Entanglement of collectively interacting harmonic chains: An effective two-dimensional system

R. G. Unanyan, ${ }^{1,2}$ M. Fleischhauer, ${ }^{2}$ and D. Bruß ${ }^{1}$
${ }^{1}$ Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
${ }^{2}$ Fachbereich Physik, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany

(Received 12 September 2006; published 27 April 2007)

Abstract

We study the ground-state entanglement of one-dimensional harmonic chains that are coupled to each other by a collective interaction as realized, e.g., in an anisotropic ion crystal. Due to the collective type of coupling, where each chain interacts with every other one in the same way, the total system shows critical behavior in the direction orthogonal to the chains, while the isolated harmonic chains can be gapped and noncritical. We derive lower and most importantly upper bounds for the entanglement, quantified by the von Neumann entropy, between a compact block of oscillators and its environment. For sufficiently large size of the subsystems, the bounds coincide and show that the area law for entanglement is violated by a logarithmic correction.

DOI: 10.1103/PhysRevA.75.040302
PACS number(s): 03.67.Mn, $05.50 .+\mathrm{q}, 03.65 . \mathrm{Ud}, 05.70 . \mathrm{Jk}$

Presently there is a growing interest in the interrelation between entanglement and ground-state properties of manybody lattice models. For a number of spin systems [1], a strict correspondence between the absence of criticality, the presence of an energy gap, and an area law for the entanglement was established. The latter states that the entanglement of a compact subset of lattice sites with the rest of the system, measured by the von Neumann entropy, scales with the surface area of the subset. For critical spin systems it was shown that an additional logarithmic correction to the area law emerges. A similar relation between criticality and entanglement was suggested for harmonic lattice models [2,3]. In $[4,5]$, an area law was established for harmonic lattice models in arbitrary dimensions with nearest-neighbor coupling which have a gapped spectrum. For finite-range couplings in one dimension a one-to-one correspondence between the validity of the area law and noncriticality was established in [6], and logarithmic corrections were derived for critical systems.

Although the relation between criticality and entropy-area law seems rather universal, there are a number of examples where this relation does not hold [5,7]. Until now there is no general understanding of the conditions for the validity of an entropy-area law in particular in higher dimensions [1,4,5,8]. In the present paper, we discuss a specific gapless oscillator model with dimension larger than 1 , for which an exact asymptotic expression for the entropy can be obtained. Due to the collective nature of the interactions in one spatial direction, the system is critical and thus a violation of the area law is expected. We here derive a lower and, most importantly, a tight upper bound for the entropy, and in this way obtain an exact form of the correction term to the area law.

Let us consider a set of parallel harmonic chains (see Fig. 1) each containing n_{x} oscillators, with $n_{x} \rightarrow \infty$ in the thermodynamic limit. We will refer to the direction parallel to the chains as the x axis, and to the orthogonal direction as the y axis. The number of parallel chains is denoted as n_{y}, again with $n_{y} \rightarrow \infty$ in the thermodynamic limit. The oscillators are described by the canonical variables $\left(q_{i}, p_{i}\right)$, where i $=1,2, \ldots, N\left(N=n_{x} n_{y}\right)$ is a collective index that labels the oscillator. We adopt the following notation: $i=1, \ldots, n_{x}$ correspond to the oscillators in the first chain with growing x
coordinate, $i=n_{x}+1, \ldots, 2 n_{x}$ corresponds to oscillators in the second chain, and so on. We consider a quadratic Hamiltonian of the form

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\frac{1}{2} \sum_{i, j=1}^{N} V_{i j} q_{i} q_{j}, \tag{1}
\end{equation*}
$$

with a coupling matrix V. We are interested only in a translationally invariant coupling, i.e., we assume that the matrix elements of V depend only on the difference of the x coordinates and the difference of the y coordinates. Hence V is a block Toeplitz matrix. For oscillator systems with a quadratic coupling of the form of Eq. (1), the ground state

$$
\begin{equation*}
\Psi_{0}(\mathbf{q}) \sim \exp \left(-\frac{1}{2}\langle\mathbf{q}| V^{1 / 2}|\mathbf{q}\rangle\right) \tag{2}
\end{equation*}
$$

and all its properties, such as, e.g., the correlation length in position or momentum space, are determined by the square root of V, where $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{N}\right)$ is the vector of position variables. The ground state can easily be determined if V is the square of another matrix, which we assume to be again a Toeplitz matrix,

