)] come from the same coherent decay te

ex(2)bt/F8(x(2)) @or ex(3)bt/K8(x(3))] in Eq. ~8!. The time
evolutions of the emitted field for different space points a
plotted in Fig. 8. At a space point, one could see first
diffusion field, and then the propagating field. In the dec
process, the quantum interference between the propag
field and the diffusion field leads to the oscillation of th
field intensity. The characteristic decay time of the propag
ing field is a constant and the same as that of the popula
of the excited state. The diffusion field displays power-la
decay. In the first decay stage the intensity of the diffus
field drops fast, and the relevant decay time is shorter t
that of the propagating field~see the inset scheme in Fig. 8!.
Thus the emitted field is composed of a fast decay part~the
diffusion field! and a slow decay part~the propagating field!.
In addition, it can be proven analytically that the ener

FIG. 7. The amplitude square~in arbitrary unit! of the diffusion
field ~a! Ed1 and~b! Ed2 as function of the transition frequencyv1

with vc1
5101b, vc2

599b, rAb/C51, andbt55.
04380
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velocity is larger than the front velocity for the propagatin
field, ve

(2).v f 2
(2) andve

(3).v f 1
(3) ~see Appendix F!. The maxi-

mum amplitude of the propagating field decays with the d
tance from the atom. It is to say that not all energy of t
propagating field can coherently propagate out. During
process of traveling, the energy of the propagating field
partly transferred into the diffusion field due to the influen
of photonic crystals. However, the emitted field is mainly
propagating field as the upper level is deep within either
the two transmission bands, and the amplitude of the pro
gating field is larger than that of the diffusion field. At th
same time, the decay of the diffusion field slows down as
distance from the atom increases@comparing Fig. 8~a! with
Fig. 8~b!#.

V. SPONTANEOUS EMISSION SPECTRUM

Photonic crystals can affect strongly the spontane
spectrum of the excited atom. From Appendix E the radiat
spectrumS(r ,v) can be written as

S(r,v…55
uF1~r ,v!1F4~r ,v!u2 ~region I!

uF2~r ,v!1F4~r,v…z2 ~region II!

uF3~r ,v!1F4~r ,v!u2 ~region III!

uF4~r ,v!u2 ~regions IV, V!.
~18!

FIG. 8. The time evolution of the intensity~in arbitray unit! of
the total emitted field~solid line!, the propagating field~dotted line!,
and the diffussion field~dashed line! for vc1

5101b, vc2
599b,

andv15102b with different distances from atomr. ~a! r (b/A)1/2

5100 and~b! r (b/A)1/25500.
5-8
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Where the functionsF1(r ,v), F2(r ,v), F3(r ,v) and
F4(r ,v) are given in Appendix E@see Eqs.~E3!–~E6!#. If the
upper level is within region I, II, or III,F4(r ,v) will be
negligibly small compared toF1,2,3(r ,v). In the following
discussion, we assumeC15C25C and E10(r )5E20(r )
5E0(r ).

When the upper level is within region I, there are t
localized field and the diffusion field in the emitted field. Th
emission spectrum is composed of one singularity due to
characteristic localized mode and two small peaks at the
band edges corresponding to the diffusion field. In Fig. 9,
plot the emission spectras(r ,v)5S(r ,v)uCz2ÕzE0„r …z2 for
vc1

5101b, vc2
599b, v15100.5b, and different distance

from the atomr. In free space, the emission spectrum
two-level excited atom is independent on the position of
observer in space. For the present case, the radiation s
trum is more complex due to the influence of photonic cr
tal. The part of the emitted field with the frequency being
the band gap is localized, the corresponding energy is lim
near the atom, and the amplitude drops exponentially w
increasing distance from the atom. For larger, the part of the
emission spectrum with frequencies being in band gap
composed of one line corresponding to the characteristic

FIG. 10. The spectra of spontaneous emission from the exc
atom forvc1

5101b, vc2
599b, andv1599.9991735b ~region I!

with different distances from atom.

FIG. 9. The spectra of spontaneous emission from the exc
atom for vc1

5101b, vc2
599b, andv15100.5b ~region I! with

different distances from atom.
04380
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calized mode. Because all energy of the emitted field w
frequency being in the two bands can propagate out,
corresponding part of the emission spectrum does not cha
with the distance from the atom. In results, the total emiss
spectrum is dependent on the distance from the atom~the
location of the observer!. When the upper level is more nea
the band edgevc1

~or vc2
), the peak at frequencyvc1

~or

vc2
) is larger than another peak at frequencyvc2

~or vc1
).

For special casev15v0, the amplitude of the characte
istic localized field will be zero because of the influence
both the upper and lower bands. The singularity correspo
ing to the characteristic localized field in the radiation sp
trum will vanish ~as shown in Fig. 10!.

When the upper level is within region II~or III !, there are
one propagating field with frequency being in the lower~or
upper! band and the diffusion field in the radiation field. Th
peak of the diffusion field at frequencyvc2

(vc1
) is very

small asv1 in region II ~III !, and the other peak at frequenc
vc1

(vc2
) is covered by the large peak for the propagati

field. So in the emission spectrum there is mainly one pe
which does not change for different distances from the at
r ~See Fig. 11!. When the upper level is within region IV~or
V!, only diffusion field exists, and the main peak occurs

d

FIG. 11. The spectra of spontaneous emission from the exc
atom forvc1

5101b, vc2
599b, andv15101.5b ~region III! with

different distances from atom.

