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We study the ground-state entanglement of one-dimensional harmonic chains that are coupled to each other
by a collective interaction as realized, e.g., in an anisotropic ion crystal. Due to the collective type of coupling,
where each chain interacts with every other one in the same way, the total system shows critical behavior in the
direction orthogonal to the chains, while the isolated harmonic chains can be gapped and noncritical. We derive
lower and most importantly upper bounds for the entanglement, quantified by the von Neumann entropy,
between a compact block of oscillators and its environment. For sufficiently large size of the subsystems, the
bounds coincide and show that the area law for entanglement is violated by a logarithmic correction.
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Presently there is a growing interest in the interrelation
between entanglement and ground-state properties of many-
body lattice models. For a number of spin systems �1�, a
strict correspondence between the absence of criticality, the
presence of an energy gap, and an area law for the entangle-
ment was established. The latter states that the entanglement
of a compact subset of lattice sites with the rest of the sys-
tem, measured by the von Neumann entropy, scales with the
surface area of the subset. For critical spin systems it was
shown that an additional logarithmic correction to the area
law emerges. A similar relation between criticality and en-
tanglement was suggested for harmonic lattice models �2,3�.
In �4,5�, an area law was established for harmonic lattice
models in arbitrary dimensions with nearest-neighbor cou-
pling which have a gapped spectrum. For finite-range cou-
plings in one dimension a one-to-one correspondence be-
tween the validity of the area law and noncriticality was
established in �6�, and logarithmic corrections were derived
for critical systems.

Although the relation between criticality and entropy-area
law seems rather universal, there are a number of examples
where this relation does not hold �5,7�. Until now there is no
general understanding of the conditions for the validity of an
entropy-area law in particular in higher dimensions �1,4,5,8�.
In the present paper, we discuss a specific gapless oscillator
model with dimension larger than 1, for which an exact
asymptotic expression for the entropy can be obtained. Due
to the collective nature of the interactions in one spatial di-
rection, the system is critical and thus a violation of the area
law is expected. We here derive a lower and, most impor-
tantly, a tight upper bound for the entropy, and in this way
obtain an exact form of the correction term to the area law.

Let us consider a set of parallel harmonic chains �see Fig.
1� each containing nx oscillators, with nx→� in the thermo-
dynamic limit. We will refer to the direction parallel to the
chains as the x axis, and to the orthogonal direction as the y
axis. The number of parallel chains is denoted as ny, again
with ny→� in the thermodynamic limit. The oscillators are
described by the canonical variables �qi , pi�, where i
=1,2 , . . . ,N �N=nxny� is a collective index that labels the
oscillator. We adopt the following notation: i=1, . . . ,nx cor-
respond to the oscillators in the first chain with growing x

coordinate, i=nx+1, . . . ,2nx corresponds to oscillators in the
second chain, and so on. We consider a quadratic Hamil-
tonian of the form

H =
1

2�
i=1

N

pi
2 +

1

2 �
i,j=1

N

Vijqiqj , �1�

with a coupling matrix V. We are interested only in a trans-
lationally invariant coupling, i.e., we assume that the matrix
elements of V depend only on the difference of the x coor-
dinates and the difference of the y coordinates. Hence V is a
block Toeplitz matrix. For oscillator systems with a quadratic
coupling of the form of Eq. �1�, the ground state

�0�q� � exp�−
1

2
�q	V1/2	q
� �2�

and all its properties, such as, e.g., the correlation length in
position or momentum space, are determined by the square
root of V, where q= �q1 ,q2 , . . . ,qN� is the vector of position
variables. The ground state can easily be determined if V is
the square of another matrix, which we assume to be again a
Toeplitz matrix,

V = Z2/ny . �3�

The factor 1 /ny is chosen such that the matrix elements of V
remain finite in the limit N→�. Assuming Z to be a Toeplitz
matrix guarantees that the coupling V is a Toeplitz matrix as
well. We furthermore consider Z to be of the block-matrix
form

Z = �
� Q Q . . Q

Q � Q . . Q

Q Q � .