$$
\begin{equation*}
V=Z^{2} / n_{y} . \tag{3}
\end{equation*}
$$

The factor $1 / n_{y}$ is chosen such that the matrix elements of V remain finite in the limit $N \rightarrow \infty$. Assuming Z to be a Toeplitz matrix guarantees that the coupling V is a Toeplitz matrix as well. We furthermore consider Z to be of the block-matrix form

$$
Z=\left[\begin{array}{llllll}
\Lambda & Q & Q & \cdot & \cdot & Q \tag{4}\\
Q & \Lambda & Q & \cdot & \cdot & Q \\
Q & Q & \Lambda & \cdot & & \\
& \cdot & & & & Q \\
& & \cdot & & & Q \\
Q & & & Q & Q & \Lambda
\end{array}\right]
$$

The elements of Z are $n_{x} \times n_{x}$ matrices and are characterized according to the correlations of Eq. (2). The diagonal elements of Z describe correlations within one chain, i.e., in the x direction, the off-diagonal elements describe correlations

FIG. 1. (a) Collectively interacting strings of harmonic oscillators with finite-range intrachain coupling Λ and collective interchain coupling Q. The gray area indicates the subsystem I of oscillators. (b) Alternative view: interacting strings with collective intrachain coupling Q and finiterange interchain coupling Λ.
between the chains. Λ and Q are both assumed to be Toeplitz matrices of finite range, i.e., their matrix elements Λ_{k} and Q_{k}, where $\Lambda_{k} \equiv \Lambda_{k=|i-j|}=\langle i| \Lambda|j\rangle$, vanish exactly for $k \geqslant R$. The finite range of Λ and Q ensures that the interaction V is of finite range within the chains, while the form of Z implies that V is constant orthogonal to the chains. We assume furthermore that Λ, Q, and $\Lambda-Q$ are positive definite matrices. A simple calculation shows that the ground state of V is degenerate and in the thermodynamic limit $n_{x}, n_{y} \rightarrow \infty$ has only one nonzero eigenvalue. This means that the total Hamiltonian, Eq. (1), is gapless. It should be noted, however, that the collective nature of the interactions is not sufficient for a gapless spectrum of the Hamiltonian.

Since all off-diagonal elements of Z are identical, correlations between oscillators do not depend on their distance in the y direction, and the total system is critical irrespective of the correlation properties within the chains. Thus one expects that the entropy-area law is broken. In fact one can easily find a lower bound to the entropy by the following simple argument: Let us consider a partition of the set of N oscillators into a compact subsystem I with $N_{0}=l_{x} l_{y}$ and a subsystem II with $N-N_{0}$ oscillators (see Fig. 1). If we now consider harmonic chains in the y-rather than the x-direction, the y chains couple to each other with finiterange interaction Λ [see Fig. 1(b)]. We thus have reason to assume that $S \geqslant l_{x} S_{0}$, where S_{0} is the entropy of a single y chain. Since the coupling within the chain is now collective (Q), the y chain itself is critical and its entropy scales as $S_{0} \sim \ln l_{y}$. Thus $S \geqslant l_{x} \ln l_{y}$ which in the thermodynamic limit $\left\{l_{x}, l_{y}\right\} \rightarrow \infty$ is much larger than the surface area $2\left(l_{x}+l_{y}\right)$. While it is easy to see that the area law is broken, it is nontrivial to find an upper bound to the entropy and the exact form of the correction term. This will be done in the following.

Using the spectral representation of V, the correlation matrices $V^{1 / 2}$ and $V^{-1 / 2}$ can be decomposed as

$$
\begin{equation*}
V^{1 / 2}=\left[(\Lambda-Q) \otimes \mathbf{1}_{y}+n_{y} Q \otimes \mathcal{P}_{n_{y}, n_{y}}\right] / \sqrt{n_{y}} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
V^{-1 / 2}= & \left\{(\Lambda-Q)^{-1} \otimes \mathbf{1}_{y}+\left[\left(\Lambda-Q+n_{y} Q\right)^{-1}-(\Lambda-Q)^{-1}\right]\right. \\
& \left.\otimes \mathcal{P}_{n_{y} n_{y}}\right\} \sqrt{n_{y}}, \tag{6}
\end{align*}
$$

where $\mathbf{1}_{y}$ is the unity matrix of size $n_{y} \times n_{y}$ and $\mathcal{P}_{n m}$
$=\left|P_{n m}\right\rangle\left\langle P_{n m}\right|$ is the projector onto the (in general nonnormalized) vector

$$
\left|P_{n m}\right\rangle=\frac{1}{\sqrt{n}}(\underbrace{1,1, \ldots, 1}_{m})^{T} .
$$

