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We show that very large nonlocal nonlinear interactions between pairs of colliding slow-light pulses can be
realized in atomic vapors in the regime of electromagnetically induced transparency. These nonlinearities are
mediated by strong, long-range dipole-dipole interactions between Rydberg states of the multilevel atoms in a
ladder configuration. In contrast to previously studied schemes, this mechanism can yield a homogeneous
conditional phase shift of � even for weakly focused single-photon pulses, thereby allowing a deterministic
realization of the photonic phase gate.
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Whether or not quantum-information processing and
quantum computing �1� become practical technologies cru-
cially depends on the ability to implement high-fidelity quan-
tum logic gates in a scalable way �2�. Among alternative
routes to this challenging goal, the schemes operating with
photons as qubits �3,4� are of particular interest, since pho-
tons are ideal carriers of quantum information in terms of
transfer rates, distances, and scalability. A current trend
makes use of linear optical elements and photodetectors for
the implementation of key components of quantum commu-
nications and information processing in a probabilistic way
�4�. The desirable objective though is a deterministic realiza-
tion of entangling operations between individual photons,
which require sufficiently strong nonlinearities or long inter-
action times. These are achievable, at the single-photon
level, by tight spatial confinement of the photons, in the very
demanding regime of strong atom-field coupling in high-Q
cavities �5�.

A promising alternative is to enhance both the nonlinear
susceptibility and interaction time by employing the ul-
traslow light propagation in resonant media subject to elec-
tromagnetically induced transparency �EIT� �6–8�. In a pio-
neering work, Schmidt and Imamoğlu have suggested the
possibility of enhanced, nonabsorptive, cross-phase modula-
tion of two weak fields in the EIT regime �9�, provided their
interaction time is long enough. However, upon entering the
EIT medium light pulses become spatially compressed by the
ratio of group velocity v to the vacuum speed of light c �10�,
so that the interaction time of two colliding pulses is a con-
stant independent of v. In order to maximize this time, co-
propagating pulses with nearly matched group velocities
have been proposed �11,12�. The essential drawback of such
an approach is the spatial inhomogeneity of the conditional
phase shift, causing spectral broadening of the interacting
pulses, thereby preventing the realization of a high-fidelity
quantum phase gate. Alternative approaches free of spectral
broadening have been suggested �13–15�. In all of them,
however, a rather tight transverse confinement through
waveguiding or focusing of the pulses, close to the diffrac-
tion limit of �2, is needed in order to attain a phase shift of
�, which is technically challenging.

When the light pulses enter EIT media, photonic excita-
tions are temporarily transferred to atomic excitations

through the formation of quasiparticles, the so-called dark-
state �or slow-light� polaritons, which are superpositions of
light and matter degrees of freedom �16�. The spatial com-
pression of the pulses leads to an amplification of the matter
components of polaritons. In this paper we propose a hitherto
unexplored mechanism for the collisional entanglement of
two single-quantum polaritons mediated by the long-range
interaction of their matter �atomic� components and demon-
strate its effectiveness. In contrast to the previous schemes
which employ local interactions, namely either two photons
interact with the same atom �11–14� or two atoms after ab-
sorbing the photons undergo s-wave scattering �15�, here the
two polaritons interact via the long-range dipole–dipole in-
teractions between their atomic components in the highly
excited Rydberg states. In a static electric field, these internal
Rydberg states, populated only in the presence of polaritons,
possess large permanent dipole moments �17�. We will show
that under experimentally realizable conditions, the condi-
tional phase shift accumulated during a collision of two
single-quantum polaritons is spatially homogeneous and can
be sufficiently large for the implementation of the quantum
phase gate, even for moderate focusing or transverse con-
finement of interacting pulses. We note that quantum gates
for individual Rydberg atoms, coupled by dipole–dipole in-
teraction, have been proposed in �18�, while the manipula-
tion of quantum information with mesoscopic atomic en-
sembles using the dipole blockade technique, based on long-
range interactions of atomic Rydberg states, was discussed in
�19�.