. . Q

. Q

Q Q Q �

 . �4�

The elements of Z are nx�nx matrices and are characterized
according to the correlations of Eq. �2�. The diagonal ele-
ments of Z describe correlations within one chain, i.e., in the
x direction, the off-diagonal elements describe correlations
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between the chains. � and Q are both assumed to be Toeplitz
matrices of finite range, i.e., their matrix elements �k and Qk,
where �k��k=	i−j	= �i	�	j
, vanish exactly for k�R. The fi-
nite range of � and Q ensures that the interaction V is of
finite range within the chains, while the form of Z implies
that V is constant orthogonal to the chains. We assume fur-
thermore that �, Q, and �−Q are positive definite matrices.
A simple calculation shows that the ground state of V is
degenerate and in the thermodynamic limit nx ,ny→� has
only one nonzero eigenvalue. This means that the total
Hamiltonian, Eq. �1�, is gapless. It should be noted, however,
that the collective nature of the interactions is not sufficient
for a gapless spectrum of the Hamiltonian.

Since all off-diagonal elements of Z are identical, corre-
lations between oscillators do not depend on their distance in
the y direction, and the total system is critical irrespective of
the correlation properties within the chains. Thus one expects
that the entropy-area law is broken. In fact one can easily
find a lower bound to the entropy by the following simple
argument: Let us consider a partition of the set of N oscilla-
tors into a compact subsystem I with N0= lxly and a sub-
system II with N−N0 oscillators �see Fig. 1�. If we now
consider harmonic chains in the y—rather than the
x—direction, the y chains couple to each other with finite-
range interaction � �see Fig. 1�b��. We thus have reason to
assume that S� lxS0, where S0 is the entropy of a single y
chain. Since the coupling within the chain is now collective
�Q�, the y chain itself is critical and its entropy scales as
S0� ln ly. Thus S� lx ln ly which in the thermodynamic limit
�lx , ly�→� is much larger than the surface area 2�lx+ ly�.
While it is easy to see that the area law is broken, it is
nontrivial to find an upper bound to the entropy and the exact
form of the correction term. This will be done in the follow-
ing.

Using the spectral representation of V, the correlation ma-
trices V1/2 and V−1/2 can be decomposed as

V1/2 = ��� − Q� � 1y + nyQ � Pny,ny
�/�ny �5�

and

V−1/2 = ��� − Q�−1
� 1y + ��� − Q + nyQ�−1 − �� − Q�−1�

� Pny,ny
��ny , �6�

where 1y is the unity matrix of size ny �ny and Pnm

= 	Pnm
�Pnm	 is the projector onto the �in general non-
normalized� vector

Following Refs. �2–4,9�, the von Neumann entropy or the
entropy of entanglement of the two compact parts I and II
can be calculated from a decomposition of V1/2 into the two
subsystems. To this end we express V1/2 and V−1/2 in a block
form according to the two subsystems by proper reordering
of rows and columns

V−1/2 = � A B

BT C
�, V1/2 = �D E

ET F
� . �7�

Here A and D are N0�N0 matrices describing correlations
within subsystem I, C and F are �N−N0�� �N−N0� matrices
describing correlations within subsystem II, and the matrices
B and E describe the correlations between them. The entropy
of entanglement is then given by the eigenvalues �i�1 of
the matrix product A ·D �4�:

S = �
i=1

N0

f���i� , �8�

f�x� =
x + 1

2
ln

x + 1

2
−

x − 1

2
ln

x − 1

2
. �9�

Despite the simplicity of its form, expression �8� cannot be
explicitly evaluated in general. Due to the special interaction
matrix the eigenvalues can, however, be evaluated in the
thermodynamic limit.

