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Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals
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We investigate the spontaneous radiation from a two-level atom embedded in a three-dimensional aniso-
tropic photonic crystal with two bands. The properties of the spontaneous emission are dependent strongly on
the position of the upper level. The faster and slower decay components can occur in the emitted field, but it
does not mean the existence of both accelerated and inhibited components for the atomic population decay. The
radiation spectrum is dependent on the location of the observer. We also study the influence of the existence of
the two bands on spontaneous emission, Lamb shift, the emitted field, and the radiation spectrum.
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[. INTRODUCTION taneous emission, Lamb shift, the emitted field and the ra-
diation spectrum are investigated. As to the time evolution of
Photonic crystals investigated initially by Yablonovitch the atomic population in the excited state, the effect of the
and independently by John are periodic dielectric structuredpwer band is the same as the upper band because of the
which can lead to one or more than one band gap in theymmetrical distribution of density of states. Comparing to
frequencies of electromagnetic radiation allowed to exist andhe single-band case, the coexistence of the upper and lower
propagate inside the mater{dl,2]. The electromagnetic field bands leads to a faster decay of the population due to the
with frequencies being within the band gap cannot propagatetronger coupling between the atomic transition and the elec-
in all directions. The dispersion characteristics of radiationtromagnetic modes. The contribution of the upper band to
waves traveling in a photonic crystal are changed, and theamb shift is opposite to that for the lower band, and the
mode density of the electromagnetic field is deformed in_amb shift in the two-band case is smaller than that in the
comparison with that for free space vacuum field. This isgingle-band case. The amplitude of characteristic localized
because spontaneous emission from an excited atom is dga|d is reduced due to existence of two bands. In a more
pendent not only on the properties of the atom but also 0Ryecia| case, the amplitude of the characteristic localized

the nature O.f the surrounding gnvironment, specificallyﬁeld may be zero, and the singularity due to the localized
on the density of electromagnetic vacuum modes. Thefield may vanish in the radiation spectrum

change of mode density and the inhibition of electromagnetic Recently, there has been considerable experimental work

wave propagation in photonic crystals provide a way to con- . . . . i
trol spontaneous emission, which may facilitate the advanceX" radiative emission from active material embedded photo
ic crystals with pseudogagd43]. Therefore, the traveling

ment of optics and optoelectronics, and has many importarB havior of th tted field and th diat
applicationg3]. Thus, the spontaneous emission from an ex-2€navior of the emitted field and the radiation spectrum are

cited atom embedded in photonic crystals has attracted a I§iScussed. Most interestingly, the faster and slower decay
of attention in recent yeaf@—12). In the previous studies COmponents corresponding to the diffusion field and the
for atoms embedded in photonic crystals, many interestin@ropagating field, respectively, have then trail in the decay
effects have been discovered when the resonant transitidifocess for the emitted field. Differing from the atomic decay
frequencies of the atoms are near the band edge, for exampig, free space or in a homogeneous medium, the coexistence
localization of light[2,4], photon-atom bound stat¢§—9], of the faster and slower decay components of the emitted
suppression and even complete cancellation of spontaneofisld in photonic crystals does not mean the existence of both
emission[8], the enhancement of spontaneous emission inaccelerated and reduced decay rates for the atomic decay
terference[7,9], coherent control of spontaneous emissionprocess of the excited-state population. In addition, the part
[10], the occurrence of dark lines in spontaneous emissionf the energy of the emitted field with frequencies being
[11], the quantum Zeno effect, the quantum anti-Zeno effectvithin the band gap cannot propagate in photonic crystals,
in photonic crystal$12], etc. the radiation spectrum of the excited atom in a photonic
In many earlier studies, only one bafusually an upper crystal is more complex, and depends on the location of the
band for photonic crystals was considered. When the atomimbserver.
resonant transition frequency is very close to the edge of one The outline of this paper is as follows. In Sec. Il, the
band and the band gap is relatively large, the one-banchodel and the basic theory to investigate the spontaneous
model is a good approximation. If the band gap is narrow, weemission are given. In Sec. lll, the properties of the time
must consider both upper and lower bands. In the presemvolution of the population trapped in the excited state, and
paper, we study the spontaneous emission from a two-levehe influences of the two bands on the population decay and
atom embedded in an anisotropic photonic crystal with arthe Lamb shift are studied in detail. In Sec. IV we discuss the
upper band, a lower band, and a band gap. The influence gffoperties of the emitted field and its traveling behavior. The
the existence of the second bafibde lower bangon spon-  spontaneous spectrum is calculated in Sec. V.
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Il. BASIC THEORY

J )
—A.(t)=— gile1=wdtp (1), 4
We consider a two-level atom with an upper lej&l and aJt 1) Ek 9 <t “a

a lower level|0) embedded in a three-dimensional aniso-

tropic photonic crystal, which has an upper band, a lower 9

band, and a forbidden gap. The cutoff frequencies of the —By(t)=g,e ' (“17 @A (1). (4b)
upper band edge and the lower band edgeai%rleand We,, Jt

respectively. The gap Widthucl—wcz is assumed much i . 5 dih bstituting i
smaller tharw. , w. . The upper level is coupled by vacuum Formally integrating Eq(4b), and then substituting into Eq.
1 6 (4a), we have

modes to the ground level. The resonant frequency between

levels|1) and|0) is w4, which is assumed to be near the two .

band edges. 'I_'he energy o_f the lower lej@) is sgt to be —A(t)= _E gif ei(wlfwk)(t—t’)Al(t/)dtr. (5)
zero. Performing the rotating wave approximation for the ot K 0

interaction, the Hamiltonian of this system takes the form

With the help of the Laplace transform, we can solve the
- n + above equation. The Laplace transfoAy(s) for the ampli-
H=fo|1X1] ; handiby tude A(t) is

+iﬁ§ 9k(by0)(1|—by|1)(0]), 1)

Ai(s)= (6)

1
st
whereby (b]) is the annihilation(creation operator for the 5 ) ) ) )
kth reservoir mode with frequenay, . The coupling con- Wherel'=2,gi/[s+i(w,—w1)]. Using the dispersion rela-
stant between the atomic transitioh)—|0) and thekth tion (2),_and converting the mode sum over transverse plane
electromagnetic mode ig = w,d, /% /—ﬁ/(ZsokaO)Q(-ud, waves mtq %/r; integral an_d performing th_e 3|/r21tegral, we
wherek represents both the momentum and polarization offavel’= =i B[ Jwc, +\/—is— (01— wc ) [+1 8771 | oc,
the modesd; anduy are the magnitude and unit vector of + \/is+(w1—wC2)], with 2/2=(w1d1)22jsin20j/
the atomic dipole moment of the transitiov is the quan- (8¢ #C3¥?) and BS/ZZ(wldl)szsinZ% I8mefiCY?) (see
tization volume,g are the transverse unit vectors for the Appendix A). Here 6; (¢;) is the angle between the dipole
reservoir modes, and, is the Coulomb constant. For & yector of the atom and thigh ki, (jth khg). The phase angle
D e i 7 1 si deined by <arge) . and e phase anges o

- : ———— ot (o :
two band edges could be expressed approxima&glpy ‘/ Is = (w1 wfl) and ‘/ls (1 wCZ) are defined by
—77/2<arg[‘/—IS—(wl—wCI)]<7T/2, and — /2

wcl+Cl|k—k‘10|2 (0> o), <arq \fis+ (w1~ wc)]<m/2. The amplitudeA,(t) can

W= i (20 then be obtained by the inverse Laplace transform
K wCZ—C2|k—k'20|2 (0 < wcz). y P
- . _ . 1 o+ie
Herek’, and kb, are two finite collections of symmetry re- A(t)= 2—f I A, (s)e’tds, (7
Tl ) g—io

lated points, which are associated with the upper and lower
band edges, respectivelyC; and C, are the model-
dependent constants. where the real number is chosen so thad= o lies to the
We assume the atom initially in the upper leyg}, and  right of all the singularitiegpoles and branch pointsf the
the radiation field is in the vacuum state. The wave functiorfunction A;(s). For the sake of simplicity, we assung
of the system at arbitrary timemay be written as = B,=B. With the help of complex function integration and
the residue theorem, we can obtain the expression of the