We consider an ensemble of cold alkali atoms with level
configuration as in Fig. 1. All the atoms are initially prepared
in the ground state �g�. Two weak �quantum� fields E1,2 hav-
ing orthogonal polarizations and propagating in the opposite
directions along the z axis resonantly interact with the atoms
on the transitions �g�→ �e1,2�, respectively. The intermediate
states �e1,2� are resonantly coupled by two strong �classical�
driving fields with Rabi frequencies �1,2 to the highly ex-
cited Rydberg states �d1,2�. In a static electric field Estez, the
Rydberg states �d� possess large permanent dipole moments
p= 3

2nqea0ez, where n and q�n1−n2 are, respectively, the
�effective� principal and parabolic quantum numbers, e is the
electron charge, and a0 is the Bohr radius �17�. A pair of
atoms i and j at positions ri and r j excited to states �d�
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interact with each other via the dipole–dipole potential

Vdd =
pi · p j − 3�pi · eij��p j · eij�

4��0�ri − r j�3
,

where eij is a unit vector along the interatomic direction. This
dipole–dipole interaction results in an energy shift of the pair
of Rydberg atoms, while we assume that the state mixing
within the same n manifold is suppressed by the proper
choice of parabolic q and magnetic m quantum numbers
�17,18�. In the frame rotating with the frequencies of the
optical fields, the interaction Hamiltonian has the following
form:

H = Vaf + Vdd, �1�

where the atom-field and dipole–dipole interaction terms are
given, respectively, by

Vaf = − ��
j

N

�g1
j Ê1�̂e1g

j + �1�̂d1e1

j + g2
j Ê2�̂e2g

j + �2�̂d2e2

j + H.c.� ,

�2a�

Vdd = ��
i�j

N

�̂dd
i ��ri − r j��̂dd

j . �2b�

Here N=	V is the total number of atoms, 	 being the �uni-
form� atomic density and V the volume; �̂
�

j ��
� j j	�� is the

transition operator of the jth atom; Êl is the slowly varying
operator, corresponding to the electric field El �l=1,2�,
which obeys the commutation relations �Êl�r� , Êl�

† �r���
=V�ll���r−r��; gl

j is the corresponding atom-field coupling
constant on the transition �g� j→ �el� j; and ���ri−r j�
�i	d� j	d�Vdd�d�i�d� j is the dipole–dipole energy shift for a
pair of atoms i and j, given by

��ri − r j� = C
1 − 3 cos2

�ri − r j�3
,

where  is the angle between vectors ez and eij, and C
=�dl

�dl�
/ �4��0�� is a constant proportional to the product of

atomic dipole moments �dl
= 	dl�p�dl� assumed the same for

both states �d1,2�, �d1,2
=�d.

Let us introduce collective atomic operators �̂
��r�
= 1 �Nr� j=1

Nr �̂
�
j averaged over the volume element d3r con-

taining Nr=	 d3r�1 atoms around position r. Then Eqs.
�2a� and �2b� can be cast in the continuous form

Vaf = − �	
 d3r �
l=1,2

�glÊl�̂elg
�r� + �l�̂eldl

�r�� + H.c.,

�3a�

Vdd = �	2
 
 d3r d3r��̂dd�r���r − r���̂dd�r�� . �3b�

Using Eqs. �3a� and �3b�, one can derive a set of Heisenberg-
Langevin equations for the atomic operators �̂
� �7�. When

the number of photons in the quantum fields Êl is much
smaller than the number of atoms, these equations can be

solved perturbatively in the small parameters glÊl /�l and in
the adiabatic approximation for all the fields �16�, with the
result

�̂gel
�r� = −

i

�l
� �

�t
+ i�̂�r���̂gdl

�r� , �4a�

�̂�r� = 	
 d3r���r − r����̂d1d1
�r�� + �̂d2d2

�r��� , �4b�

�̂gdl
�r� = −

glÊl

�l
* , �̂dldl

�r� = �̂dlg
�r��̂gdl

�r� . �4c�

Let us assume that the transverse profile of both quantum

fields is described by a Gaussian e−r�
2 /w2

of width w, where
r�= �r�� is the distance from the field propagation axis, while
the Rabi frequencies of classical driving fields �l are uni-

form over the entire volume V. We may then write glÊl

=gl�r��Êl�z�, where the traveling-wave electric field opera-

tors Êl�z�=�kal
keikz are expressed through the superposition

of bosonic operators al
k for the longitudinal field modes k,

while the �transverse-position-dependent� coupling constants

are given by gl�r��= g̃le
−r�

2 /2w2
, with g̃l= ��gel

/���� /2�0V,
�gel

being the dipole matrix element on the transition �g�
→ �el�, V=�w2L, and L the medium length. Under this ap-
proximation, the propagation equations for the slowly vary-
ing quantum fields have the form

� �

�t
± c

�

�z
�Êl�z,t� = ig̃lN�̂gel

�z� , �5�

the sign “+” or “−” corresponding to l=1 or 2, respectively.