Following Refs. [2-4,9], the von Neumann entropy or the entropy of entanglement of the two compact parts I and II can be calculated from a decomposition of $V^{1 / 2}$ into the two subsystems. To this end we express $V^{1 / 2}$ and $V^{-1 / 2}$ in a block form according to the two subsystems by proper reordering of rows and columns

$$
V^{-1 / 2}=\left[\begin{array}{cc}
A & B \tag{7}\\
B^{T} & C
\end{array}\right], \quad V^{1 / 2}=\left[\begin{array}{cc}
D & E \\
E^{T} & F
\end{array}\right] .
$$

Here A and D are $N_{0} \times N_{0}$ matrices describing correlations within subsystem I, C and F are $\left(N-N_{0}\right) \times\left(N-N_{0}\right)$ matrices describing correlations within subsystem II, and the matrices B and E describe the correlations between them. The entropy of entanglement is then given by the eigenvalues $\mu_{i} \geqslant 1$ of the matrix product $A \cdot D[4]$:

$$
\begin{gather*}
S=\sum_{i=1}^{N_{0}} f\left(\sqrt{\mu_{i}}\right), \tag{8}\\
f(x)=\frac{x+1}{2} \ln \frac{x+1}{2}-\frac{x-1}{2} \ln \frac{x-1}{2} . \tag{9}
\end{gather*}
$$

Despite the simplicity of its form, expression (8) cannot be explicitly evaluated in general. Due to the special interaction matrix the eigenvalues can, however, be evaluated in the thermodynamic limit.

From the spectral decomposition of $V^{1 / 2}$, Eq. (5), one easily finds that the subsystem matrices read

$$
\begin{gather*}
A=\left[A_{0} \otimes \mathbf{1}_{l_{y}}+\left(A_{1}-A_{0}\right) \otimes \mathcal{P}_{n_{y} l_{y}}\right] \sqrt{n_{y}}, \\
D=\left[D_{0} \otimes \mathbf{1}_{l_{y}}+n_{y} D_{1} \otimes \mathcal{P}_{n_{y} l_{y}}\right] / \sqrt{n_{y}} \tag{10}
\end{gather*}
$$

where A_{0}, A_{1} and D_{0}, D_{1} are $l_{x} \times l_{x}$ principal submatrices of $(\Lambda-Q)^{-1},\left(\Lambda-Q+n_{y} Q\right)^{-1}$, and $(\Lambda-Q), Q$, respectively. For large n_{y} one has

$$
\begin{equation*}
A \cdot D \approx\left(A_{0} \cdot D_{0}\right) \otimes \mathbf{1}_{l_{y}}+n_{y}\left(A_{0} \cdot D_{1}\right) \otimes \mathcal{P}_{n_{y} l_{y}} \tag{11}
\end{equation*}
$$

Here we have used that $\mathcal{P}_{n_{y}, l_{y}}^{2}=l_{y} / n_{y} \mathcal{P}_{n_{y}, l_{y}}$, which scales as $1 / n_{y}$ for fixed l_{y}, and is thus negligible in the thermodynamic limit. Furthermore $\mathcal{P}_{n_{y}, l_{y}}$ has one nonzero eigenvalue l_{y} / n_{y}, which vanishes in the thermodynamic limit (l_{y} fixed and n_{y} $\rightarrow \infty)$, and ($l_{y}-1$) zero eigenvalues. Thus the $l_{x} l_{y}$ eigenvalues of $A \cdot D$ can be decomposed into two sets. The first set consists of the l_{x} eigenvalues of $A_{0} \cdot D_{0}$ each of which occurs $\left(l_{y}-1\right)$ times:

$$
\begin{gather*}
\mu_{1}, \ldots, \mu_{l_{y}-1}=\alpha_{1}\left(A_{0} \cdot D_{0}\right), \\
\mu_{l_{y}}, \ldots, \mu_{2\left(l_{y}-1\right)}=\alpha_{2}\left(A_{0} \cdot D_{0}\right), \\
\vdots \tag{12}\\
\mu_{\left(l_{x}-1\right)\left(l_{y}-1\right)+1}, \ldots, \mu_{l_{x}\left(l_{y}-1\right)}=\alpha_{l_{x}}\left(A_{0} \cdot D_{0}\right) .
\end{gather*}
$$

