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Resonant nonlinear optics in coherently prepared media: Full analytic solutions

E. A. Korsunsky and M. Fleischhauer
Fachbereich Physik, Universita¨t Kaiserslautern, D-67663 Kaiserslautern, Germany

~Received 17 April 2002; published 17 September 2002!

We derive an analytic solution for pulsed frequency conversion based on electromagnetically induced trans-
parency or maximum coherence in resonant atomic vapors. In particular, drive-field and coherence depletion
are taken into account. The solutions are obtained with the help of a Hamiltonian approach, which in the
adiabatic limit allows one to reduce the full set of Maxwell-Bloch equations to simple canonical equations of
Hamiltonian mechanics for the field variables. Adiabatic integrals of motion can be obtained and general
expressions for the spatiotemporal evolution of field intensities derived. Optimum conditions for maximum
conversion efficiency are identified and the physical mechanism of nonlinear conversion in the limit of drive-
field and coherence depletion discussed.
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I. INTRODUCTION

Resonant nonlinear optics in atomic gases has receiv
great impetus in recent years due to new concepts base
the application of specific coherence and interference effe
Two of these concepts attracted particular attention. The
mechanism uses the effect of electromagnetically indu
transparency~EIT! @1,2#, the second uses maximum cohe
ence between two metastable atomic levels@3#. Both
schemes allow for high-efficiency nonlinear conversion w
substantially alleviated phase-matching problems in a ra
dilute ensemble of atoms if the medium is driven by an u
depleted coherent coupling field or if an undepleted ato
coherence is assumed. These assumptions do not take
account the resources needed to maintain the drive fiel
atomic coherence. Thus in the considered limit, theoverall
efficiency of the resonant nonlinear processes is small. In
present paper we analyze and compare EIT- and maxim
coherence based systems with each other and with the
ventional nonresonant schemes of nonlinear optics, tak
into account the transparency- or coherence-maintain
fields and their depletion. Effects of inhomogeneous bro
ening are, however, disregarded. Deriving analytic soluti
for the nonlinear pulse propagation problem, we show tha
both systems also a largeoverall conversion efficiency can
be achieved. The physical nature of the conversion can, h
ever, no longer be associated with EIT or maximum coh
ence alone.

In EIT a strong resonant electromagnetic~EM! field of
frequencyv2 is applied to the transition between two excit
statesu2& and u3& @Fig. 1~a!#, causing a splitting of both
~Autler-Townes effect!. When a weak probe field of fre
quencyv3 resonant with the transition from the ground sta
u1& to the bare stateu3& is applied, its linear interaction with
the medium is almost perfectly canceled. The vanishing
the linear susceptibility, i.e., absorption and refraction,
the probe field is due to a destructive interference betw
the two excitation paths through the Autler-Townes doub
and persists even for small splittings. If the ground stateu1&
is coupled to the intermediate stateu2&, on the other hand
~e.g., by a two-photon transition!, photons of frequencyv3
are generated. While the resonant linear absorption of th
photons is suppressed by destructive quantum interfere
1050-2947/2002/66~3!/033808~14!/$20.00 66 0338
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~EIT!, the nonlinear susceptibility responsible for their ge
eration is only affected by the splitting, which can be rath
small. Since there are no resonant contributions to the ref
tive index, there is, furthermore, perfect phase matching
cept for contributions from other off-resonant transition
Owing to the large dispersion near the transparency
quency of EIT, a small detuningd2 can be applied to com
pensate for these contributions and phase matching can
ily be obtained without sacrificing the cancellation
absorption. Thus EIT provides a perfect system for la
nonlinear conversion with a minimum of atoms. Since t
first demonstration of phase matching in EIT-assisted fo
wave frequency mixing@4#, many other experiments con
firmed considerable improvement in the conversion e
ciency when EIT has been used~see, e.g., Refs.@5,6#!.

Another mechanism proposed recently is referred to
nonlinear optics with maximum coherence@3,7#. The idea
here is to prepare and maintain the atoms in a coherent
perposition of atomic statesu1& and u2& with equal ampli-
tudes. This can be done either by two strong fields excit
the u1&2u2& coherence via a Raman transition@3# or by
other means such as rapid adiabatic passage@8#. The coher-
ence, established in such a way, plays the role of a str

FIG. 1. Resonant sum-frequency generation.~a! Strong drive
field (v2) between metastable stateu2& and excited stateu3& creates
EIT; ~b! strong drivev1 ~two-photon, Raman, or magnetic cou
pling! generates maximum coherence betweenu1& and u2&.
©2002 The American Physical Society08-1
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local oscillator. If then a relatively weak fieldv2 detuned by
a sufficiently large amountd3 from theu2&2u3& transition is
applied, Fig. 1~b!, it will beat against the local oscillator to
generate the sum~or difference! frequency. Here, the refrac
tion due to resonant transitions does not vanish. But since
nonlinear coupling strength is of the same order as the lin
susceptibility, complete conversion occurs over a dista
smaller than the coherence length@9#. Consequently there is
no need to phase match the propagating beams. We note
the relation between theu1&2u2& coherence and the wave
mixing processes has been pointed out in earlier work
nonlinear optics~see, e.g., Refs.@10# and references therein!.