FIG. 12. The spectra of spontaneous emission from the exc
atom forvc1

5101b, vc2
599b, andv15101.011507b ~region V!

with different distances from atom.

d

5-9



p

d
na
e
th
d
he
-
e
on
in
e
th
x

ion
n
tio
y
th
pe
e
a
a

ra
o
sg
n
its

sed

d
f
the

r
So
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frequencyvc2
(vc1

). When the distances from the atomr

increases, the emission spectrum is narrowed due to dro
the emission spectrum within the band gap~as shown in Fig.
12!.

VI. CONCLUSIONS

We have studied the properties of the spontaneous ra
tion from a two-level atom embedded in a three-dimensio
anisotropic photonic crystal with an upper band, a low
band, and a band gap. It is found that the properties of
spontaneous emission and the emitted field are depen
strongly on the relative position of the upper level from t
two bands~five regions!. As a special cavity, a photonic crys
tal can affect the traveling behavior and the radiation sp
trum. The faster and slower decay components corresp
ing to the diffusion field and the propagating field appear
the decay process for the emitted field. The radiation sp
trum is more complex, and dependent on the location of
observer. We have also discussed the influence of the e
tence of the second band~the lower band! on spontaneous
emission, Lamb shift, the emitted field and the radiat
spectrum. The coexistence of the upper and lower ba
leads to the stronger coupling between the atomic transi
and the electromagnetic modes, and time evolution deca
the population in the excited state is faster than that in
single-band case. Due to different contributions of the up
band and the lower band, the Lamb shift becomes v
small, the amplitude of the characteristic localized field m
be zero, and the singularity caused by the localized field m
vanish in the radiation spectrum.
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APPENDIX A: THE CALCULATION OF G

We can calculateG in Eq. ~6! as follows:
04380
of

ia-
l

r
e

ent

c-
d-

c-
e
is-

ds
n
of
e
r

ry
y
y

l
f
e-

g

G5(
k

gk
2

s1 i ~vk2v1!

5
~v1d1!2

2e0\V0
(

k

~ek•ud!~ek•ud!

vk@s1 i ~vk2v1!#

5
~v1d1!2

16p3e0\
E E E d3k

vk@s1 i ~vk2v1!# F12
~k•ud!2

k2 G
5

~v1d1!2

16p3e0\
E E Eupper d3k

vk@s1 i ~vk2v1!# F12
~k•ud!2

k2 G
1

~v1d1!2

16p3e0\
E E E lower d3k

vk@s1 i ~vk2v1!#

3F12
~k•ud!2

k2 G
5G11G2 , ~A1!

where we have replaced the sum by an integral via(k
→@V0 /(2p)3#***d3k, and

~ek•ud!~ek•ud!5ud•ud2
~k•ud!•~k•ud!

k2

512
~k•ud!•~k•ud!

k2
.

Due to the existence of the upper and lower bands,G can be
written as the sum of two parts,G1 andG2. Near the upper
~lower! band edge, the dispersion relation may be expres
approximately byvk5vc1

1C1uk2k10
j u2 (vk5vc2

2C2uk
2k20

j u2). The integration overk has to be carried out aroun
the direction of eachk10

j ~or k20
j ) because of the anisotropy o

a three-dimensional photonic crystal. The angle between
dipole vector of the atom and thej th k10

j (k20
j ) is u j (w j ).

The angle between the dipole andk near k10
j (k20

j ) is re-
placed approximately byu j (w j ). We can also extend the
integration overk to infinity because the frequencies fa
away from the band edges do not contribute significantly.
we calculateG1 andG2 as follows:
G15
~v1d1!2

16p3e0\
E E Eupper d3k

vk@s1 i ~vk2v1!# F12
~k•ud!2

k2 G
5

~v1d1!2

16p3e0\
S (

j
sin2u j D E E E

j

upper d3q

~vc1
1C1uqu2!@s1 i ~vc1

2v11C1uqu2!#

52
~v1d1!2

8p2e0\C1
3/2S (j

sin2u j D i

Avc1
1A2 is2~v12vc1

!
~A2!

and
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G25
~v1d1!2

16p3e0\
E E E lower d3k

vk@s1 i ~vk2v1!# F12
~k•ud!2

k2 G
5

~v1d1!2

16p3e0\
S (

j
sin2w j D E E E

j

lower d3q

~vc2
2C2uqu2!@s1 i ~vc2

2v12C2uqu2!#

.
~v1d1!2

4p2e0\
S (

j
sin2w j D E

0

` q2dq

~vc2
1C2q2!@s1 i ~vc2

2v12C2q2!#
5

~v1d1!2

8p2e0\C2
3/2S (j

sin2w j D i

Avc2
1Ais1~v12vc2

!
.

~A3!
ne
Consequently, we have

G52
ib1

3/2

Avc1
1A2 is2~v12vc1

!

1
ib2

3/2

Avc2
1Ais1~v12vc2

!
~A4!

with b1
3/25(v1d1)2( jsin2uj /(8pe0\C1

3/2) and b2
3/2

5(v1d1)2( jsin2wj /(8pe0\C2
3/2).