[9(0)=As(e” [ 1{0})+ X Bytie”|0{1), amplitudeAs (1),

(3 R IR PRI
_ A()=2 PN NP2 By 73 NP2 R N
with A;(0)=1 andB,(0)=0. The state vectorl {0}) de- G T OFOqY) T KNG
scribes the atom in its excited stafe with no photons in all 12 =i
. 1 (= i \/;e'(“)l “’cl)t
reservoir modes, and the state ved@f{1,}) represents the + = f
atom in its ground statf0) and a single photon ikth mode mJo [M(x)‘/ch—i]Z—iM 2(x)x

with frequency w,. From the Schidinger equation

i7i(alat)|¢(t))=H|(t)), we can obtain the following first- i 12, [y di(01— o)t "
order differential equation for the amplitudes,(t) and + —— e *Pldx, (8
B (1): q plitucles, () [N(X) O, +iT2+iNZ(X)X
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4 —ooTTE T . The amplitude of the radiation field at a particular space
3 [s0.0117 /V// i pointr can be calculated from,(t) via A(t) in the standard
® 00116 // m A way (see Appendix D[14]:
2% 501152 T
L 71000 1.02.1.04 1.06° ___.——"" hwg .
o 1t @0 . Er)=2 \/5 e @ Bube. (9
A% e - [ 280V0
¢ oz | .
& e The emission spectrur§(r,w) can be obtained by using
Fr _ e e 1 the Fourier transform of the radiation fielsee Appendix E
o 3-0.01335Ps.. 1 -G
217 0013500 S e ] r,o)=|F(r,w)f 10
s -c, .0.01365 \Q‘;\ 1l ‘t S( ’ ) | ( ' )l! ( )
L LSRR with F(r,w)=(1/2m) [E(r,t)e'“'dt.
0.0 05 1.0 15 2.0 2.5
(@2 IIl. SPONTANEOUS EMISSION
FIG. 1. Five-region distribution for roots withw, + w, The influence of the two bands on the spontaneous decay
=2008. 1" can be observed by examining the time evolution of the

population in the upper level, which is
where these functiondl(x), N(x), G(x), F(x), andK(x) )
are defined in Appendix B(l(l)are the roots of the equation P(t)=[As(1)[* (1)

G(9=0 (Ig region[Re()>0] or [Ql_ chflm_(x)<91 The properties of the excited atomic population decay is de-
—Q,], x; are the roots of the equatidi(x) =0 inregion  paendent on the relative position of the upper level from the
[Re(x)<0 and Img)>(Q;— )], andx{*) are the roots  two bands. When the upper level is in the region |, we have
of K(x)=0 in region[Re(x)<0 and Im§)<(Q;—Q,)].  one pure imaginary roat™=ib™/ with we,<w,—b®
G'(x), F'(x), andK'(x) are derivatives of those functions <wc,. The first and last terms in the right of E(@) exist,
G(x), F(x), andK(x), respectively. and other terms are replaced by zero. The corresponding
From the expression of the amplitudg(t), we can see dressed state caused by the interaction between the atom and
that these roots are important in the study of the dynamicaits own radiation occurs at frequenay;—b™®, which is
properties of the excited atom. The number and characterisvithin the band gap. The dressed state without decay leads to
tics of these roots are dependent on the separation of the twabfractionalized steady-state population trapped in the upper
bands and the relative position of the upper level of the atonfevel. The two branch cut contributions yield two quasi-
from the two band edges. With the help of numerical calcu-dressed states at the two band-edge frequelm;jleand W,
lation, we found that there is at most only one root: one purgespectively. The quasidressed states display behavior of
imaginary root or one complex root. According to the num-power-law decay, and a fractionalized population in the up-
ber and the value of the root, we have five regions in thger level decays to the lower level. When the upper level is
space of (25, Q¢ — Q). In Fig. 1 we plot the five regions iy region 11 (Ill), we have one complex root®=(a®
for Q¢+ Qc,=200. In region I, there is one pure imaginary +ib®)/g [x¥=(a®+ib®)/g] with w;~b@<w,, (@,
root with its imaginary part in the rangeQq—Q.,Q; —b(3)>wcl) anda®<0 (a®<0). The secondthird) and
—QCZ). In region I, there is one complex roat?) with a  last terms in the right of Eq(8) remain, and other terms
negative real part and an imaginary part larger tifap vanig,h. The dressed state occurs at frequengy b®) (w,
—Q,,. In region Ill, we have one complex roat®) with —b®)y. Due to the fact that frequencies of the dressed state
negative real part and an imaginary part smaller thn and the quasidressed state are within the traveling bands, the

—Q... No root exists in regions IV and V. For the pure upper-level populatlon decays. A.S the upper Ieve] In region I
, 1 ) , X (1), the amplitude of the quasidressed state is negligibly
imaginary root, it can'be proven analytically that there is oneg o] compared to the dressed state, and the quantum inter-
and only one purely imaginary root as ference between the dressed state and the quasidressed state
1 1 can be neglected. The spontaneous decay of the excited state
Q.+ _ displays a simple exponential decay behavior after a very
2 \/ch+ \/ch—QCZ ‘/ch short time. When the upper I_evel is ?n region (V), ther_e is
no root. Only the last term in the right of E¢B) remains.

1 1 The quasidressed state at frequemaé (“’01) is the only
= = —
\Ql\ﬂcl+ /—QC /—QC + /—QC —Q, ' part. The upper-level population decays in the manner of a
1 2 ! 2 power-law decay. In Fig. 2, we plot the time evolution of the
If xi) does not exist, the corresponding term in E&).will ~ Upper-level population withu, =1018 and w.,=998 for
be replaced by zero. The last term in the right of E8).  different relative positions of the upper level from the two
comes from the single-valued branch cut contribution. bands. Comparing Fig.(@ with Fig. 2(b), it is found that the
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FIG. 2. The excited-state population as a function of the scaled 0 ' . .
time gt for w, =1018, w,,=998, and different positions of the 0 50 100 150 200
upper level(a) w,=1028 (solid curve and 101.B (dashed curve Bt
in region Ill, ;=101.01150B (dotted curve in region V, w;
=1018 (dash-dotted curyeand 10@ (dash-dot-dotted curyen FIG. 3. (a) The excited-state population afig) the decay time

region I; (b) w,;=988 (solid curveg and 98.8 (dashed curvein as functions of the scaled tinggt for o;=w., = 1014 and different
region I, »,=98.986 72 (dotted curvg in region IV, andw; o, =100.58 (solid curve, 1008 (dashed curve 993 (dotted

:'99/|3 (dash-dotted curyeand 10 (dash-dot-dotted curyen re- curve, and 973 (dash-dotted curye 953 (dash-dot-dotted curye
gion I.
root. Ast—oo, no population is trapped in the upper level,

time evolution of the excited-state population at symmetricaP,=0. As w, +[ 8% (\Jwe + /oo, — we )1 (8 [, )

relative positions of the upper level from the gap center are_ = _ + 312 [ 32 o + Jo. —w. )] (re-
almost the same. Due to the symmetrical distribution of den-_ .+~ ¢ (BT we,) ~L B (Jwe, * o, l)wc )
on ), there is only one pure imaginary rod). We have

sity of states, the influence of the lower band and the uppeg —1/G'(xV)[2. In Fig. 5, we plot the steady-state popu-

band on the atomic dynamic property is the same. e .
y property tion in the upper level as a function of the upper-level

Because of the existence of both the upper and lowe
PP equency with different widths of the band gap. It can be

bands, the coupling between the atomic transition and th S !
electromagnetic modes strengthens, and the upper-lev _und that the steady-state population increases with the

population decay is faster compared with the single—banéf"Idth of the band gap. The position of the upper-level fre-
case. In Fig. 3 we plot the time evolution and decay time ofdUency for the maximum upper-level population is close to

; ; : . he center of the band gap.
the excited-state population for fixed positions of the uppett ;
bandw,, = 1018 and the upper leveb,=1013, and differ- We consider also the effect of the lower band on the Lamb

ent posmons of the lower band. It is obvious that the popu- shift of the atom. The Lamb shift is the difference between
he f f th Aiee f f th -
lation decay becomes slower as the width of the band gat e frequency of the dressed st requency of the emit

) When th level i band ed fd field and the upper-level frequency minus the contribu-
InCcreases. €n the upper level 1S near one band €dge ff, q,e to mass renormalization. The renormalization con-
within band gap, the influence of the second band on the

population decay is more obvious. On the other hand, wheH'bUt'On is SIm(x'), with X’ being the root off(x)=0
the upper level is deeply in one band, the high density ofvhereF(x) is the same a& (x) with Q, replaced by zero.
modes causes a strong coupling between the atom and tf@r different region of the upper-level position, the Lamb
electromagnetic modes of this band. Consequently, the influshift A can be written as

ence of the another band is sm@bk shown in Fig. % p (1) _ / ;
The steady-state populatid®, can be obtained from Eq. Im(x ) )= Imx’) (reg?on b