In the limit of undepleted drive or constant coherence,
nonlinear conversion process in both the EIT- and maximu
coherence schemes affects the quantum state of the a
only in the perturbative sense. Consequently the probab
of photon conversion per atom is small. For the same rea
the overall conversion efficiency including the transparen
and coherence-generating fields is small. We here analyz
properties of the two mechanisms for arbitrary strength
the drive fields taking into account their depletion and co
pare them to conventional off-resonant nonlinear optics.

The drive depletion turns the propagation problem int
truly nonlinear one. Its solution is particularly challengin
for pulses and is, in general, possible only numerically.
order to obtain transparent analytical solutions we apply h
the so-called Hamiltonian approach@11–14#, which allows
for a solution in a wide range of physically relevant situ
tions. This approach is especially useful under adiabatic c
ditions, i.e., when the atoms are excited by the laser pulse
such a way that they remain in the same instantaneous e
state of the interaction Hamiltonian during the entire proce
In the present work, we will assume that the interaction
adiabatic. The adiabatic approximation requires a slow
of evolution as compared to the frequency separation of
adiabatic eigenstates. This results usually in a requirem
for the product of the pulse duration and the Rabi freque
of the radiation field to be much larger than unity. Thus,
sufficiently intense fields, the process can be adiabatic e
for short pulses. It should be noted, however, that this
sumption rules out such important effects as group-velo
reduction, which result from lowest-order nonadiabatic c
rections. For sufficiently large intensities or cw fields the
effects do not influence the process. An analysis of nona
batic corrections to the Hamiltonian approach taking in
account group delays will be given in a future publication

To simplify the calculations and the interpretation of t
analytic results, we restrict ourselves to a somewhat id
ized three-level atomic excitation scheme~Fig. 1!. The non-
linear three-wave mixing in a three-level system is norma
forbidden due to symmetry@9#. However, this scheme pro
vides the simplest example where all above-mentio
mechanisms of nonlinear-optical wave mixing may ta
place. It should be noted that similar results, however w
much lengthier expressions and larger number of atomic
rameters, can be found for a more realistic three-le
scheme, whereu1&2u2& transition is a two-photon one@15#.
Moreover, the three-wave-mixing processes are poss
when a dc electric field is applied to the atomic sample@16#.
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The paper is organized as follows. In Sec. II we discu
resonant nonlinear-optical processes based on EIT or m
mum coherence for undepleted drive fields or undeple
coherence, respectively, and compare them to conventi
off-resonance nonlinear optics. In Sec. III we outline t
Hamiltonian approach, which allows to eliminate the atom
degrees of freedom assuming adiabatic following and to m
the pulse propagation problem to the dynamics of a o
dimensional nonlinear pendulum. Making use of this form
ism we derive the full analytic solution for EIT- an
maximum-coherence based nonlinear optics in Sec. IV,
ing into account drive-field and coherence depletion.

II. RESONANT NONLINEAR OPTICS IN A COHERENTLY
PREPARED THREE-LEVEL SYSTEM

We first consider the propagation of pulsed EM fields in
medium of three-level atoms~Fig. 1! in which either a con-
stant drive field mixes the two excited statesu2& andu3& or in
which a constant coherence between the lower two statesu1&
andu2& is maintained. The first case corresponds to reson
nonlinear frequency conversion based on EIT@1,2#, the sec-
ond one to nonlinear optics with maximum coherence@3#.
The electric field propagating in thez direction is assumed to
consist of three components with carrier frequenciesv1 ,v2,
andv35v11v2:

E~z,t !5(
j

$Ej~z,t !exp@2 i ~v j t2kjz!#1c.c.%. ~1!

Here kj5njv j /c with nj being the refractive index at fre
quencyv j due to levels outside the three-level system of F
1. This background refraction gives rise to the ‘‘residua
phase mismatch determined as

Dk5k11k22k3 . ~2!