FIG. 1. �Color online� �a� Level scheme of atoms interacting
with weak �quantum� fields E1,2 on the transitions �g�→ �e1,2� and
strong driving fields of Rabi frequencies �1,2 on the transitions
�e1,2�→ �d1,2�, respectively. Vdd denotes the dipole–dipole interac-
tion between pairs of atoms in Rydberg states �d�. �b� Upon entering
the medium, each field having Gaussian transverse intensity profile
is converted into the corresponding polariton �1,2 representing a
coupled excitation of the field and atomic coherence. These polari-
tons propagate in the opposite directions with slow group velocities
v1,2 and interact via the dipole–dipole interaction.
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Following �16�, we introduce new quantum fields

�̂l—dark state polaritons—via the canonical transformations

�̂l = cos �lÊl − sin �l
N�̂gdl

, �6�

where the mixing angles �l are defined through tan2�l
= g̃l

2N / ��l�2. These polaritons correspond to coherent super-

positions of electric field Êl and atomic coherence �̂gdl
op-

erators. Employing the plane-wave decomposition of the po-
lariton operators, one can show that in the weak-field limit,
they obey the bosonic commutation relations

��̂l�z� ,�̂l�
† �z����L�ll���z−z��. Using Eqs. �4a�–�4c� and �5�,

we obtain the following propagation equations for the polar-
iton operators,

� �

�t
± vl

�

�z
��̂l�z,t� = − i sin2�l�̂�z,t��̂l�z,t� . �7�

Here vl=c cos2�l is the group velocity, while operator �̂�z , t�
is responsible for the self- and cross-phase modulation be-
tween the polaritons. It is related to the polariton intensity

�excitation number� operators Îl��̂l
†�̂l via

�̂�z,t� =
1

L



0

L

dz���z − z���sin2�1Î1�z�,t� + sin2�2Î2�z�,t�� ,

�8�

where the one-dimensional �1D� dipole–dipole interaction
potential ��z−z�� is obtained after the integration over the
transverse profile of the quantum fields,

��z − z�� =
1

�w2

0

2�

d��

0

�

dr�� r�� e−r��
2/w2

��zez − r��

=
2C

w3 �2�z − z��
w

− ��1 + 2
�z − z��2

w2 �
� exp� �z − z��2

w2 �erfc� �z − z��
w

�� , �9�

and is shown in Fig. 2�a�.
It follows from Eq. �7� that the intensity operators Îl are

constants of motion: Îl�z , t�= Îl�z�vlt ,0�, the upper �lower�
sign corresponding to l=1 �l=2�. Then the formal solution
for the polariton operators can be written as

�̂l�z,t� = exp�− i sin2�l

0

t

dt��̂�z � vl�t − t��,t���

� �̂l�z � vlt,0� . �10�

Equation �10� is our central result. Let us outline the ap-
proximations involved in the derivation of this solution. In
order to accommodate the pulses in the medium with negli-
gible losses, their duration T should exceed the inverse of the
EIT bandwidth ��= ��l�2��gel

�0L�−1, where �gel
is the

transversal relaxation rate and �0�3�2 / �2��	 is the reso-
nant absorption coefficient on the transition �g�→ �el�. This
yields the condition ��0L�−1/2�Tvl /L�1 which requires a
medium with large optical depth �0L�1 �16�. In addition,

the dipole–dipole energy shift should lie within the EIT
bandwidth �� for all �z−z���L, which implies that ���0��
=2�C /w3���. Finally, the propagation/interaction time of
the two pulses tout=L /vl is limited by the relaxation rate �gdl
of the �̂gdl

coherence via tout�gdl
�1.