Here and in the following $\alpha_{k}(X)$ denotes the k th eigenvalues of the matrix X. The total number of these eigenvalues is $l_{x}\left(l_{y}-1\right)$. The second set consists of the l_{x} eigenvalues of $\left[A_{0} \cdot D_{0}+l_{y}\left(A_{0} \cdot D_{1}\right)\right]$

$$
\begin{align*}
& \mu_{k}=\alpha_{k}\left[A_{0} \cdot D_{0}+l_{y}\left(A_{0} \cdot D_{1}\right)\right] \\
& \text { for } k=l_{x}\left(l_{y}-1\right)+1, \ldots, l_{x} l_{y} . \tag{13}
\end{align*}
$$

Expression (13) for the second set of eigenvalues can be simplified using Lidskii's theorem [10], which is stated as follows. Let X and Y be M-dimensional Hermitian matrices. Moreover, let $\alpha_{k}(X), \alpha_{k}(Y)$, and $\alpha_{k}(X-Y), k=1, \ldots, M$, be the eigenvalues of X, Y, and $X-Y$, respectively, in ascending order $\left\{\alpha_{1}(X) \leqslant \alpha_{2}(X) \leqslant \cdots \leqslant \alpha_{M}(X)\right\}$. Then there exist numbers $w_{k j} \geqslant 0(k, j=1, \ldots, M)$, such that $\Sigma_{k} w_{k j}=\Sigma_{j} w_{k j}=1$ and

$$
\begin{equation*}
\alpha_{k}(X)=\alpha_{k}(Y)+\sum_{j=1}^{M} w_{k j} \alpha_{j}(X-Y) . \tag{14}
\end{equation*}
$$

Equation (14) implies that for sufficiently large l_{y} the eigenvalues of the matrix $A_{0} \cdot D_{0}+l_{y}\left(A_{0} \cdot D_{1}\right)$ are

$$
\begin{equation*}
\alpha_{k}\left[A_{0} \cdot D_{0}+l_{y}\left(A_{0} \cdot D_{1}\right)\right] \approx l_{y} \sum_{j=1}^{l_{x}} w_{k j} \alpha_{j}\left(A_{0} \cdot D_{1}\right) \tag{15}
\end{equation*}
$$

An upper bound to the entropy can be found by evaluating the sum over the eigenvalues (12) and (13) in Eq. (8) separately:

$$
\begin{equation*}
S=S_{1}+S_{2}=\sum_{j=1}^{l_{x}\left(l_{y}-1\right)} f\left(\sqrt{\mu_{j}}\right)+\sum_{j=l_{x}\left(l_{y}-1\right)+1}^{l_{x} l_{y}} f\left(\sqrt{\mu_{j}}\right) \tag{16}
\end{equation*}
$$

Taking into account Eq. (12) one recognizes that S_{1} is apart from a prefactor $\left(l_{y}-1\right)$ formally equivalent to the von Neumann entropy of a linear oscillator chain of length l_{x} with interaction $\widetilde{V}=(\Lambda-Q)^{2}$

$$
\begin{equation*}
S_{1}=\left(l_{y}-1\right) \sum_{k=1}^{l_{x}} f\left[\sqrt{\alpha_{k}\left(A_{0} \cdot D_{0}\right)}\right] . \tag{17}
\end{equation*}
$$

Since $\Lambda-Q$ was assumed to be strictly positive, the interaction \widetilde{V} has only nonzero eigenvalues and thus corresponds to a gapped oscillator chain. As shown in $[4,6]$ the entropy of such a linear chain saturates in the thermodynamic limit, i.e., it becomes independent of the length l_{x} of the chain. Thus we have in the thermodynamic limit

$$
\begin{equation*}
S_{1} \leqslant l_{y} c_{1} \tag{18}
\end{equation*}
$$

To obtain an upper bound to S_{2} we use the inequality $f(x)$ $<1-\ln 2+\ln x$. This yields with Eq. (15)

$$
\begin{equation*}
S_{2}<l_{x}(1-\ln 2)+\frac{1}{2} \sum_{k=1}^{l_{x}} \ln \left(l_{y} \sum_{j=1}^{l_{x}} w_{k j} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) \tag{19}
\end{equation*}
$$