In the approximation of slowly varying amplitudes an
phases, Maxwell’s propagation equations read in a mov
frame

]Ej

]z
5 i2p

v j

c
Pj , ~3!

whereEj and Pj are functions of the coordinatez and the
retarded timet5t2z/c. Pj are the components of the me
dium polarization:

P5(
j

$Pjexp@2 i ~v j t2kjz!#1c.c.%,

which can be expressed in terms of the atomic probab
amplitudescn in levels u1&, u2&, andu3&:

P15N d1c1* c2 , ~4!

P25N d2 c2* c3eiu2 iDkz, ~5!

P35N d3c1* c3 , ~6!
8-2
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RESONANT NONLINEAR OPTICS IN COHERENTLY . . . PHYSICAL REVIEW A66, 033808 ~2002!
N being the density of active atoms.d1 , d2, andd3 are the
real dipole moments of the transitionsu1&→u2&, u2&→u3&,
andu1&→u3&, respectively.u is phase of theu2&→u3& dipole
moment, which in general cannot be chosen freely.

Assuming decay only from the topmost stateu3& with rate
g the state amplitudes obey in the rotating-wave approxim
tion the equations

ċ15 iV1* c21 iV3* c3 ,

ċ25 iV1 c11 iV2* eiu2 iDkz c31 id2c2 ,

ċ35 iV2 e2 iu1 iDkzc21 iV3c11 i ~d31 ig!c3 , ~7!

where d2 and d3 are the frequency detunings indicated
Fig. 1,

d25v12v21, d35v32v31, ~8!

with v i j denoting the transition frequencies between the c
responding levels.V1 , V2, andV3 are the Rabi frequencie
for transitions u1&2u2&, u2&2u3&, and u1&2u3&, respec-
tively:

V j5
djEj

2\
. ~9!

A. EIT with undepleted coupling field

Here, we consider three fields interacting with the thr
level system. For simplicity we assumed350. Furthermore,
we consider the case of a strong, undepleted drive field w
frequencyv2,

uV2u@uV1u,uV3u,g,ud2u.

Then, the solution of the atomic equations of motion~7! with
the initial conditionc1(t→2`)51 yields

uc1u'1.

Assuming quasiadiabatic evolution, i.e., not too fast cha
ing fields, we find

c252
V3V2* eiu2Dkz2 iV1g

uV2u22 id2g
,

c352
V1V2e2 iu1 iDkz2V3d2

uV2u22 id2g
.

Substitution into Maxwell’s propagation equations gives

]E1

]z
52

pNd1
2

\

v1

c

g

uV2u2
E12 i

pNd1d3

\uV2u
v1

c
eiu2 iDkzE3 ,

~10!

]E3

]z
5 i

pNd3
2

\

v3

c

d2

uV2u2
E32 i

pNd1d3

\uV2u
v3

c
e2 iu1 iDkzE1 .

~11!
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Equations ~10! and ~11! are linear differential equations
which can easily be solved. We now consider the case
which noE3 field is incident on the medium,E3(z50)50.
Introducing the normalized intensity~photon flux!

h j5
I j

\v j
[

cuEj u2

8p\v j
~12!

and the coupling strength

m j5
2pv jdj

2

\c
, ~13!

the solution of Eqs.~10! and ~11! reads

h3~z!5
h10

11~Dk8/2k!2
e2Gkzsin2@kzA11~Dk8/2k!2#,

~14!

whereh105h1(z50) is the photon flux at the entrance
the medium and we have introduced the conversion coe
cient k,

k5
N

2

Am1m3

uV2u
, ~15!

the loss coefficientG,

G5
g

uV2uA
m1

m3
, ~16!

and

Dk85Dk2
N

2

m3d2

uV2u2
~17!

is the total phase mismatch, including the background va
Dk and the contribution from the resonant transitionu1&
→u3&. In the EIT case, the resonant contribution to the ph
mismatch is always smaller than the conversion coefficienk
by a factor;d2 /uV2u. Moreover, a small detuningd2 can be
introduced to compensate the residual phase mismatch. T
the EIT scheme represents an ideal situation with comp
phase matching, where the optimum conversion occurs f
density-length product

Nzuopt5p
uV2u

Am1m3

. ~18!