From the spectral decomposition of V1/2, Eq. �5�, one eas-
ily finds that the subsystem matrices read

A = �A0 � 1ly
+ �A1 − A0� � Pny,ly

��ny ,

D = �D0 � 1ly
+ nyD1 � Pny,ly

�/�ny , �10�

where A0 ,A1 and D0 ,D1 are lx� lx principal submatrices of
��−Q�−1 , ��−Q+nyQ�−1, and ��−Q� ,Q, respectively. For
large ny one has
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FIG. 1. �a� Collectively interacting strings of
harmonic oscillators with finite-range intrachain
coupling � and collective interchain coupling Q.
The gray area indicates the subsystem I of oscil-
lators. �b� Alternative view: interacting strings
with collective intrachain coupling Q and finite-
range interchain coupling �.
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A · D � �A0 · D0� � 1ly
+ ny�A0 · D1� � Pny,ly

. �11�

Here we have used that Pny,ly
2 = ly /nyPny,ly

, which scales as
1 /ny for fixed ly, and is thus negligible in the thermodynamic
limit. Furthermore Pny,ly

has one nonzero eigenvalue ly /ny,
which vanishes in the thermodynamic limit �ly fixed and ny
→��, and �ly −1� zero eigenvalues. Thus the lxly eigenvalues
of A ·D can be decomposed into two sets. The first set con-
sists of the lx eigenvalues of A0 ·D0 each of which occurs
�ly −1� times:

�1, . . . ,�ly−1 = �1�A0 · D0� ,

�ly
, . . . ,�2�ly−1� = �2�A0 · D0� ,

]

��lx−1��ly−1�+1, . . . ,�lx�ly−1� = �lx
�A0 · D0� . �12�

Here and in the following �k�X� denotes the kth eigenvalues
of the matrix X. The total number of these eigenvalues is
lx�ly −1�. The second set consists of the lx eigenvalues of
�A0 ·D0+ ly�A0 ·D1��

�k = �k�A0 · D0 + ly�A0 · D1��

for k = lx�ly − 1� + 1, . . . ,lxly . �13�

Expression �13� for the second set of eigenvalues can be
simplified using Lidskii’s theorem �10�, which is stated as
follows. Let X and Y be M-dimensional Hermitian matrices.
Moreover, let �k�X� ,�k�Y�, and �k�X−Y�, k=1, . . . ,M, be
the eigenvalues of X ,Y, and X−Y, respectively, in ascending
order ��1�X�	�2�X�	 ¯ 	�M�X��. Then there exist num-
bers wkj �0 �k , j=1, . . . ,M�, such that �kwkj =� jwkj =1 and

�k�X� = �k�Y� + �
j=1

M

wkj� j�X − Y� . �14�

Equation �14� implies that for sufficiently large ly the eigen-
values of the matrix A0 ·D0+ ly�A0 ·D1� are

�k�A0 · D0 + ly�A0 · D1�� � ly�
j=1

lx

wkj� j�A0 · D1� . �15�

An upper bound to the entropy can be found by evaluat-
ing the sum over the eigenvalues �12� and �13� in Eq. �8�
separately:

S = S1 + S2 = �
j=1

lx�ly−1�

f��� j� + �
j=lx�ly−1�+1

lxly

f��� j� . �16�

Taking into account Eq. �12� one recognizes that S1 is apart
from a prefactor �ly −1� formally equivalent to the von Neu-
mann entropy of a linear oscillator chain of length lx with

interaction Ṽ= ��−Q�2

S1 = �ly − 1��
k=1

lx

f���k�A0 · D0�� . �17�

Since �−Q was assumed to be strictly positive, the interac-

tion Ṽ has only nonzero eigenvalues and thus corresponds to
a gapped oscillator chain. As shown in �4,6� the entropy of
such a linear chain saturates in the thermodynamic limit, i.e.,
it becomes independent of the length lx of the chain. Thus we
have in the thermodynamic limit

S1 	 lyc1. �18�

To obtain an upper bound to S2 we use the inequality f�x�

1−ln 2+ln x. This yields with Eq. �15�

S2 
 lx�1 − ln 2� +
1

2�
k=1

lx

ln�ly�
j=1

lx

wkj� j�A0 · D1�� . �19�

To further evaluate the last term we make use of the convex-
ity of the logarithm together with the arithmetic mean in-
equality