To further evaluate the last term we make use of the convexity of the logarithm together with the arithmetic mean inequality

$$
\begin{align*}
& \frac{1}{2} \sum_{k=1}^{l_{x}} \ln \left(l_{y} \sum_{j=1}^{l_{x}} w_{k j} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) \\
& \quad \leqslant \frac{l_{x}}{2} \ln \left(\frac{l_{y}}{l_{x}} \sum_{j=1}^{l_{x}} \sum_{k=1}^{l_{x}} w_{k j} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) \\
& \quad=\frac{l_{x}}{2} \ln \left(\frac{l_{y}}{l_{x}} \sum_{j=1}^{l_{x}} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) \tag{20}
\end{align*}
$$

where we have used $\Sigma_{k} w_{k j}=1$ in the last step.
We now have to evaluate the remaining logarithm. For this we make use of the fact that Λ and Q are regular (i.e., strictly positive) Toeplitz matrices. Because of this, their elements can be obtained from the non-negative spectral functions $\lambda(\theta)$ and $q(\theta)$ [11] $\Lambda_{k}=(1 / 2 \pi) \int_{0}^{2 \pi} \lambda(\theta) \exp (-i k \theta) d \theta$, $Q_{k}=(1 / 2 \pi) \int_{0}^{2 \pi} q(\theta) \exp (-i k \theta) d \theta$. Since we have assumed above that also $\Lambda-Q$ is strictly positive, the functions $\lambda(\theta)$, $q(\theta)$ are strictly positive and $\lambda(\theta)>q(\theta)$. In addition, we require also that $[\lambda(\theta)-q(\theta)]^{ \pm 1}$ and $q(\theta)$ have bounded derivatives of second order. As a consequence, one finds (see [11] p. 221)

$$
\begin{equation*}
\frac{1}{l_{x}}\left(\sum_{j=1}^{l_{x}} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) \approx \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{q(\theta)}{\lambda(\theta)-q(\theta)} d \theta \tag{21}
\end{equation*}
$$

which is a constant independent of l_{x}. Thus the desired upper bound to the entropy for sufficiently large l_{x}, l_{y} is

$$
\begin{equation*}
S \leqslant c_{1} l_{y}+c_{2} l_{x}+\frac{l_{x}}{2} \ln l_{y} \tag{22}
\end{equation*}
$$

where c_{1}, c_{2} are some constants independent of the size of the subsystem.

A lower bound to the entropy can be found from the inequality $f(x) \geqslant \ln x$. This yields, with Eq. (15),

$$
\begin{align*}
S \geqslant & \frac{\left(l_{y}-1\right)}{2} \sum_{k=1}^{l_{x}} \ln \left[\alpha_{k}\left(A_{0} \cdot D_{0}\right)\right]+\frac{l_{x}}{2} \ln \left(l_{y}\right) \\
& +\frac{1}{2} \sum_{k=1}^{l_{x}} \ln \left(\sum_{j=1}^{l_{x}} w_{k j} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right) . \tag{23}
\end{align*}
$$

Making use of Jensen's inequality for concave functions $\ln \left(\sum_{j} t_{j} \alpha_{j}\right) \geqslant \Sigma_{j} t_{j} \ln \left(\alpha_{j}\right)$ and $\Sigma_{k} w_{k j}=1$, we find

$$
\begin{align*}
S \geqslant & \frac{\left(l_{y}-1\right)}{2} \sum_{k=1}^{l_{x}} \ln \left[\alpha_{k}\left(A_{0} \cdot D_{0}\right)\right]+\frac{l_{x}}{2} \ln \left(l_{y}\right) \\
& +\frac{1}{2} \sum_{j=1}^{l_{x}} \ln \left[\alpha_{j}\left(A_{0} \cdot D_{1}\right)\right] . \tag{24}
\end{align*}
$$