In order to minimize the absorption losses, Eq.~16!, the Rabi
frequency of the coupling fielduV2u has to be sufficiently
large:

uV2u@Am1

m3
g.
8-3
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B. Undepleted coherencer12

In the following we discuss the scheme of resonant n
linear optics with maximum coherence. For this situatio
constant state amplitudesc1 andc2 are assumed, maintaine
e.g., by a constant strong drive fieldV1. In this case, the
wave vector of the atomic coherencec1* c2 is equal tok1,
which can be changed by, e.g., the small detuningd2 @3#. The
back action of the atoms to this field is disregarded and t
the corresponding coupling does not need to be taken
account. Under the condition

ud31 igu@uV j u

the amplitude of the excited state can be adiabatically eli
nated, which yields

c352
V2e2 iu1 iDkzc21V3c1

d31 ig
. ~19!

Substitution of Eqs.~5!, ~6!, and ~19! into the Maxwell
propagation equations~3! gives

]E2

]z
52 i

pNd2
2

\

v2

c

d32 ig

d3
21g2

uc2u2E2

2 i
pNd2d3

\

v2

c

d32 ig

d3
21g2

r12e
iu2 iDkzE3 , ~20!

]E3

]z
52 i

pNd3
2

\

v3

c

d32 ig

d3
21g2

uc1u2E3

2 i
pNd2d3

\

v3

c

d32 ig

d3
21g2

r12e
2 iu1 iDkzE2 , ~21!

wherer125uc1* c2u.
This is again a set of linear differential equations who

solution has the same form as that for the EIT case, Eq.~14!,
with the substitutionh10→h20 and corresponding paramete
~assumingd3@g):

k5
N

2

Am2m3

d3
r12, ~22!

G5
g

d3

m2uc2u21m3uc1u2

r12Am2m3

, ~23!

Dk85Dk1
N

2

m3uc1u22m2uc2u2

d3
. ~24!

The total phase mismatchDk8 includes the background
value Dk and the contributions from resonant transitio
u1&→u3& and u2&→u3&.

For atomic media, which we consider here, the o
resonant~background! contributions to the refractive inde
nj are of the order of@9#
03380
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v j
(
m

m jm

d jm
, ~25!

wherem jm andd jm are the coupling constants and detuning
respectively, for the wave with frequencyv j and transition to
the far-detuned stateum& not belonging to the three-leve
system of Fig. 1. Sinced jm@d3, the resonant contribution
to the phase mismatch are the dominant ones. As can be
from Eqs.~22! and~24!, they are in general of the same ord
as the conversion coefficientk if the atomic coherencer12 is
large~of the order of 1/2). Therefore, efficient energy tran
fer from thev2 field into thev3 field, h3( l );h20, occurs
already within a lengthl 5k21;Lc52/Dk8, the coherence
length. This feature constitutes the main advantage of
maximum-coherence scheme over conventional nonlin
optics, because the phase matching is no longer importa

If the conversion lengthl is much smaller than the cohe
ence length Lc , l /Lc!1, and the losses are sma
(G/ l )zuopt!1, maximum conversion occurs for a densit
length product

Nzuopt5
p

2
Nl5p

d3

r12Am2m3

. ~26!

l /Lc!1 is realized when the parameters are chosen such
Dk8 is small, or even better, vanishes, i.e., if

2Dk

N
'

m2uc2u22m3uc1u2

d3
.

This can be achieved in different ways:~i! by tuning the
wave vectork1 of the atomic coherence~e.g., by introducing
a detuningd2, as in Ref.@3#!, ~ii ! by selecting the appropri
ate detuningd3, as in Ref.@7#, and/or~iii ! by preparation of
atoms in a superposition with suitable amplitudesc1 ,c2.

In order for the absorption losses to be negligible with
the optimum propagation distance, the following conditi
has to be satisfied:

g

d3

1

r12
!1,

which indicates once again that it is indeed advantageou
prepare a large atomic coherencer12.

C. Conventional nonlinear optics: Weak excitation

Now, we discuss the case of a weak excitation of ato
which corresponds to the regime of conventional nonlin
optics. The weak excitation takes place, for example, wh
both detunings are very large:

ud3u,ud2u@uV j u,g.

Under this condition, the atomic probability amplitudes a

uc1u'1,

c252
V1V2e2 iu1 iDkz2V3d2

d2~d31 ig!
,

8-4
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RESONANT NONLINEAR OPTICS IN COHERENTLY . . . PHYSICAL REVIEW A66, 033808 ~2002!
c352
V3V2* eiu2 iDkz2V1~d31 ig!

d2~d31 ig!
.

Since uc2u,uc3u!uc1u, the medium polarization at frequenc
v2 is much smaller than for thev1 and v3 components:
uP2u!uP1u,uP3u. Therefore, we can assume that thev2 field
is almost undepleted,uV2u'const(z).