(8). When time goes to infinity, only the first term in E@) Im(x®)~Im(x") ~ (region I)

contributes to the population, which stems from the pure A=p* Im(x®)—Im(x’)  (region Ill) 12

imaginary root. When  w;1<wc, +[B¥ (o, 01— Qe —Im(x') (region IV)
174, i

oo, ~we) 1= (B Jwe,)  or wy>we,+ (8% \fw,) o _

—[B¥(\Jwe,t \Joc,— )], there is no pure imaginary [ 2178, ~IM(X")  (region V).
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pt level position with different band gap$a) w.,=1018 and o,

) . ) =100.58 (solid curveg, 1008 and (dashed curye 998 (dotted
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In Fig. 6, we plot the Lamb shift with different width of the position of the upper band, and the Lamb shift(A <0)
band gaps as the upper level is varied from being below théecreases with the width of the band gap as the upper level
gap to above the gap. In Fig(&, we fix the upper band and within the lower band. The upper band causes the Lamb shift
change the position of the lower band. When the upper leveh increasing(the absolute valu¢A| of the Lamb shift de-

is within the fixed upper band, the effect of the lower bandcreasing. Due to the opposite effects for the upper and lower
on the Lamb shift becomes weak as the width of the bandands, the absolute valya| of the Lamb shiftA in the

gap increases, while the Lamb shift(A>0) increases with  two-band case is more smaller than that in the single-band
the width of the band gap. It is to say that the Lamb shift case.

decreases due to existence of the lower band. On the con-

trary, in Flg gb) we fix the lower band and Change the IV. THE EMITTED FIELD

From Egs.(8) and(9) we can calculate the emission field

e g ” :'— q ~", h under the approximatiok- r>1 [14]. Corresponding to four
0.81 : ' i i terms of Eq.(8), the radiated field can be also written as the
: i sum of four parts,
0.6 : :
.° i | E(r,t)=E®(r,t)+E@(r,t) + E®)(r,t) + EW(r,1).

0.41 i i (13

0.21 : i EM)(r,t) comes from the pure imaginary roof®, and
P P E@)(r,t) [or E®)(r,t)] stems from the complex roat®

0056 98 100 102 104 (x(®)). If the pure imaginary rootor the complex rodtdoes

/B not exist, the relevant term in E@13) will be replaced by
zero. E¥)(r,t) comes from the last ternthe power-law-
FIG. 5. The steady-state atomic population as a function of thedecay termin Eq. (8) and always exists.
position of the upper level with different band gaps, When the upper level is within region |, we have one pure
=100.8, ®,,=99.88 (solid cuve, w,=1018, =998 imaginary root xM=ibM/g, and E(r,t)=EW(r 1)
(dashed curve w, =1028, w, =983 (dotted cunvg o,  +E®(r,t). From Egs(D11), (D12), and(D15) we can re-
=1038, w.,=97B (dash-dotted curve write the emission fieldE(r,t) as follows:
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E(r,t)=EF(r,t) + ED(r,t) + Eqa(r,t) + ES(r,1),

14
with
ry = . 1 r
(1)(r t)= Ead 0T T ai(wy b )trlll®<t__),
G'(x) Cy vid
EQr, e — 22 T i by |
G'(x) Cz vy
Equ(r,) =EX(r 1),
EQ Bl @
0= oy )
Eao(r)
e ad (1)
G’(x(l))e 2Jo(r,t,x),
I kJ kJ -u ]
Erdn)= — 0L S gider| - a0 te)
8meori | (k)2
[ Lk ud ]
Epr)= 2 kb T Uy— kzo(k-zo Ug)
8m2eori ] I (kho)?
Ja(r,t,x)
- [pe®)7 + (r/2C,t)Je~ Cat®
:f de,
- S (3/4ymi
(e, —w;—iXB)+Cy| pe I+2C1t)
(r,t,x)
(pe—(3/4)7ri_2C t)e_Cthz
* 2
= dp.
2
o (w1 +iIXB—we)+Cy pe_(:"/“)”i—L
C2 2C,t
Here  ¢=—i[wc t—(r?/4Cit)]+imi,  ¢o=—i[wet

+(r?/4C,t)]— i,
tion. The frequency of both the field&1)(r,t) andE{X(r,t)

is w;—b®, which is within band gap. Obviously, those
fields represent localized fields without decay in time. The

amplitudes of the localized field&{)(r,t) and E3)(r,t)

and O (x) is the Heaviside step func-

PHYSICAL REVIEW A68, 043805 (2003

sion of Eg44(r,t) is given in Eq.(D15), which comes from the
two branch-point contributions, whilE{S)(r,t) comes from
the coherent terne®2YG’ (xV)) in Eq. (8). .
Supposing the symmetry i space around points,, are
the same as related 1d,,, we haveE;((r)=E,yr). The
phase difference between the localized fiel$(r,t) and
EX(r,t) is 7. Consequently, the amplitude of the localized
field EP(r,t)+E2)(r,t) becomes small due to exist-
ence of the two bands. For special caseg=C,=C
and w;=wo=(w¢, + wc,) 12+ B¥[ o, + [(we, — 0c,)/2]
B[ o, + ‘/(wc1 wcz)/ 1, we have I;=1,, v{}
—v%), (1)(r t)~|—E(1)(r t)=0. This result is different from
that for single-band case. We would like to emphasize that
the population calculation is exact, while in the calculation
for the field an approximatiok-r>1 is taken, i.e., the result
for the radiation field is far away from the atom. The vanish-
ing of the far away field does not mean no field very near the
atom. Therefore, we have that the characteristic localized
field far away from the atom may vanish and the steady-state
population trapped in the upper level has the maximum.
When the upper level gets into region Il, we have only
one complex rootx®=(a®@+ib@)/B with w,;—b?
<w,, and a¥<0. The radiation fieldE(r,t)=E®)(r,t)
+E@(r,t) and can be rewritten gsee Eq(D13)]

E(r,0)=EZ(r,t) +EQ(r,t) + Egy(r,t) + EG(r,1),

drop exponentially with increasing distance from the atom as

e "' ande™"'2, respectively. The localization lengths are

|1: \/Cll(a)cl—wl-i-b(l)) and|2: \/Czl(a)l—wcz—b(l)),
and the front velocities of the localized fields apé}
=2,/Cy(we,~ w1 +bM) andv{z)=2,/Cy(w; — w,~b™).

From the calculation of the localized f|eIdE(1)(r t) and
(1)(r t) come from the contribution of the upper and lower

bands, respectively, whilEy(r,t) andEE)(r,t) are the dif-

fusion fields, which have power-law decay and are withou
fixed phase difference between two space points. The expreand the

(15
with
(2)( t)= Eior) =
F/(x(3) Cl
w @i+ ix@pyt—r [(0e,~ w1~ ix@p)ic,
oo ]
of?
E(Z)( t)_ Ezo(r) a
(X(z)) C2
x g~ i(01-b@) (=) +a@(t-rn ) g I—L ,
»@
2
Equ(r,)=EW(r,t),
EQ Eolr) b1 @)
7(rt)= (x(z))e J(r,t,x')
Ezo(r)
b2 (2)
e?2J,(r,t,x'),
Frx®) 72
where v{?= (w1~ b®)CylIm(\fw;~ wc, +ix
gnergy velocity )= —al?\/Co/Re(\Jw;~ w, +ix
front velocities  v{%)= 2\/_(Re
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—1m) oo —w—ix?B and v{d)=-2C,(Re  *Re) w;—w, +ix™WB. The frequency of both fields
+1m) \Jo1— wc, +ixPB. The frequency of bottE(d(r,t) EC(r,t) andE[(r 1) is @, —b®>w, , which is within the
and Egz)(r,t) is w;—b®), which is within the lower band. upper band.EEf‘)(r,t) comes from the contribution of the
E@)(r,t) comes from the contribution of the upper band, andupper band, and represents a propagating field with the en-
is localized around the atom. If the lower band does no€rgy velocityvS). E{P(r.t) is the localized decayed field
exist, the frequency will be in band gap, and the fieldand can be neglecte&(r,t) and ES(r,t) are the diffu-
E{2)(r,t) will be localized field without time decay. Now the sion fields.
lower band exists, and the frequency BIf)(r,t) is within As the upper level is in region IV or V, no pure imaginary
the lower band. In result, the amplitude Bf2)(r,t) drops ~ ©OF complex root exists. The emitted fie(r,t)=E“)(r,1)
exponentially with increasing time and distance from the=Ea1(r,t). Only diffusion field exists in regions IV or V.
atom, i. e.,E@)(r,t) is a localized decaying field. For large R€gions IV and V are caused by the anisotropic dispersion
2) relation and do not exist for an isotropic dispersion relation.