From now on, we assume that �1,2=�, i.e., g̃1
2N / ��1�2

= g̃2
2N / ��2�2, which yields v1,2=v=c cos2�. We are interested

in the evolution of input state

��in� = �11� � �12� , �11�

composed of two single-excitation polariton wave packets

�1l� =
1

L

 dzfl�z��̂l�z�†�0� ,

where f l�z� define the spatial envelopes of the corresponding
wave packets l=1, 2 which initially �at t=0� are localized
around z=0, L, respectively. For such an initial state, all the
relevant information is contained in the expectation values of

the polariton intensities 	Îl�z , t��= 	�in�Îl�z , t���in� and the
two-particle wave function �7,11,12�

F12�z1,z2,t� = 	0��̂1�z1,t��̂2�z2,t���in� . �12�

With the above solution, for the polariton intensities we have

	Î1,2�z , t��= 	Î1,2�z�vt ,0��= �f1,2�z�vt��2, which describes
the shape-preserving counterpropagation of the two polari-
tons with group velocity v. Substituting the operator solution
�10� into Eq. �12�, after some algebra, we obtain the follow-
ing expression for the two-particle wave function:

F12�z1,z2,t� = f1�z1 − vt�f2�z2 + vt�exp�i��z1,z2,t�� , �13�

FIG. 2. �a� The 1D dipole–dipole potential ���� of Eq. �9� as a
function of dimensionless distance �= �z−z�� /w, in units of
2C /w3 Hz. �b� The resulting phase shift �� ����vt ,L−vt , t� of
Eq. �14� as a function of dimensionless time  =vt /w, in units of
2C / �vw2� rad.
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��z1,z2,t� = − sin4�

0

t

dt���z1 − z2 − 2v�t − t��� , �14�

which indicates that the dipole–dipole interaction between
the two single-excitation polaritons results in the conditional
phase-shift ��z1 ,z2 , t�. We consider a situation in which at
time t=0, the first pulse is localized at z1=0 and the second
pulse is at z2=L, while after the interaction, at time tout
=L /v, the coordinates of the two pulses are z1=L and z2=0,
respectively �Fig. 2�b��. Then the phase shift accumulated
during the interaction is spatially uniform, and is given by

��L,0,L/v� = −
sin4�

v



0

L

dz���2z� − L� =
2C sin4�

vw2 . �15�

This remarkably simple result is obtained upon replacing the
variable �2z�−L� /w→�� and extending the integration limits
to L /w→�. The main limitation on the phase shift is im-
posed by the condition ���0�����. In terms of experimen-
tally relevant parameters, the group velocity is v
�2���2 / ��0�ge��c�sin2��1�, and we have

��
w

2
 �0

�L
. �16�

To relate the foregoing discussion to a realistic experi-
ment, let us assume an ensemble of cold alkali atoms in the
ground state �g� with density 	�1014 cm−3 confined in a trap
of length L�100 
m. The resonant quantum fields with �
�0.6 
m have the transverse width w�30 
m. In the pres-
ence of driving fields with appropriate frequencies, the
single-photon pulses lead to the �two-photon� excitation of
single atoms to the Rydberg states �d� with quantum numbers
n�25 and q=n−1. The corresponding dipole moment is
�d�900ea0, while the decay rate of �d� is 2�d�3�103 s−1

�17�. With �ge�107 s−1 and ��1.8�107 rad/s, the group
velocity is v�4 m/s, and the accumulated phase shift is �
��. The corresponding fidelity F of the phase gate is deter-
mined by the bandwidth of the transparency window �� and
the two-photon coherence relaxation rate �gd, as discussed
above. For the present parameters, condition �16� is satisfied,
the optical depth is large �0L�1.7�103, while for a cold
atomic gas we have �gd��d. Therefore the fidelity is mainly
limited by the relaxation rate �d of Rydberg states and is
given by F=exp�−�dL /v�!0.96.

To summarize, we have studied a highly efficient scheme
for cross-phase modulation and entanglement of two coun-
terpropagating single-photon wave packets, employing their
ultrasmall group velocities in atomic vapors, under the con-
ditions of electromagnetically induced transparency, and the
strong long-range dipole–dipole interactions of the accompa-
nying Rydberg-state excitations in a ladder-type field-atom
coupling setup. We have solved, in the weak-field and adia-
batic approximations, the effective one-dimensional propaga-
tion equations for the polariton operators and have shown
that the dipole–dipole interaction leads to a homogeneous
conditional phase shift that can reach the value of � even if
the transverse cross section of the pulses w2 is much �three
orders of magnitude� larger than the diffraction limit �2. This
is the obvious merit of the present proposal, as compared to
previous schemes based on local interactions of photons or
slow-light polaritons �9–15�, which require the photonic
beam cross section to be comparable to the cross section for
atomic resonant absorption. Hence our proposal paves the
way to the coveted deterministic entanglement of two single-
photon pulses and the realization of the universal photonic
phase gate �12�.
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