APPENDIX B: THE CALCULATION OF THE
AMPLITUDES A1„T…

For convenience in the following calculation, we defi
functionsG(x), F(x), K(x), M (x), andN(x) as follows:

G~x!5x2
i

AVc1
1A2 ix2~V12Vc1

!

1
i

AVc2
1Aix1~V12Vc2

!
, ~B1!

F~x!5x2
i

AVc1
1A2 ix2~V12Vc1

!

1
i

AVc2
1 iA2 ix2~V12Vc2

!
, ~B2!
04380
K~x!5x2
i

AVc1
2Aix1~V12Vc1

!

1
i

AVc2
1Aix1~V12Vc2

!
, ~B3!

M ~x!52x1~V12Vc1
!i 1

i

AVc2
1A2 ix1~Vc1

2Vc2
!
,

~B4!

N~x!52x1~V12Vc2
!i 2

i

AVc1
1Aix1~Vc1

2Vc2
!
.

~B5!

where Vc1
5vc1

/b, Vc2
5vc2

/b, and V15v1 /b. Using

the inverse Laplace transform, the amplitudeA(t) can be
written as

A1~ t !5
1

2p i Es2 i`

s1 i`

A1~s!estds

5(
j

exj
(1)bt

G8~xj
(1)!

2
1

2p i F È i 10

(V12Vc2
) i 10

1E
(V12Vc2

) i

(V12Vc2
) i 2`

1E
(V12Vc1

) i 2`

(V12Vc1
) i

1E
(V12Vc1

) i 10

2` i 10 G 1

G~x!
exbtdx. ~B6!

Here xj
(1) are the roots of the equationG(x)50 in region

@Re(x).0# or @V12Vc1
,Im(x),V12Vc2

#. The real

numbers8 is chosen so thatx5s8 lies to the right of all the
singularity xj

(1) . The integration contours for Eq.~B6! are
shown in Fig. 13.
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1

2p i È i 10

(V12Vc2
) i 10 1

G~x!
exbtdx5

1

2p i È i

(V12Vc2
) i 1

i i
exbtdx

.
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x2
AVc1

1A2 ix2~V12Vc1
!

1
AVc2

1 iA2 ix2~V12Vc2
!

52(
j

exj
(2)bt

F8~xj
(2)!

2
1

2p i E0

2` ei (v12vc2
)texbt

x1~V12Vc2
!i 2

i

AVc1
1A2 ix1~Vc1

2Vc2
!

1
i

AVc2
1 iA2 ix

dx, ~B7!

xj
(2) are the roots of the equationF(x)50 in region@Re(x),0 and Im(x).(V12Vc2

)]. The integration contours for Eq.~B7!

are shown in Fig. 14.

1

2p i E(V12Vc2
) i

(V12Vc2
) i 2` 1

G~x!
exbtdx5

1

2p i E0

2` ei (v12vc2
)texbt

x1~V12Vc2
!i 2

i

AVc1
1A2 ix1~Vc1

2Vc2
!

1

i

AVc2
1Aix

dx, ~B8!

1

2p i E(V12Vc1
) i 2`

(V12Vc1
) i 1

G~x!
exbtdx5

1

2p i E2`

0 ei (v12vc1
)texbt

x1~V12Vc1
!i 2

i

AVc1
1A2 ix

1
i

AVc2
1Aix1~Vc1

2Vc2
!

dx, ~B9!

1

2p i E(V12Vc1
) i 10

2` i 10 1

G~x!
exbtdx5

1

2p i E(V12Vc1
) i

2` i exbt

x2
i

AVc1
2 iAix1~V12Vc1

!
1

i

AVc2
1Aix1~V12Vc2

!

dx

52(
j

exj
(3)bt

K8~xj
(3)!

2
1

2p i E2`

0 ei (v12vc1
)texbt

x1~V12Vc1
!i 2

i

AVc1
2 iAix

1
i

AVc2
1Aix1~Vc1

2Vc2
!

dx.

~B10!

In Eq. ~B10!, xj
(3) are the roots ofK(x)50 in region@Re(x),0 and Im(x),(V12Vc1

)]. The integration contours for Eq
~B10! are shown in Fig. 15. Substituting Eqs.~B7!–~B10! into Eq. ~B6!, we get

A1~ t !5(
j

exj
(1)bt

G8~xj
(1)!

1(
j

exj
(2)bt

F8~xj
(2)!

1(
j

exj
(3)bt

K8~xj
(3)!

1
1

2p i E0

`F ei (v12vc1
)te2xbt

M ~x!2
i

AVc1
2 iA2 ix

2
ei (v12vc1

)te2xbt

M ~x!2
i

AVc1
1Aix

G dx

2
1

2p i E0

`F ei (v12vc2
)te2xbt

N~x!1
i

AVc2
1 iAix

2
ei (v12vc2

)te2xbt

N~x!1
i

AVc2
1A2 ix

G dx

5(
j

exj
(1)bt

G8~xj
(1)!

1(
j

exj
(2)bt

F8~xj
(2)!

1(
j

exj
(3)bt

K8~xj
(3)!