time t or distancer, the amplitude oE{2)(r,t) will be ver . . : ) . . :
P ia (1Y) y For isotropic case, the one-dimensional dispersion relation

2) .
Emt‘?‘"’ ar;dﬂ::ar: be n%glegtdﬁlf, (.0 stetms from the Eont;'. IOlresults in a singularity in the density of std®OS), and any
ution ot the lower band. 1L represents a propagating leidy, o potential will lead to localizatiofl5]. So localized

which can travel away coherently from the atom in the formfield always exists in the isotropic case. For anisotropic case,

. . s (2)

of a t[%velmg pulse with the energy yelocu& - Ea1(Y)  there is no singularity in the DOS, and localization requires a

andEgy(r,t) represent the diffusion fields. . potential larger than a certain vali25]. When the upper
Similarly, when the upper ;?Vd (93‘)3'[3_ 'rztsc)’ region Ill, we |eye| moves from gap into the uppéor lowen band, the

can obtain one complex roat®=(a®+ib®)/p with w, frequency of the localized field approaches (or wc,).

—p® (3) S .
b = W, and a¥'<0. The radiation field When the frequency of the Iocalizedfieldaixg1 (oerZ),the

=E®) (4) i
’ ' ' " localized field disappears, and diffusion field appears, but not
(ED(rli))] EY)(r,t) + E')(r,t) and can be rewritten dsee Eq localized field disapp d diffusion field app b
a coherent propagating field because the number of electro-
E(r,t)= Eﬁ,a)(r,t)+ El(ds)(ryt)+ Eyy(r,t)+ Eg‘?(r,t), magnetic modes near the atomic transition frequency is still
(16) not large enough.
Although both of the field&y4(r,t) andEgy,(r,t) are the
with diffusion fields, their contributions to the emitted field in
different region of the upper level are different. In Fig. 7 we
plot the amplitudes of the diffusion fieldgg,(r,t) and

EQ(r,t)= Ead1) T ai(or=b@)(t=r/o®)+a@t—r/o (V) Ego(r,t) as functions of the position of the upper level for
K’ (x(®) C4 the fixed distance from atom=r,=+/C/3 and at the fixed
timet=ty=>5/B. In Fig. 7(a) it is shown that the amplitudes
X 0 t—L of Eg4(r,t) in regions IV and V are almost constant and
o)’ extremely strong(several hundred times stronger than in
other regions due to the existence of onliy(r,t). The
Enff) amplitude of the diffusion field&4,(r,t) is zero for the upper
EQrt)=——— — level being in regions IV and V, but, it is not zero and much
K'(x®)) Ca larger than the amplitude dEg4,(r,t) for the upper level
. 3 _ being in regions |-ll[see Fig. ™)]. When the upper level is
X @ (ort OB 1= o, +ixIB)IC, far away from the regions IV and V, the amplitude of
Ego(r,t) is small[but much larger tharkEgy,(r,t)] because
x@)( t_L the diffusion fieldE4,(r,t) has already decayed at tinhg
o) From the above discussion we know that the main parts of
the emission field can be written as
=E®
Eaa(r.)=E7("1), ED(r,t)+ED(r,t)+EE(r,t) (region )
E@(r,t)+E@(r t region Il
E((j%)(r,t)z Elo(r) e¢1J1(r,t,x(3)) E(I’,t)z ?3)( ) ((j:f)( ) ( g )
K’ (x®3)) Ep”(r,t) +Egy(r,t) (region III)
Eg1(r,t) (regions IV, V).
Eadl) e?2J,(r,t,x(3)), 17
2( 1Ly )
K’ (x®)

When the upper level goes deeply into the lower or upper

Hereo @ = (w:—b®) J/C./Im \/_—_Ixm— the en- bands(region 11 or Ill), the population trapped in the excited
vp =(w1 ) VCy/Im( Pe,~ @1 P state has an exponential decay after a very short time. In a

. (3)_ _ 3 — —
ergy velocity vg?=—a®JCi/Re(we,—w01=1xB),  free space, the exponential decl{ of the atomic excited
and the front velocities  v{¥=2\C,/(Im  state means that the emission field is a propagating field in
—Re)\Jwe, —w—ixTB and v=2\C,/(Im  form of Alre '@(t=Twp)=(=rvdl7@(t—r/y;) with a fixed
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FIG. 7. The amplitude squaf@ arbitrary unit of the diffusion FIG. 8. The time evolution of the intensityn arbitray unij of
field (a) Eq4; and(b) Eg, as function of the transition frequenay, the total emitted fieldsolid line), the propagating fiel(dotted ling,
with . =1018, . =998, r{BIC=1, andBt=5 and the diffussion fielddashed ling for o, =1018, w.,=998,
1 ! 2 ’ ’ .

and w;=1028 with different distances from atom (a) r(8/A)?

— 1/2__
frequencyw, a fixed phase velocity,, a fixed energy ve- =100 and(b) r(5/A)™*=500.

locity v, and a fixed front velocity; . In the free space the

maximum amplitudé\ does not decay with the distance from . 2)— (2 (3)— . (3) . .
the atom due tw.=v;, and all energy of the emitted field field, vg >|lt)fé an]fjtl;]e ~ U (stge ﬁpﬂin;“x F The_trr]n{ahxrd_

can coherently propagate out in the form of a traveling pulse'.”num afmp : ?h N Ot € Erpp?ga mgthlet fcal?'s Wi ef tILS-
The so-called “coherently” means that the phase difference"ce rom the atom. 1t 1S 1o say that not ail energy ot the
between any two points in the space is fixed. For an atom jpropagating field can coherently propagate out. During the

a photonic crystal, the relation between the population of thdrOCess of traveling, the energy of the propagating field is

upper level and the emitted field is more complex. From Eq_partly transferred into the diffusion field due to the influence

(17) we can see that there are two different fields in theof photonic crystals. However, the emitted field is mainly a

emitted field, the propagating fiele,(r,t) and the diffusion propagating fie]d as the upper level is de?‘p within either of
field Eqy(r ). BotE O?E?f)(r,?) ar%(Egzz))(r,t) [or Eg3)(r,t) the two transmission bands, and the amplitude of the propa-

dE@)(r 1 ; th h td ¢ gating field is larger than that of the diffusion field. At the
an(z) a2 (1.1)] come (?’r)om € same coherent decay 1eMgame time, the decay of the diffusion field slows down as the
eI (xP) [or @YK (xP)] in Eq. (8). The time distance from the atom increas@omparing Fig. &) with
evolutions of the emitted field for different space points arerig. gb)].
plotted in Fig. 8. At a space point, one could see first the
diffusion field, and then the propagating field. In the decay
process, the quantum interference between the propagating
field and the diffusion field leads to the oscillation of the  Photonic crystals can affect strongly the spontaneous
field intensity. The characteristic decay time of the propagatspectrum of the excited atom. From Appendix E the radiation
ing field is a constant and the same as that of the populatiospectrumS(r,w) can be written as
of the excited state. The diffusion field displays power-law
decay. In the first decay stage the intensity of the diffusion [F1(r, @)+ Fy(r,0)|? (region )
field drops fast, and the relevant decay time is shorter than |Fo(r, )+ Fa(r, )2 (region II)
that of the propagating fieltsee the inset scheme in Fig. 8 S(r, w)=

velocity is larger than the front velocity for the propagating

V. SPONTANEOUS EMISSION SPECTRUM

2 .
Thus the emitted field is composed of a fast decay (ih& [Fa(r @) +Fa(r, o) (region 1)
diffusion field and a slow decay pafthe propagating field [F4(r,m)|? (regions IV, V).
In addition, it can be proven analytically that the energy (19
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FIG. 9. The spectra of spontaneous emission from the excited
atom forw. =10 w. =998. and w,=100.53 (region ) with . 11. The spectra of spontaneous emission from the excite
c 18, w, B, 1 58 (region ) FIG. 11. Th tra of t from th ted
1 2 . .
different distances from atom. atom forw, =1018, w;,=998, andw;=101.53 (region 1) with

different distances from atom.