1

2�
k=1

lx

ln�ly�
j=1

lx

wkj� j�A0 · D1��
	

lx

2
ln� ly

lx
�
j=1

lx

�
k=1

lx

wkj� j�A0 · D1��
=

lx

2
ln� ly

lx
�
j=1

lx

� j�A0 · D1�� , �20�

where we have used �kwkj =1 in the last step.
We now have to evaluate the remaining logarithm. For

this we make use of the fact that � and Q are regular �i.e.,
strictly positive� Toeplitz matrices. Because of this, their el-
ements can be obtained from the non-negative spectral func-
tions ���� and q��� �11� �k= �1/2��0

2����exp�−ik��d�,
Qk= �1/2��0

2q���exp�−ik��d�. Since we have assumed
above that also �−Q is strictly positive, the functions ����,
q��� are strictly positive and �����q���. In addition, we
require also that �����−q����±1 and q��� have bounded de-
rivatives of second order. As a consequence, one finds �see
�11� p. 221�

1

lx
��

j=1

lx

� j�A0 · D1�� �
1

2
�

0

2 q���
���� − q���

d� , �21�

which is a constant independent of lx. Thus the desired upper
bound to the entropy for sufficiently large lx , ly is

S 	 c1ly + c2lx +
lx

2
ln ly �22�

where c1 ,c2 are some constants independent of the size of
the subsystem.

A lower bound to the entropy can be found from the in-
equality f�x�� ln x. This yields, with Eq. �15�,
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S �
�ly − 1�

2 �
k=1

lx

ln��k�A0 · D0�� +
lx

2
ln�ly�

+
1

2�
k=1

lx

ln��
j=1

lx

wkj� j�A0 · D1�� . �23�

Making use of Jensen’s inequality for concave functions
ln�� jtj� j��� jtj ln�� j� and �kwkj =1, we find

S �
�ly − 1�

2 �
k=1

lx

ln��k�A0 · D0�� +
lx

2
ln�ly�

+
1

2�
j=1

lx

ln�� j�A0 · D1�� . �24�

To evaluate the sums over the logarithms we employ
Szegö’s theorem �11�, for determinants of a Toeplitz matrices
T. The theorem states that, for sufficiently large lx

ln�det�T�� � q0lx + �
k=1

�

k	qk	2,

for a regular spectral function q���. Here qk are the Fourier
coefficients of ln q���. Since, moreover,

�
j

ln�� j�A0 · D1�� = ln��
j

� j�A0 · D1�� = ln�det�A0�det�D1�� ,

�25�

we eventually find the lower bound

S � a1lx + a2ly +
lx

2
ln�ly� . �26�

Here a1 and a2 are constants independent of the size of the
subsystem, and we have ignored an unimportant constant
term.

By combining the two estimates �22� and �26� one finds

c1lx + c2ly +
lx

2
ln�ly� � S � a1lx + a2ly +

lx

2
ln�ly� .

Since both sides of this inequality have the same functional
form, S approaches for large lx , ly the asymptotic value

S �
lx

2
ln�ly�, lx,ly � 1. �27�

This is the main result of our paper. It shows that the
entropy-area law is violated for a set of harmonic chains,
which for themselves have a gapped spectrum and are non-
critical but become gapless by a collective interaction be-
tween the chains. Both upper and lower bounds to the en-
tropy attain the same logarithmic correction term to the area
law.

A physical system that can be approximated by the model
studied here is an anisotropic ion crystal. In such a system
the Coulomb interaction in the direction of the small lattice
constant can in first approximation be considered as collec-
tive, while the one in an orthogonal direction is of finite
range.

In conclusion, we derived an exact asymptotic expression
for the entanglement entropy of a critical system of interact-
ing oscillators in more than one dimension. We found that, as
in one-dimensional systems �6�, the entanglement area law is
violated by a logarithmic correction proportional to the sur-
face area in the critical direction. To our knowledge, the
system of collectively interacting harmonic strings consid-
ered here, which is approximately realized, e.g., in an aniso-
tropic ion crystal, is the first nontrivial example of a critical
two-dimensional system for which the correction to the area
law can explicitly be calculated.
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