1
1

pE0

`F i 1/2Axei (v12vc1
)t

~M ~x!AVc1
2 i !22 iM 2~x!x

1
i 21/2Axei (v12vc2

)t

~N~x!AVc2
1 i !21 iN2~x!xGe2xbtdx. ~B11!
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APPENDIX C: PROOF OF THE ROOT FOR G„x…Ä0

1. Purely imaginary root for G„x…Ä0 in the region
V1ÀVc1

ËIm „x…ËV1ÀVc2

Here we only discuss the purely imaginary root for t
following equation:

x2
i

AVc1
1A2 ix2~V12Vc1

!

1
i

AVc2
1Aix1~V12Vc2

!
50. ~C1!

If we set x5 iy (y is a real number!, the above equation
becomes

FIG. 13. The integration contours for Eq.~B6!.

FIG. 14. The integration contours for Eq.~B7!.
04380
y2
1

AVc1
1Ay2~V12Vc1

!
1

1

AVc2
1A2y1~V12Vc2

!

50. ~C2!

Obviously, there are no real roots for Eq.~C2! in regions
(2`, V12Vc1

) and (V12Vc2
, `). In region (V12Vc1

,

V12Vc2
), we define the following function:

f ~y!5y2
1

AVc1
1Ay2~V12Vc1

!

1
1

AVc2
1A2y1~V12Vc2

!
. ~C3!

We can obtain

f 8~y!.0, ~C4!

f ~y!uy→V12Vc1
5V12Vc1

2
1

AVc1

1
1

AVc2
1AVc1

2Vc2

,

~C5!

f ~y!uy→V12Vc2
5V12Vc2

2
1

AVc1
1AVc1

2Vc2

1
1

AVc2

.

~C6!

Only when f (y)uy→V12Vc1
<0 and f (y)uy→V12Vc2

>0

is there only one real root of the equationf (y)50. That
is to say, there is only one purely imaginary ro
in region V12Vc1

<Im(x)<V12Vc2
for G(x)50

as Vc2
1@1/(AVc1

1AVc1
2Vc2

)#2(1/AVc2
)<V1<Vc1

1(1/AVc1
)2@1/(AVc2

1AVc1
2Vc2

)#.

FIG. 15. The integration contours for Eq.~B10!.
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2. No complex root with Re„x…Å0 for G„x…Ä0 in the region
†V1ÀVc1

ËIm „x…ËV1ÀVc2
or Re„x…Ì0‡

Supposex5a1 ib with aÞ0 is the complex root of
G(x)50. We can analyze the root as follows:

~1! If a.0, we can obtain the regions for the pha
angles,2p/2,arg@AVc1

1A2 ix2(V12Vc1
)#,0 and 0

,arg@AVc2
1Aix1(V12Vc2

)#,p/2. Then we have

p

2
,argS i

AVc1
1A2 ix2~V12Vc1

!D ,p, ~C7!

0,argS i

AVc2
1Aix1~V12Vc2

!D ,
p

2
. ~C8!

From the equation G(x)50, we get x5@ i /(AVc1

1A2 ix2 (V12Vc1
))#2 @ i / (AVc2

1Aix1 (V12Vc2
))# .

From Eqs. ~C7! and ~C8! we know that Re$@ i /(AVc1

1A2 ix2(V12Vc1
))#2@ i /AVc2

1Aix1(V12Vc2
)#%,0,

which disagrees with the above suppositiona.0. Sox5a
1 ib with a.0 is not the root ofG(x)50.

~2! If a,0 and V12Vc1
,b,V12Vc2

, we have 0

,arg@AVc1
1A2 ix2(V12Vc1

)#,p/4 and 2p/4

,arg@AVc2
1Aix1(V12Vc2

)#,0.

p

4
,argS i

AVc1
1A2 ix2~V12Vc1

!D ,
p

2
, ~C9!

p

2
,argS i

AVc2
1Aix1~V12Vc2

!D ,p. ~C10!

From Eqs.~C9! and ~C10! we obtain Re(x)5Re$@ i /AVc1

1A2 ix2(V12Vc1
)#2@ i /AVc2

1Aix1(V12Vc2
)#%.0.

It does not agree with the suppositiona,0. So x5a1 ib
with a,0 is not the complex root ofG(x)50 in the region
V12Vc1

,Im(x),V12Vc2
.

From the above discussions, we can see that there ar
complex roots with Re(x)Þ0 for G(x)50 in the region
@V12Vc1

,Im(x),V12Vc2
or Re(x).0].

APPENDIX D: THE CALCULATION OF THE RADIATION
FIELD E„R,T…

The amplitude of the radiated field at a particular spa
point r @14# is

E~r ,t !5(
k
A \vk

2«0V0
e2 i (vt2k•r )Bk~ t !ek

5(
k

v1d1

2«0V0
e2 i (vt2k•r )F E

0

t

A~ t8!ei (vk2v1)t8dt8G
3Fud2

k~k•ud!

k2 G

04380
no

e

5 (
j ,k1( j )

v1d1

2«0V0
e2 i (vt2k10

j
•r2q1•r )

3F E
0

t

A~ t8!ei (vq1
2v1)t8dt8GFud2

k10
j ~k10

j
•ud!