Where the functionsF(r,w), Fy(r,w), Fs(r,0) and . . ) .
F.(r,®) are given in Appendix Esee Eqs(E3)—(E6)]. If the calized mode. Because all energy of the emitted field with
upper level is within region I, I, or I11,F,(r,«) will be frequency being in the two bands can propagate out, the

negligibly small compared té¢; , fr,w). In the following C(_)trrzetf]po(;l_d;ng pa][t of t{]he eT'SS'(Im Speﬁ:ru?;d?ef Inot <_:ha_nge
discussion, we assum€;=C,=C and Eyr)=Ey(r) wi e distance from the atom. In results, the total emission

_ spectrum is dependent on the distance from the afive
=Eo(n). S ; location of the observerWhen the upper level is more near
When the upper level is within region |, there are the

localized field and the diffusion field in the emitted field. The 1€ Pand edgex, (or ), the peak at frequency,, (or
emission spectrum is composed of one singularity due to the’c,) is larger than another peak at frequenay, (or ).
characteristic localized mode and two small peaks at the two For special case;= wg, the amplitude of the character-
band edges corresponding to the diffusion field. In Fig. 9, wastic localized field will be zero because of the influence of
plot the emission spectra(r,w)=S(r,»)|C|¥|Eo(r)]> for  both the upper and lower bands. The singularity correspond-
we,=1018, w., =998, w;=100.93, and different distance ing to the characteristic localized field in the radiation spec-
from the atomr. In free space, the emission spectrum oftrum will vanish(as shown in Fig. 10
two-level excited atom is independent on the position of the When the upper level is within region (or IlI), there are
observer in space. For the present case, the radiation spekd€ propagating field with frequency being in the lower
trum is more complex due to the influence of photonic crys-uPped band and the diffusion field in the radiation field. The
tal. The part of the emitted field with the frequency being inPeak of the diffusion field at frequenay., (wc,) is very
the band gap is localized, the corresponding energy is limitedmall asw; in region 11 (Ill'), and the other peak at frequency
near the atom, and the amplitude drops exponentially Withucl (“’Cz) is covered by the large peak for the propagating
increasing distance from the atom. For largéhe part of the  fie|d. So in the emission spectrum there is mainly one peak,
emission spectrum with frequencies being in band gap igyhich does not change for different distances from the atom
composed of one line corresponding to the characteristic 1or (See Fig. 11 When the upper level is within region Itor

V), only diffusion field exists, and the main peak occurs at

1.01
I -
0.81 / \ 100 ;
1.01 0.6 // 3 \ 807 I-
. // \\ 1001 601 ' ; ‘n
1.0 081 | o4y AN P '
b Y 1007 801 coy
- 0.8 0.6 0"25/ ,\ P ™~ 401 P X
Rl ‘ 4y [ . .\ —_ i ] ' FIY H
2 VN A 1(B/C)"=100 2 801 60 201 P \r(B/C)"*=100
5 0.6 047/ .4 0.0 e - 5 60{ 40] R AN
3 L 98 99 | 100 101 102 e 0 — i ~
8 0.44 0,21 : : 5 5 40] 201 98 99 | 1100 % 101 102
i \ ' AN 12 - H \
— - p I /C)“=10 _ ' \ 1”2
8 0.2 09 v y —t r (P 2 201 o ' —— , [(B/C) "=10
= 98 1 99 100, 101 102, = 98 99 100;  fe1r 102
® 0.0 . £ , 1(B/C)'*=5 ® 9 . : ., = KHBIC)2=5
98 99 100 101 102 98 99 100 101 102
w/p ®/p

FIG. 10. The spectra of spontaneous emission from the excited FIG. 12. The spectra of spontaneous emission from the excited
atom forw, =1018, w.,=998, andw;=99.9991738 (region ) atom forw, =1018, w.,=998, andw;=101.011508 (region V)
with different distances from atom. with different distances from atom.
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frequencywC (wc) When the distances from the atam

increases, the emission spectrum is narrowed due to drop o];
the emission spectrum within the band gap shown in Fig.
12).

VI. CONCLUSIONS

We have studied the properties of the spontaneous radia-
tion from a two-level atom embedded in a three-dimensional
anisotropic photonic crystal with an upper band, a lower
band, and a band gap. It is found that the properties of the
spontaneous emission and the emitted field are dependent
strongly on the relative position of the upper level from the
two banddfive regions. As a special cavity, a photonic crys-
tal can affect the traveling behavior and the radiation spec-
trum. The faster and slower decay components correspond-
ing to the diffusion field and the propagating field appear in
the decay process for the emitted field. The radiation spec-
trum is more complex, and dependent on the location of the

PHYSICAL REVIEW A68, 043805 (2003

o;

x Sti(wg—wq)

(w1d7)? (& Ug) (& Ug)

T 2eghVo © o s+i(wx—wy)]

. (wldl)z d3k
_16’7T360ﬁJ Jka[S+i(wk_wl)] !

_ (w1dy) upper B
_167T3eohJ JJ wk[5+l(wk w1)] !

(k-ug)?
k2

(k-ug)?
kZ

( ldelifzij J flowerwk[Sﬂ(wk w1)]

12
X{l_wklid) l

observer. We have also discussed the influence of the exis- =I'1+1'5, (A1)

tence of the second bar(the lower ban@l on spontaneous
emission, Lamb shift, the emitted field and the radiation

spectrum. The coexistence of the upper and lower band_’[v0

leads to the stronger coupling between the atomic transition
and the electromagnetic modes, and time evolution decay of
the population in the excited state is faster than that in the
single-band case. Due to different contributions of the upper
band and the lower band, the Lamb shift becomes very
small, the amplitude of the characteristic localized field may

be zero, and the singularity caused by the localized field may

where we have replaced the sum by an integral Xja

1(2m)3]f [ fdk, and
(k-ug)-(k-ug)
k2

~ (k-ug) - (k-ug)
k2 '

(8- Ug) (& Ug) =Ugy-Ug—

vanish in the radiation spectrum.
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APPENDIX A: THE CALCULATION OF I

We can calculaté’ in Eqg. (6) as follows:

dipole vector of the atom and theh k (kJO) is 6, ((,D])

The angle between the dipole akdneark 10 (kzo) is re-
placed approximately by; (¢;). We can also extend the
integration overk to infinity because the frequencies far
away from the band edges do not contribute significantly. So
we calculatel’; andI', as follows:

(@1d1)? ij”ppe'
I 1673 et wk[S-H W~

~ (k~ud>2]

w1)] k?

_ (wldl)z(z sze)J' f fupper d3q
16m°€qti | ] : i (0 +CqlaP)[sti(w,— w1+ Cylq?)]

(wld
82 ehC3?

and

(2 sm29) _
we, T \ois—(wq— wcl)

(A2)
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(w1d1>2J f J'ower (keug)?
163t wk[s+l(wk wl)] k2
wldl) lower d3q
- LI
16773€oﬁ<2 e we,— ColaP)s+i(we,~ w1 Colal?)]
(wldl) ( )J g°dq (w1dp)? ( . ) i
i — Mo .
 4m? eoht E # 0 (wc +C,o0%)[s+i( wc —w;—C,09)] 877260th/2 ; SITe; wC2+\/iS+(wl—wC2)
(A3)
|
Consequently, we have |
K — v
(X)=x \/ch—\/ix+(Ql—ch)
F=- /—i-ﬁil2 + ' B3
\/w_cl+ _|S_(w1_a)c1) \/Q_(:Z—I—m, ( )
iB3/2
+ 2 (Ad)
we, ISt (w1 o) M(x)=—x+(Q;— Q)i+ '
e Qg+ i (O, -0
(B4)
with ﬂi’z_(wldl)Zz Sirf /(8mehCS?)  and  B3? _ .
—(wldl) > SlnngJ/(SWEOﬁCZ% N(X):_X+(Ql_ﬂc2)|_\/9—%+\/m'

APPENDIX B: THE CALCULATION OF THE
AMPLITUDES A4(T)

For convenience in the following calculation, we define

(B5)

WhereQC1=wcll,8, ch=w02/[5’, and Q;=w,/B. Using
the inverse Laplace transform, the amplitudlét) can be
written as

functionsG(x), F(x), K(x), M(x), andN(x) as follows:

G(x)= !