To evaluate the sums over the logarithms we employ Szegö's theorem [11], for determinants of a Toeplitz matrices T. The theorem states that, for sufficiently large l_{x}

$$
\ln [\operatorname{det}(T)] \approx q_{0} l_{x}+\sum_{k=1}^{\infty} k\left|q_{k}\right|^{2}
$$

for a regular spectral function $q(\theta)$. Here q_{k} are the Fourier coefficients of $\ln q(\theta)$. Since, moreover,

$$
\begin{equation*}
\sum_{j} \ln \left[\alpha_{j}\left(A_{0} \cdot D_{1}\right)\right]=\ln \left(\prod_{j} \alpha_{j}\left(A_{0} \cdot D_{1}\right)\right)=\ln \left[\operatorname{det}\left(A_{0}\right) \operatorname{det}\left(D_{1}\right)\right] \tag{25}
\end{equation*}
$$

we eventually find the lower bound

$$
\begin{equation*}
S \geqslant a_{1} l_{x}+a_{2} l_{y}+\frac{l_{x}}{2} \ln \left(l_{y}\right) \tag{26}
\end{equation*}
$$

Here a_{1} and a_{2} are constants independent of the size of the subsystem, and we have ignored an unimportant constant term.

By combining the two estimates (22) and (26) one finds

$$
c_{1} l_{x}+c_{2} l_{y}+\frac{l_{x}}{2} \ln \left(l_{y}\right) \geqslant S \geqslant a_{1} l_{x}+a_{2} l_{y}+\frac{l_{x}}{2} \ln \left(l_{y}\right)
$$

Since both sides of this inequality have the same functional form, S approaches for large l_{x}, l_{y} the asymptotic value

$$
\begin{equation*}
S \approx \frac{l_{x}}{2} \ln \left(l_{y}\right), \quad l_{x}, l_{y} \gg 1 \tag{27}
\end{equation*}
$$

This is the main result of our paper. It shows that the entropy-area law is violated for a set of harmonic chains, which for themselves have a gapped spectrum and are noncritical but become gapless by a collective interaction between the chains. Both upper and lower bounds to the entropy attain the same logarithmic correction term to the area law.

A physical system that can be approximated by the model studied here is an anisotropic ion crystal. In such a system the Coulomb interaction in the direction of the small lattice constant can in first approximation be considered as collective, while the one in an orthogonal direction is of finite range.

In conclusion, we derived an exact asymptotic expression for the entanglement entropy of a critical system of interacting oscillators in more than one dimension. We found that, as in one-dimensional systems [6], the entanglement area law is violated by a logarithmic correction proportional to the surface area in the critical direction. To our knowledge, the system of collectively interacting harmonic strings considered here, which is approximately realized, e.g., in an anisotropic ion crystal, is the first nontrivial example of a critical two-dimensional system for which the correction to the area law can explicitly be calculated.

This work was supported by the European Commission through the Integrated Project FET/QIPC "SCALA."
[1] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003); V. E. Korepin, ibid. 92, 096402 (2003); B.-Q. Jin and V. E. Korepin, J. Stat. Phys. 116, 79 (2004); A. R. Its, B. Q. Jin, and V. E. Korepin, J. Phys. A 38, 2975 (2005); P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. (2004) P06002; L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93, 250404 (2004); J. P. Keating and F. Mezzadri, Commun. Math. Phys. 252, 543 (2004); Phys. Rev. Lett. 94, 050501 (2005); A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71, 022315 (2005).
[2] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).
[3] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).
[4] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Phys. Rev. Lett. 94, 060503 (2005).
[5] M. Cramer, J. Eisert, M. B. Plenio, and J. Dreißig, Phys. Rev. A 73, 012309 (2006).
[6] R. G. Unanyan and M. Fleischhauer, Phys. Rev. Lett. 95, 260604 (2005).
[7] W. Dür, L. Hartmann, M. Hein, M. Lewenstein, and H.-J. Briegel, Phys. Rev. Lett. 94, 097203 (2005).
[8] M. Cramer, J. Eisert, and M. B. Plenio, e-print quant-ph/ 0611264 (unpublished).
[9] A. Botero and B. Reznik, Phys. Rev. A 70, 052329 (2004).
[10] B. V. Lidskii, Dokl. Akad. Nauk SSSR 74, 769 (1950); see also T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).
[11] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications (University of California Press, Berkeley, CA, 1958).