~k10
j !2 G

1 (
j ,k2( j )

v1d1

2«0V0
e2 i (vt2k20

j
•r2q2•r )

3F E
0

t

A~ t8!ei (vq2
2v1)t8dt8GFud2

k20
j ~k20

j
•ud!

~k20
j !2 G

5
v1d1

16p3«0
(

j
eik10

j
•rFud2

k10
j ~k10

j
•ud!

~k10
j !2 G

3E E E d3q1e2 i (vq1
t2q1•r )

3F E
0

t

A~ t8!ei (vq1
2v1)t8dt8G1

v1d1

16p3«0
(

j
eik20

j
•r

3Fud2
k20

j ~k20
j
•ud!

~k20
j !2 G E E E d3q2e2 i (vq2

t2q2•r )

3F E
0

t

A~ t8!ei (vq2
2v1)t8dt8G . ~D1!

Hereq15k2k10
i andq25k2k20

j . The sum overk is com-
posed of two parts, which are for the upper and lower ban
respectively. Due to anisotropy, the sum overk1 (k2) for the
upper~lower! band has to be carried out around the direct
of eachk10

j (k20
j ). We have also replaced the sum overk1 ~or

k2) by integration.
SupposeA(t8)5exbt8, we have

E E E d3q1e2 i (vq1
t2q1•r )F E

0

t

A~ t8!ei (vq1
2v1)t8dt8G

5E E E d3q1

e(xb2 iv1)t1 iq1•r2e2 i (vq1
t2q1•r )

i ~vq1
2v1!1xb

5
2p

ir E2`

` e(xb2 iv1)t2e2 ivq1
t

i ~vq1
2v1!1xb

eiq1rq1dq1 , ~D2!

E
2`

` e(xb2 iv1)t

i ~vq1
2v1!1xb

eiq1rq1dq1

5
p

C1
e(xb2 iv1)t2rA((vc1

2v1)2 ixb)/C1, ~D3!

E
2`

` e2 ivq1
t

i ~vq1
2v1!1xb

eiq1rq1dq1

5E
2`

` S q1
r

2C1t De2 iC1tq2
e2 i [vc1

t2(r 2/4C1t)]

i ~vc1
2v1!1 iC1S q1

r

2C1t D
2

1xb

dq, ~D4!
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with

E
2`

0 S q1
r

2C1t De2 iC1tq2
e2 i (vc1

t2r 2/4C1t)

i ~vc1
2v1!1 iC1S q1

r

2C1t D
2

1xb

dq5
p

C1
e(xb2 iv1)t2rA[(vc1

2v1)2 ixb]/C1

3H 1 @ Im~xb!,v12vc1
#

Q@r 12tAC1~ Im2Re!Avc1
2v12 ixb# @ Im~xb!>v12vc1

#

2e2 i [vc1
t2(r 2/4C1t] 1(3/4)p iE

0

` S re(3/4)p i1
r

2C1t De2C1tr2

xb1 i ~vc1
2v1!1 iC1S re(3/4)p i1

r

2C1t D
2 dr

and

E
0

` S q1
r

2C1t De2 iC1tq2
e2 i [vc1

t2(r 2/4C1t)]

i ~vc1
2v1!1 iC1S q1

r

2C1t D
2

1xb

dq52
p

C1
e(xb2 iv1)t1rA[(vc1

2v1)2 ixb]/C1

3H Q@2tAC1~ Im2Re!Avc1
2v12 ixb2r # @ Im~xb!,v12vc1

#

0 @ Im~xb!>v12vc1
#

1e2 i [vc1
t2(r 2/4C1t)] 21/4p iE

0

` S re2(1/4)p i1
r

2C1t De2C1tr2

xb1 i ~vc1
2v1!1 iC1S re2(1/4)p i1

r

2C1t D
2 dr.

HereQ(x) is the step function forx>0,Q(x)51, andx,0,Q(x)50. So we can obtain

v1d1

16p3«0
(

j
eik10

j
•rFud2

k10
j ~k10

j
•ud!

~k10
j !2 G E E E d3q1e2 i (vq1

t2q1•r )F E
0

t

A~ t8!ei (vq1
2v1)t8dt8G

5
v1d1

8p2«0ri
(

j
eik10

j
•rFud2

k10
j ~k10

j
•ud!

~k10
j !2 G E

2`

` e(xb2 iv1)t2e2 ivq1
t

i ~vq1
2v1!1xb

eiq1rq1dq1

5
v1d1

8p2«0ri
(

j
eik10

j
•rFud2

k10
j ~k10

j
•ud!

~k10
j !2 G H p

C1
e(xb2 iv1)t2rA[(vc1

2v1)2 ixb]/C1

3Q@2tAC1~Re2Im!Avc1
2v12 ixb2r #Q@vc1

2v11Im~xb!#1
p

C1
e(xb2 iv1)t1rA[(vc1

2v1)2 ixb]/C1

3Q@2tAC1~ Im2Re!Avc1
2v12 ixb2r #Q@v12vc1

2Im~xb!#1e2 i [vc1
t2(r 2/4C1t)] 1(3/4)p i

3E
2`

` S re(3/4)p i1
r

2C1t De2C1tr2

xb1 i ~vc1
2v1!1 iC1S re(3/4)p i1

r

2C1t D
2 drJ . ~D5!
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Similarly, we get

E E E d3q2e2 i (vq2
t2q2•r )F E

0

t

A~ t8!ei (vq2
2v1)t8dt8G5

2p

ir E2`

` e(xb2 iv1)t2e2 ivq2
t

i ~vq2
2v1!1xb

eiq2rq2dq2 , ~D6!