\/ + —iXx=(Qq— ch)
\/QC2+,/ix+(Ql—QCZ)’
[
F(X)=x—
) VO +—ix=(Q1- Q)
. i
VO, i =ix—=(Q;-0 )

1 otin st
Al(t)=ﬁj - Aq(s)e’ds

g—iw©
oVt 1 f(ﬂl_ﬂcz)iw
ST o) 2| Jaivo
(Q1-0g)i==  [(Q1-0))i
) e
(9'17902)I (Qlfﬂ'cl)'*w
f*ociJrO xBt
+ ——e*Pldx. B6
(Q1-0¢)i+0 G(x) (B6)
Here xl(l) are the roots of the equaticB(x)=0 in region
[Re(x)>0] or [Ql—ch<Im(x)<Ql—QC2]. The real
numberg’ is chosen so that=¢"' lies to the right of all the
(B2)  singularity x{"). The integration contours for EqB6) are

shown in Fig. 13.
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_ eBtgyx= —

= Xt
27 Jwito G(x) = om e*Atdx

1 [(@-0)i+0 1 1 j(nl—%)i 1

oj | |

X— +

VO H—iIX=(Q1= Q) Qe +i{—ix— (21— Q)
e
TOF(x?)

1 % ei(wlfwcz)teX,Bt
- - - dx, (B7)

2miJo i i
X+(Q1— Q¢ )i— - + —
Qe i Qe — Q) O +iV=ix

x{?) are the roots of the equatiéi(x) =0 in region[Re(x) <0 and Im&) >(Q; — Q. )]. The integration contours for E¢B7)
are shown in Fig. 14.

1 [(@-Qg)i-= 1 e 1 (- gi(@1— e )taxpt i | .
Py ——eFldx=— X,
2miJ(0,-0)i  G(X) 27 Jo . : NN
X+ 1~ 82 )1 — - +
2 Qe+ ix (O~ )
1 (Q1-Qc)i 1 Xt 1 0 gl (@1~ 0c )taXpt . .
Py ——<€ X=— X,
2mi (Ql—ﬂcl)i—ooG(X) 270 ) —w o i i
X+ 1 | — — + -
c; /QC1+ V—iX ‘/ch+ 1/|x+(ch—Qc2)
1 —»i+0 1 1 —oj exBt
27 G o dx
271 J(0,-0,)i+0G(X) 2mi J(0,-0,)i i :
X= +
VO i fix+ (=0 Qc,+\ix+(Q;-0)
e 1 fo ol (01— g )t eXBt ;
IR PN ¢} Ny X.
X 178 )1 —F ,
¢y /ch—n/& \/QC2+,/|x+(ch—QC2)
(B10)

In Eq. (B10), XJ(S) are the roots oK(x) =0 in region[Re(x) <0 and Im&)<(£2;—{ )]. The integration contours for Eqg.
(B10) are shown in Fig. 15. Substituting Eq&7)—(B10) into Eq. (B6), we get

AOS oVt N st N <Vt N 1 fw el (01— 0 )tg—Xpt el (01— 0 )tg=Xpt |
ST @™ T oRe®) T ke®) 2w Voo i oo i
X)— ———— X)— ———
VO —i=ix VO +1ix
1 s ei(wlfwcz)tefxﬂt ei(wlfwcz)tefxﬁt
- = dx
2 Jo i i
NX)+ ——=——= NX+t————
‘/ch+|\/& \/QCZ—F\/—IX
—E exj(l)ﬁt . exl(z)ﬁt N e"j(s)ﬁ‘ N 1Jm i1/2\/;ei(w1—wcl)t
TG T R T OKY) Tl (M(x) Qe —1)2=iMZ(x)x
i —1/2 (01— w )t
i ~12 el (@1 ec, .
+ - - X (B11)
(N(X) Q¢ +1)?+iIN?(x)x
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Im Im
(Q,-Q c‘)l
Re
\ Re (@ ;782 01)I
)]
(Q,-Q 01)|
n—
FIG. 13. The integration contours for E@6). FIG. 15. The integration contours for E@10).
APPENDIX C: PROOF OF THE ROOT FOR G(x)=0 1 1

y— +
1. Purely imaginary root for G(x)=0 in the region \/ch-i- \/y—(Ql—ch) \/ch-l- \/—y-l-(Ql—ch)

Q-0 <IM(X)<Q;—Q,

Cc2
Here we only discuss the purely imaginary root for the (€2
following equation: Obviously, there are no real roots for E@2) in regions
, (—oo, Ql—ch) and (Ql—QCZ, ). In region (Ql—ch,
X— ! 0,—Q.), we define the following function:
N 2
Ve +=ix=(Q1- Q)
i f(y) !
y)=y—
+ =0. (C1) VO, +y— (2, Q)
VO X (2,0 et VY~ (17l
+ ! (C3
If we setx=iy (y is a real numbegr the above equation Ve, t =y +H(1= Q)
becomes
We can obtain
Im f(y)>0, (C4)

f(y)|y—»Q Q c:L \/— \/—+m
1 2

9

(@ -e) - P L § L
2 T RN e e e
o

Only when f(y)ly_q, q, \0 and f(y)ly—o,-o, /O
is there only one real root of the equatidfy)=0. That

in region Q;—0Q, <Im(x)<Ql QC for G(x)=0

as Qg +[1U(Q Jr,/QCl Qc)]— (1/\/ ) SQ<Q¢,
FIG. 14. The integration contours for E(@B7). (1) = [1( Qe+ Qe = Q) 1.
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is to say, there is only one purely imaginary root



YANG, FLEISCHHAUER, AND ZHU

2. No complex root with Rgx)#0 for G(x)=0 in the region
[(),1—ch<lm(x)<91—ﬂcz or Re(x)>0]

Supposex=a-+ib with a#0 is the complex root of
G(x)=0. We can analyze the root as follows:

(1) If a>0, we can obtain the regions for the phase
angles,—w/2<arg[\/Q_cl+ J=ix=(Q1-0Q)]<0 and 0

<arg \/Q¢,+/ix+(Q;—Q¢ ) ]<m/2. Then we have

i
e e
o<ar i <Z. (c®
%‘/QCZ+‘/ix+(Ql—QCZ) 2

From the equation G(x)=0, we get x:[i/(\/Qcl

+\/—iX—(Ql—ch))]—[i/(‘/ch-i- ViX+(Q1=Qc)) ]
From Egs. (C7) and (C8 we know that R{a[i/(‘/QCl
+\/—ix—(Ql—ch))]—[i/‘/chJr,/ix+(Ql—ch)]}<0,
which disagrees with the above suppositar0. Sox=a
+ib with a>0 is not the root oiG(x)=0.

(2) If a<0 and ;-0 <b<Q;—0., we have 0
<ard \/Qc + \/—ix—(Ql—ch)]<7r/4 and —7/4
<arg[‘/QC2+,/ix+(Ql—QC2)]<O.

T i <’7T c9)
ar =,
VO +=ix=(Q1-Qc) ) 2
i
ar _ <m. (C10
\/ch+‘/|x+(Ql—ch)

From Egs.(C9) and (C10 we obtain Rex)=Re{[i//{,

+ \/—ix—(Ql—ch)]—[i/,/chJr ViX+(Q1—-Qc ) ]}>0.
It does not agree with the suppositia<0. Sox=a+ib
with a<<0 is not the complex root o&(x)=0 in the region

01— Qg <IM(X) < Q3= O .

From the above discussions, we can see that there are no

complex roots with Re()#0 for G(x)=0 in the region
[Ql—QC1<Im(x)<Ql—QC2 or Rek)>0].

APPENDIX D: THE CALCULATION OF THE RADIATION
FIELD E(R,T)

PHYSICAL REVIEW A68, 043805 (2003

|
|

wldl —I(wt klor gy-r)

i 260Vo
k(Ko Ug)

t
x| | A(t")e @a, et gt || uy— .
fo ) H T (K

w,d . '
11 e—l(wt—k120~r—q2~r)

j.kai) 2e0Vo
t ) ,
X fOA(t')e“wq;wﬁt dt'} Ug—
ikj r leO(k!lO ud)
10 Ud_—j >
(Kio)

- | ,
f A(t)e' (o, )t dt’ | +
0

kao( kao' Ug)
(kbo)?

|

w10,

> ¢

1673eq ]

w10,

2 e|k10-r

1673¢,
kzo(kzo Ug)

(Kho)2 U f stq e ety

- | ,
fA(t')e“wq;wﬂt dt'}.
0

Hereq,=k—k}, andg,=k—kb,. The sum ovek is com-
posed of two parts, which are for the upper and lower bands,
respectively. Due to anisotropy, the sum oker(k,) for the
upper(lower) band has to be carried out around the direction
of eachkl, (ko). We have also replaced the sum oker(or

k,) by integration.