E
2`

` e(xb2 iv1)t

i ~vq2
2v1!1xb

eiq2rq2dq252
p

C2
e(xb2 iv1)t2rA[(v12vc2

)1 ixb]/C2, ~D7!

and

E
2`

` e2 ivq2
t

i ~vq2
2v1!1xb

eiq2rq2dq25E
2`

` e2 i (vc2
2C2q2

2)t1 iq2rq2

i ~vc2
2v12C2q2

2!1xb
dq2

52
p

C1
e(xb2 iv1)t1rA[(v12vc2

)1 ixb]/C2Q@2r 22tAC2~ Im1Re!Av12vc2
1 ixb#

3Q@vc2
2v11Im~xb!#2

p

C1
e(xb2 iv1)t2rA[(v12vc2

)1 ixb]/C2Q

3@r 22tAC2~ Im1Re!Av12vc2
1 ixb#Q@v12vc2

2Im~xb!#

2
p

C1
e(xb2 iv1)t2rA[(v12vc2

)1 ixb]/C2Q@vc2
2v11Im~xb!#2e2 i [vc2

t1(r 2/4C2t)] 2(3/4)p i

3E
2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

xb1 i ~vc2
2v1!2 iC2S re2(3/4)p i2

r

2C2t D
2 dr. ~D8!

So we have

v1d1

16p3«0
(

j
eik20

j
•rFud2

k20
j ~k20

j
•ud!

~k20
j !2 G E E E d3q2e2 i (vq2

t2q2•r )F E
0

t

A~ t8!ei (vq2
2v1)t8dt8G

5
v1d1

8p2«0ri
(

j
eik20

j
•rFud2

k20
j ~k20

j
•ud!

~k20
j !2 G H 2

p

C2
e(xb2 iv1)t2rA[(v12vc2

)1 ixb]/C2Q

3@2tAC2~Re1Im!Av12vc2
1 ixb2r #Q@v12vc2

2Im~xb!#1
p

C2
e(xb2 iv1)t1rA[(v12vc2

)1 ixb]/C2Q

3@22tAC2~ Im1Re!Av12vc2
1 ixb2r #Q@vc2

2v11Im~xb!#1e2 i [vc2
t1(r 2/4C2t)] 2(3/4)p i

3E
2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

xb1 i ~vc2
2v1!2 iC2S re2(3/4)p i2

r

2C2t D
2 drJ . ~D9!

From Eqs.~B11!, ~D1!, ~D5!, and~D9!, we can calculate the radiation fieldE(r ,t). Corresponding to each term inA(t), we
can obtain

E~r ,t !5E(1)~r ,t !1E(2)~r ,t !1E(3)~r ,t !1E(4)~r ,t !. ~D10!

~1! For the pure imaginary rootx(1)5 ib (1)/b, we havevc2
,v12b(1),vc1

. The term in A(t) related to x(1) is

exj
(1)bt/G8(xj

(1)). So the termE(1)(r ,t) in the radiation fieldE(r ,t) can be obtained as follows:
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E(1)~r ,t !5
1

G8~x(1)!
@E10~r !E1

(1)~r ,t !1E20~r !E2
(1)~r ,t !#, ~D11!

with

E1
(1)~r ,t !5

p

C1
e2 i (v12b(1))t2rA(vc1

2v11b(1))/C1QS t2
r

2AC1Avc1
2v11b(1)D

1e2 i [vc1
t2(r 2/4C1t)] 1(1/4)p iE

2`

` S re(3/4)p i1
r

2C1t De2C1tr2

~vc1
2v11b(1)!1C1S re(3/4)p i1

r

2C1t D
2 dr,

E2
(1)~r ,t !52

p

C2
e2 i (v12b(1))t2rA(v12vc2

2b(1))/C2QS t2
r

2AC2Av12vc2
2b(1)D

1e2 i [vc2
t1(r 2/4C2t)] 2(1/4)p iE

2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

~v12b(1)2vc2
!1C2S re2(3/4)p i2

r

2C2t D
2 dr.

Here E10(r )5(v1d1 /8p2«0ri )( je
ik10

j
•r$ud2@k10

j (k10
j
•ud)/(k10

j )2#% and E20(r )5(v1d1 /8p2«0ri )( je
ik20

j
•r$ud

2@k20
j (k20

j
•ud)/(k20

j )2#%.