SupposeA(t’)=e*?’" we have

t
j ffdsqle_i(wat_ql'r){fA(t,)ei(wa_wl)tldt,
0
e(xB—iwl)t+iq1~r_e—i(wat—ql-r)
) ] e

i(wa—wl)-i-X,B

20 (= eXB-io)t_ g—iogt

S ir Jos (@~ w01)+XB
w e(xB—iwy)t

Ud—

X (D1)

eiqquldqll (DZ)

e'1'g,day

The amplitude of the radiated field at a particular space

pointr [14] is

E(r,t)=>,

k

[ hoy
—i(wt—k-r)
280V B (t)

w10,
k 280V0

ei(wtk-r)[ J'tA(t’)ei(wkwl)t'dt’}
0
k(k.ud)l

Xiu 2

q—

de(xﬁ_iwl)t_r /chl—wl;—lxﬁﬁcl'

1

(D3)

e—iwat

J_wi(wa— wq)+XB

e

e'1'q,doy

; 2 2
eflcltq efl[wcltf(r /4Cq1)]
2C1t)

2 dq1 (D4)

T i(we,— @) +iCy +x8

+ R
RRIPTOR:
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with

- icltqze— i(we,t— r2/4C t)

. dq— e(xB io)t—r (o 7w157|xB7ffl

1
+XB

r
0 (Q+20ﬂ>e

|(wc —w1)+|C1(q+ Gt
1 [Im(x,8)<w1—wc1]
O[r+2tCy(Im—Re) \Joo — w1~ ixB] [IM(XB)= w1~ wc ]

7Cltp2

(3/4ymi |
(pe 20ﬂ>e

— e ilog,t- (r?/4Ct] + (3/4)mi

dp
2
pe(3/4)m e )

0 .
x,6'+|(wCl wq)+iCy 2Ct

and

i

q-+

) e—icltqze—i[wclt—(rzmclt)]
= dq:_Cle(X,B—iwl)t-%—r wcl—wli—lxﬁ7cl

1
+xB

2C,t

i(wcl—w1)+iC1

r
J’__
ERPToR.

®[2t\/_(lm Re)\/wC —ixB—r] [ImxB)<w;— “’01]

X
[IM(XxB)=w,— wcl]

(pe (aymi 4 )ecltp2
+e i [wclt—(r2/4C1t)] — 1/Ai 2Cqt

dp.
2Up
pe (1/4)mi )

0 . .
x,8+|(wcl—w1)+|C 2Ct

Here ®(x) is the step function fok=0,0(x)=1, andx<0,0(x)=0. So we can obtain

w1dy 2 elk110r|:ud— klo(klo Ug U' j stq g i(wgt=a11)

—

1673, 7 (klp)?
. j i w aXB—iw)t_ a—iwg t
_—wldl > ikl T Ug— klO(k.lo ) f e.x et e'91'q,day
872eqri ] (k)2 —o (wg, —w1) +XB

le(xB—iwl)t—r / imcl—wli—lxﬁ 7C1

o K (ki .
_ w1d; D e.kllo.r{ud_ 10(K10" Ug) -
1

(Kio)?

8m2eori ]

X O[2t\Cy(Re~Im) \Jw, —w;—ixB—1]10[w; — wl+|m(xﬁ)]+—e<xﬁ log)thr ([(we, =@ XATTCy
X@[Zt\/C_l(lm—Re)\/wcl—wl—ixﬁ—r](a[wl—wcl—Im(xﬁ)]+e_i[“’clt_(rzl“clt)]+(3/4)7Ti

. r 2
(3/4)i —Cqtp
e + e ~1
(p 2Cﬂ>
X )2 dp ¢ . (D5)

7OCX,B+ i (wC wq)+iC (pe(3/4)m +

2C,t
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Similarly, we get

5 ( ) ( ) 20 (= e(XB—iwl)t_e—ia)qzt .
—i(wg t—apr i(wg.— o)t igor
j f Jd 4€ “ At)ee e dt} ir Jﬂc i(wg,—w1)+XB &7 dzd0, (b)
fw e(XB o)t eiqzrq dq — ie(xﬁ_iwl)t_r / ia)l—wczi+lxﬁ 7C2 (D7)
—l(wg,—w)+xB" P Gy '

and

J‘” e e'92'q,dq =fw - dqg
’Wi(qu_wl)—i_xﬂ e *wi(wcz_wl_czqg)"'xﬁ ;

T .
=—C—e(x'g"‘”l)”r\/[(“’1""025+'Xﬁ]7c2®[—r—2t\/C—2(|m+Re) w1~ we, +ixp]
1
aa .
X@[wcz—wlﬂm(xﬁ)]— C—e(xﬁilwl)tirVleiwC}Hxﬁ] 20
1
X[r=2t/Cy(Im+Re) \Jo; — we, +iXB]O[ w1~ wg —IM(XB)]

ar . . .
_ C_le(xﬁ—lwl)t—r (@1~ wc,) +IXBITC, C2®[wcz_wl+|m(Xﬁ)]_e—l[wczt+(r2/4C2t)]—(3/4)7r|

@My _ | a—Cotp?
- (pe 2c2t)
X j ——dp. (D8)
- ; _ i —B)mi_
XB+i(we,~wy) ICz(pe ! ZCZI)
So we have
w,d; E e,kJ Uy kzo(kzozud fffdsq e i(wg,t—dp: r)[f A(t))el(@a, —wpt’ dt}
1677 €p i O)
I (Kl .
o1t S @ikt y kzo(k.zo Ug) _ T axp-iwpt-r (o= wg) ¥ IXBIIC @
82 gofl ] (kho)? Cz

m .
X[Zt\ C2(R€+ Im) wl—wcz-i-iX,B—r][wl—wcz— |m(Xﬂ)]+ C_e(XB—le)t-Fr\[(ml—wczj-%—lxﬁ]] C2®
2
X[ = 2tCo(Im+ Re) \fw, — we, T 1XB— 1O wg, — wy +IM(xB) ]+ e [oet + (F14C01 =@y

e*Czth

©

— (3l4)ymi _
( pe 2C,t

X )zdp . (D9)

e _ _ I
xﬁ+|(wC2—w1)—|C2(pe (3/4) I_fzt

From Egs(B11), (D1), (D5), and(D9), we can calculate the radiation fidiqr,t). Corresponding to each termA{t), we
can obtain

E(r,t)=E®(r,t) +EQ(r,t) + E@(r,t) + EX)(r ). (D10)

(1) For the pure imaginary roox™=ib®/B, we have w,,<w;—bM<w, . The term inA(t) related tox® is
e"fl)ﬁt/G’(xfl)). So the termE™M)(r,t) in the radiation fieldE(r,t) can be obtained as follows:
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E(l’(r,t)=ﬁ[Elo(r)E(f)(htHEzo(f)E(zl)(r,t)], (D11)

with

E@(r t)= Cle—i(wl—b(l))t—r g, —w0r+b@)/c; g
1

r
t_
2\/C—1\/a)cl— wqt bm)

) e~ Cltpz

. r
@aymi
( pe 2Ct

+efi[wcltf(r2/4clt)]+(1/4)7riJOC
. o
(@, — w1+bM)+Cy| pe®m+ ———

2dp1
cht)

EW(r,t)=— Cle—i(wl—b(”)t—n [(w1=we,~b@)/Coq
2

r
t_
2\/C_2\/w1— wcz—bm)

(pe—(3/4)ﬂ-i _ ) e~ Catr®

2C,t

+e—i[wC2t+(r2/4czt)]—(1/4)m fw

(1= b= wg )+ Cyf pe @I

)de

2C,t

Here  Ej(r)=(w1d;/8m%eori) = 60 {ug—[klo(kio ug)/(Kig2l}  and  Epg(r) =(w;d; /87 2,ri) S €20 "{ug
—[kbo(Kbo- ug)/ (kho)?1}.

(2) For the complex roox®=(a®+ib®)/ B, we havew; —b?<w, anda®<0. The termexfz)ﬁ‘/F’(xJ(Z)) in A(t) is
related tox(?). So the termE®)(r,t) in the radiation fieldE(r,t) can be written as

E@(r,t)= [Exo(NEP)(r,t)+ Ex(nEL(r,1)], (D12)

F'(x®)

with

EQ@(r,t)= Cle—i(wlﬂx(z)ﬁ)t—r Joe,—01-ix@Pp)ic;q
1

r
- 2\/C—1(Re—lm)1/wcl—w1—ix(25,8)

(pe(3/4)wi+L) e~ Citp’
+ o ilwg t— (r2I4C )] + (L) f N 2Cut »dp,
— . _ (2 (3/4)ri
(0, =01 = IXTE)+Cy pe +2c1t)

EQ@(r,t)= Cle—i(wlﬂx(z)p)ur (w10, +ixPp)ic,q
2

r
t
i 2\/C—Z(Re+lm)\/w1—w02+ix(25,3)

) e*Cth2

— (34w _
( pe 2C,t

+ e ilogt+ (r2/4C,t)] — (1/4)mi

)de

pe= (i _

o ix(2)g—
(w1+|x B w02)+C2 2C2t

(3) For the complex root®=(a®+ib®)/B, we havew; —b®>w, , anda®<0. We can geE®)(r,t) in the radiation
field E(r 1),

EO(r,t)= < [E1o(NES(r,t) + Ex(NES(r 1)1, (D13)

(@)
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with

EQ(r,t)= Cle—i(wl+ix(3)/3)t+r Vo, ~o1-ix®p)icig |
1

r
2\/C4(Im—Re) Jo — 1—|x(35ﬁ)

. r 2
(3/4)mri —Cqtp
pe + ) e 1
( 2Cqt

4_e—i[wclt—(rz/4clt)]+(1/4)7rijoo

e(3/4)7r| +

2C,t

dev
(0, w1=IX®B)+Cy p )

r

2\/Cy(Re+Im) Jo, —w., +ix®)B

E@(r t)=— Cle—i(wlﬂx“)ﬁ)t—r Jwi=og, +ixPB)Cyq) [
2

—(3/4)mi _ —Cytp?
N | ("e Zczt)e i
4 @ ilog,t+(r214C,t)] - (4T S dp.
- iv(3) —(3/4)mi _
(01 +IX¥B=0wc)+Cy pe ! 2C2t)
(4) For the integration term ii\(t), we have
" 112, [ E()( P12 o E(4)
E(4)(r’t):E10(r)J' VXER r_t) L &E_m(r_,t) i
T Jo |[[M(X) —i12=iM2(x)x  [N(X)/Qc +i]?+iN?(x)x
C1 C2
) Ezo(r)jw iV2XEQ(r,t) . i 12 XEQ(r t)
M(X)/Qe. —i12=IM2(X)X  [N(X) Qe +i]2+INZX)X]|
C1 C2
with
(3/4)mi —Cytp?
, (pe + zclt)e
E@(r )= iloc,t=(F4C10]) + (31 ~dp,
xXB+iC 2C1t

E(B41)(I‘,t)= Cle(—iwcz—xﬁ)t—r / wcl—wcz-HX,B ;Cl® t—
1

r
2\/C—1(Re— Im)‘/wcl—wc2+ix,8)

( pe(3/4)m e ) e—Cltp2

2Ct

+eiloct- (r?/4Ct)] + (3/4)mi

)de!

i(wg,~ wc,) = XB+ICy| pe®¥I+

2C,t

r
(4)(r t)—— el—iog =xB)t—r flog, =0, —XB)IC@) | t
2\/C2(Re+|m)\/wcl—wcz—ixﬁ
—(3/4)mi _ —Cytp?
e e
—i[wg t+ (r2/4C,t)] — (3/4) i (p ZCZt)
+e %, 2 77 5dp,
- : _ i — B8y _
X,B—H(a)c2 wcl) ICz(pe ZCZt)
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(pe—(3/4)'n'i _ )e—cthZ
i [ 2C,t
E|(342)(r’t):efl[wczt+(r2/402t)]7(3/4)7T|f 2 — 5.
F_xBg—iC ( o B4y _ )
B 2\ P _2C2t

APPENDIX E: THE CALCULATION OF THE EMISSION SPECTRUM S (r, w)
The Fourier transform of the radiation field is

1 (= )
F(r,w)=zf0 E(r,t)e'“tdt.

(2003

(ED)

So the emission spectrus{r,») can be obtained3(r,w)=|F(r,»)|?. From Eqs(B11) and(D1), F(r,®) can be rewritten as

the sum of four parts, which come from the four terms of EjfL1):

F(r,w)=F(r,o) +Fy(r,0)+F;3(r,0) + F4(r,m).

(E2
(1) For the pure imaginary root), we have

Eior) * q:€'%'dqgy
Fre)=-— (1)f : g f
27G’ (x'Y) focl(wa—wl)-l-x B

” e(x(”ﬁ—iwl)mwt_e—iwq1t+iwt)dt
0

EZO(r) J’w quIQ2rdQ2 f (X(I)B_iwl)H_iwt_e_iquH_iwt)dt
27G (xM) ) = i(wq,— w1) +xBBJo

Eqo(r) f‘” 0.€'91dgy

-1
27G’ (xD)

- o m
—» I(wa— wq) +X By o+

Eoo(r) f”’ q2€'92'd
277G’ (xM)

-1
—sti(w—w—ixMg) —S+i(w—wa)l
-1 - -1
—sti(w—w—ixPB) —sti(o—wg,)

E1o(r) * q.e'%'day
- ,1)'mf__-__-(1)_._

27G' (xW) g+ )= [—sti(0— w1~ ixXPB) ][~ sti(w—wg)]

Exo(r) ” q,€'92'dq,

,—n"mf, st (o —ixDB) T —sti(w—

277G’ (xM) “[—sti(w—w—ixPB)][-sti(0—w0g)]

s—0*
Ewolr) fi(w)

- &) m
— I(a)qz— w)+ X Be o+

Exlr) falw)
- R R lim R R ) (ES)
2C,G' (xM) e —sti(w—w—ixPB)  2C,G'(xP) . j+—s+i(w—w—ixPp)

where®(x) is the step function. The functiorfs(w) andf,(w) are defined as

fi(w) =e*f¢<wc1*w5751®(wcl— w)+e"@=ec)Cig (¢ — o),

fo(w)=e "V )20 (w— 0, )+e T(@e, V20 (v, —w)
2 2
(2) For the complex rook®=(a(®+ib®))/8, we havew; ~b®<w., anda®<o0.
E1o(r) fi(w) Exo(r) fo(w)
Fz(r,w):

— . E4
2C K (x?) i(w—w,—ixPB)  2C,K'(x?) i(w—w;—ix?)B) €9

(3) For the complex rook®=(a®+ib®)/g, we havew; —b®>w, anda®<o0.
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Eao(r) f1(w) Eao(r) fao(w)
Fa(r,w)=— . ES
(@) 2CF (x®) i(w—w;—ix®B)  2C,F' (x®) i(w—w,;—ix®)p) (9
(4) For the integration term ir\(t), we have
. _gf —i Y2 xdx Exr)  fi(w)  Exn)  fyw)
A o IM() s — 112~ IMZ(x)x| 2C1 1@ we +iXB)  2C; i(w— g, +iXB)
R I B ) Ewr)  fiw)  Exn)  fye) -
mJo [N(X) Q¢ +i12+iN2(x)x| 2C1 (0= wc,+iXB)  2C; (o= we,+ixB)|

APPENDIX F: PROOF OF V>V AND V>V

1. Proof of v @>v {2

When the upper level is within region Il, we have the

complex rootx®= (a®+ib®)/B with w; ~b?<w, , and
a®@<o.

Suppose
w1~ wc,+ix¥B=p—ig. (F1)
So we can obtain
p?—0°= w1~ w;,~ b,
pg=—a®r2, (F2)

and g>p>0 due tow;—w.,~b»<0 anda®<0. The

energy velocity %) and the front velocity {2’ can be written
as

vP)=—al?\ColRe( \Jo,— we, +ixPB)=—a?\[Cylp,

(F3)
and
v{d=—2\Cy(Im+Re) \J; — wc, +ix?
=—2\Cy(p—q). (F4)
So we have
v{s)=—2\Cy(p—0q)
=—2Cop—+Ca®)/p
=-2Cop+v@P<v?. (F5)

2. Proof of v ¥ >p {3

Similarly, there is the complex rootx®=(a®
+ib®)/B with w,—b®>w , anda®<0 as the upper
level is within region Ill. Suppose

m= p+iq. (F6)
We have
p?—0?=we,— w1 +b®),
pg=—a®/2, (F7)

and g>p>0 due tow, —w;+b(?<0 anda®<0. The

energy velocity ) and the front velocity {3 can be rewrit-
ten as follows:

v®=—a® [Cy/Re(\Jwr, ~ 01— IxTB)

=—a®\Cy/p, (F8)
vﬁ)=2\/c_l(lm—Re)\/wcl—wl—ixmﬂ
=2\Cy(a-p). (F9)
In results, we obtain
v{P=2Ci(q—p)
=a®\[Cy/p—2\Cip
=v®-2\Cp<v®. (F10
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