~2! For the complex rootx(2)5(a(2)1 ib (2))/b, we havev12b(2),vc2
anda(2),0. The termexj

(2)bt/F8(xj
(2)) in A(t) is

related tox(2). So the termE(2)(r ,t) in the radiation fieldE(r ,t) can be written as

E(2)~r ,t !5
1

F8~x(2)!
@E10~r !E1

(2)~r ,t !1E20~r !E2
(2)~r ,t !#, ~D12!

with

E1
(2)~r ,t !5

p

C1
e2 i (v11 ix(2)b)t2rA(vc1

2v12 ix(2)b)/C1QS t2
r

2AC1~Re2Im!Avc1
2v12 ix (2)b D

1e2 i [vc1
t2(r 2/4C1t)] 1(1/4)p iE

2`

` S re(3/4)p i1
r

2C1t De2C1tr2

~vc1
2v12 ix (2)b!1C1S re(3/4)p i1

r

2C1t D
2 dr,

E2
(2)~r ,t !5

p

C2
e2 i (v11 ix(2)b)t1rA(v12vc2

1 ix(2)b)/C2QS t1
r

2AC2~Re1Im!Av12vc2
1 ix (2)b D

1e2 i [vc2
t1(r 2/4C2t)] 2(1/4)p iE

2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

~v11 ix (2)b2vc2
!1C2S re2(3/4)p i2

r

2C2t D
2 dr.

~3! For the complex rootx(3)5(a(3)1 ib (3))/b, we havev12b(3).vc1
, anda(2),0. We can getE(3)(r ,t) in the radiation

field E(r ,t),

E(3)~r ,t !5
1

K8~x(3)!
@E10~r !E1

(3)~r ,t !1E20~r !E2
(3)~r ,t !#, ~D13!
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with

E1
(3)~r ,t !5

p

C1
e2 i (v11 ix(3)b)t1rA(vc1

2v12 ix(3)b)/C1QS t2
r

2AC1~ Im2Re!Avc1
2v12 ix (3)b D

1e2 i [vc1
t2(r 2/4C1t)] 1(1/4)p iE

2`

` S re(3/4)p i1
r

2C1t De2C1tr2

~vc1
2v12 ix (3)b!1C1S re(3/4)p i1

r

2C1t D
2 dr,

E2
(3)~r ,t !52

p

C2
e2 i (v11 ix(3)b)t2rA(v12vc2

1 ix(2)b)/C2QS t2
r

2AC2~Re1Im!Av12vc2
1 ix (3)b D

1e2 i [vc2
t1(r 2/4C2t)] 2(1/4)p iE

2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

~v11 ix (3)b2vc2
!1C2S re2(3/4)p i2

r

2C2t D
2 dr.

~4! For the integration term inA(t), we have

E(4)~r ,t !5
E10~r !

p E
0

`F i 1/2AxEA1
(4)~r ,t !

@M ~x!AVc1
2 i #22 iM 2~x!x

1
i 21/2AxEB1

(4)~r ,t !

@N~x!AVc2
1 i #21 iN2~x!xGdx

1
E20~r !

p E
0

`F i 1/2AxEA2
(4)~r ,t !

@M ~x!AVc1
2 i #22 iM 2~x!x

1
i 21/2AxEB2

(4)~r ,t !

@N~x!AVc2
1 i #21 iN2~x!xGdx, ~D14!

with

EA1
(4)~r ,t !5e2 i [vc1

t2(r 2/4C1t)] 1(3/4)p iE
2`

` S re(3/4)p i1
r

2C1t De2C1tr2

2xb1 iC1S re(3/4)p i1
r

2C1t D
2 dr,

EB1
(4)~r ,t !5

p

C1
e(2 ivc2

2xb)t2rA(vc1
2vc2

1 ixb)/C1QS t2
r

2AC1~Re2Im!Avc1
2vc2

1 ixb D
1e2 i [vc1

t2(r 2/4C1t)] 1(3/4)p iE
2`

` S re(3/4)p i1
r

2C1t De2C1tr2

i ~vc1
2vc2

!2xb1 iC1S re(3/4)p i1
r

2C1t D
2 dr,

EA2
(4)~r ,t !52

p

C2
e(2 ivc1

2xb)t2rA(vc1
2vc2

2 ixb)/C2QS t2
r

2AC2~Re1Im!Avc1
2vc2

2 ixb D
1e2 i [vc2

t1(r 2/4C2t)] 2(3/4)p iE
2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

2xb1 i ~vc2
2vc1

!2 iC2S re2(3/4)p i2
r

2C2t D
2 dr,
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EB2
(4)~r ,t !5e2 i [vc2

t1(r 2/4C2t)] 2(3/4)p iE
2`

` S re2(3/4)p i2
r

2C2t De2C2tr2

2xb2 iC2S re2(3/4)p i2
r

2C2t D
2 dr.

APPENDIX E: THE CALCULATION OF THE EMISSION SPECTRUM S „r, v…

The Fourier transform of the radiation field is

F~r ,v!5
1

2pE0

`

E~r ,t !eivtdt. ~E1!

So the emission spectrumS(r ,v) can be obtained,S(r ,v)5uF(r ,v)u2. From Eqs.~B11! and~D1!, F(r ,v) can be rewritten as
the sum of four parts, which come from the four terms of Eq.~B11!:

F~r ,v!5F1~r ,v!1F2~r ,v!1F3~r ,v!1F4~r ,v!. ~E2!

~1! For the pure imaginary rootx(1), we have

F1~r ,v!5
E10~r !

2pG8~x(1)!
E

2`

` q1eiq1rdq1

i ~vq1
2v1!1x(1)b

E
0

`

~e(x(1)b2 iv1)t1 ivt2e2 ivq1
t1 ivt!dt

1
E20~r !

2pG8~x(1)!
E

2`

` q2eiq2rdq2

i ~vq2
2v1!1x(1)b

E
0

`

~e(x(1)b2 iv1)t1 ivt2e2 ivq2
t1 ivt!dt

5
E10~r !

2pG8~x(1)!
E

2`

` q1eiq1rdq1

i ~vq1
2v1!1x(1)b

lim
s→01

F 21

2s1 i ~v2v12 ix (1)b!
2

21

2s1 i ~v2vq1
!G

1
E20~r !

2pG8~x(1)!
E

2`

` q2eiq2rdq2

i ~vq2
2v1!1x(1)b

lim
s→01

F 21

2s1 i ~v2v12 ix (1)b!
2

21

2s1 i ~v2vq2
!G

5
E10~r !

2pG8~x(1)!
lim

s→01

E
2`

` q1eiq1rdq1

@2s1 i ~v2v12 ix (1)b!#@2s1 i ~v2vq1
!#

1
E20~r !

2pG8~x(1)!
lim

s→01

E
2`

` q2eiq2rdq2

@2s1 i ~v2v12 ix (1)b!#@2s1 i ~v2vq2
!#

52
E10~r !

2C1G8~x(1)!
lim

s→01

f 1~v!

2s1 i ~v2v12 ix (1)b!
1

E20~r !

2C2G8~x(1)!
lim

s→01

f 2~v!

2s1 i ~v2v12 ix (1)b!
, ~E3!

whereQ(x) is the step function. The functionsf 1(v) and f 2(v) are defined as

f 1~v!5e2rA(vc1
2v)/C1Q~vc1

2v!1eir A(v2vc1
)/C1Q~v2vc1

!,

f 2~v!5e2rA(v2vc2
)/C2Q~v2vc2

!1e2 ir A(vc2
2v)/C2Q~vc2

2v!.

~2! For the complex rootx(2)5(a(2)1 ib (2))/b, we havev12b(2),vc2
anda(2),0.

F2~r ,v!52
E10~r !

2C1K8~x(2)!

f 1~v!

i ~v2v12 ix (2)b!
1

E20~r !

2C2K8~x(2)!

f 2~v!

i ~v2v12 ix (2)b!
. ~E4!

~3! For the complex rootx(3)5(a(3)1 ib (3))/b, we havev12b(3).vc1
anda(3),0.
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F3~r ,v!52
E10~r !

2C1F8~x(3)!

f 1~v!

i ~v2v12 ix (3)b!
1

E20~r !

2C2F8~x(3)!

f 2~v!

i ~v2v12 ix (3)b!
. ~E5!

~4! For the integration term inA(t), we have

F4~r ,v!5
1

pE0

` 2 i 1/2Axdx

@M ~x!AVc1
2 i #22 iM 2~x!x

FE10~r !

2C1

f 1~v!

i ~v2vc1
1 ixb!

2
E20~r !

2C2

f 2~v!

i ~v2vc1
1 ixb!G

1
1

pE0

` 2 i 21/2Axdx

@N~x!AVc2
1 i #21 iN2~x!x

FE10~r !

2C1

f 1~v!

i ~v2vc2
1 ixb!

2
E20~r !

2C2

f 2~v!

i ~v2vc2
1 ixb!G . ~E6!
e

APPENDIX F: PROOF OF Ve
„2…ÌVf2

„2… AND Ve
„3…ÌVf1

„3…

1. Proof of ve
„2…Ìv f2

„2…

When the upper level is within region II, we have th
complex rootx(2)5(a(2)1 ib (2))/b with v12b(2),vc2

, and

a(2),0.
Suppose

Av12vc2
1 ix (2)b5p2 iq. ~F1!

So we can obtain

p22q25v12vc2
2b(2),

pq52a(2)/2, ~F2!

and q.p.0 due to v12vc2
2b(2),0 and a(2),0. The

energy velocityve
(2) and the front velocityv f 2

(2) can be written
as

ve
(2)52a(2)AC2/Re~Av12vc2

1 ix (2)b!52a(2)AC2/p,
~F3!

and

v f 2
(2)522AC2~ Im1Re!Av12vc2

1 ix (2)b

522AC2~p2q!. ~F4!

So we have

v f 2
(2)522AC2~p2q!

522AC2p2AC2a(2))/p

522AC2p1ve
(2),ve

(2) . ~F5!
04380
2. Proof of ve
„3…Ìv f1

„3…

Similarly, there is the complex rootx(3)5(a(3)

1 ib (3))/b with v12b(3).vc1
, and a(3),0 as the upper

level is within region III. Suppose

Avc1
2v12 ix (3)b5p1 iq. ~F6!

We have

p22q25vc1
2v11b(3),

pq52a(3)/2, ~F7!

and q.p.0 due to vc1
2v11b(3),0 and a(3),0. The

energy velocityve
(3) and the front velocityv f 1

(3) can be rewrit-
ten as follows:

ve
(3)52a(3)AC1/Re~Avc1

2v12 ix (3)b!

52a(3)AC1/p, ~F8!

v f 1
(3)52AC1~ Im2Re!Avc1

2v12 ix (3)b

52AC1~q2p!. ~F9!

In results, we obtain

v f 1
(3)52AC1~q2p!

5a(3)AC1/p22AC1p

5ve
(3)22AC1p,ve

(3) . ~F10!
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