The propagation equations read for this case

]E1

]z
52 i

pNd1
2

\d2

v1

c
E11 i

pNd1d3v1

\c

3
uV2u
d2d3

S 12 i
g

d3
Deiu2 iDkzE3 , ~27!

]E3

]z
52 i

pNd3
2

\

v3

c

d32 ig

d3
21g2

E32 i
pNd1d3v3

\c

3
uV2u
d2d3

S 12 i
g

d3
De2 iu1 iDkzE1 . ~28!

The solution of this set of propagation equations has exa
the same form as in the maximum-coherence and EIT ca
Eq. ~14!, with parameters

k5
N

2

uV2uAm1m3

d2d3
, ~29!

G5
g

d3
Am1

m3

d2

uV2u
, ~30!

Dk85Dk1
N

2 S m3

d3
2

m1

d2
D . ~31!

We see that the conversion lengthl 5k21 here is much larger
than both in the maximum-coherence, Eq.~22!, and in the
EIT, Eq. ~15!, schemes. In fact, the conversion length is a
much larger than the~non-phase-matched! coherence length
Lc52/Dk8 as d2,3/uV2u@1. Therefore, it is not possible in
conventional nonlinear optics to get the complete conv
sion,h3;h10, without careful phase matching.

If such a compensation is performed, i.e., if (k/2Dk8)2

@1 ~by proper choice of detuningsd2 and d3), optimum
conversion occurs for a density-length product

Nzuopt5
p

2
Nl5p

d2d3

Am1m3uV2u
. ~32!

At this optimum propagation distance, the relative absorpt
losses are given by the parameterG, Eq. ~30!.

Thus, we conclude that in the limit of undepleted dri
field~s! both EIT and maximum-coherence schemes perfo
much better than conventional nonlinear optics, regard
the number of atomsNzuopt necessary for optimum conve
sion and robustness to phase mismatch. The aim of
present paper is to investigate whether the EM energy ca
transferred to the generated wave from both pump fields,
whether the attractive features of EIT- and maximu
03380
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coherence-assisted conversion survive when the drive fie
depleted. This requires the solution of the complete nonlin
propagation problem, which we treat with the Hamiltoni
formalism outlined in the following section.

III. HAMILTONIAN APPROACH

The resonant interaction of EM fields with atomic syste
is described by Maxwell’s equations for the fields and a
of master equations for the density matrix of the atoms. T
solution of this coupled set is rather difficult and except
some very special cases impossible analytically. In orde
derive analytical solutions for the field propagation, appro
mations are needed that allow to eliminate the atomic
grees of freedom and to express the polarization in term
field variables. A common approximation, which is not pe
turbative in the fields, is the adiabatic solution of the dens
matrix equations. This straightforward approach provid
when applicable, full information about both atoms a
fields in the adiabatic limit.

A. General formalism

Instead of the usual explicit scheme of adiabatic elimin
tion which is rather cumbersome, we use here a differe
implicit approach@11,12# which yields directly effective-
field equations. This approach is based on the representa
of the medium polarizationP as a partial derivative of the
time-averaged free-energy density of a dielectric with resp
to the electric fieldE @17#:

P52K N
]Ĥ

]EL , ~33!

where^•••& denotes quantum-mechanical averaging, andĤ
is the single-atom interaction Hamiltonian. For the fie
given by Eq.~1!, we can write

P52K N(
j

]Ĥ

]Ej*
exp@2 i ~v j t2kjz!#1c.c.L ,

so that the propagation equation becomes

]Ej

]z
52 i2p

v j

c
NK ]Ĥ

]Ej*
L . ~34!

We here consider light-atom interaction processes that
adiabatic, that is, the atomic system can be assumed to
low the evolution of the instantaneous eigenstates. For
ample, if the atomic system is at some initial timet0 in the
nondegenerate eigenstateuc0(t0)& of the interaction Hamil-
tonian, i.e.,

Ĥuc0&5\l0uc0&, ~35!

which is att5t0 usually identical to the ground state of th
atoms, it will remain in this state at all times. Furthermo
we disregard irreversible dissipation processes. As we s
later, for the processes we consider here, this is justified e
8-5
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for rather long pulses, i.e., longer than the natural lifeti
g21 of the excited stateu3&. In this limit one finds

K ]Ĥ

]Ej*
L 5K c0U ]Ĥ

]Ej*
Uc0L 5\

]l0

]Ej*
.

Hence the propagation equation can be written as

]Ej

]z
52 i2p

\v j

c
N

]l0

]Ej*
. ~36!

For the following it is useful to express the field amplitudeEj
in terms of photon fluxh j , Eq. ~12!, and phasew j :

Ej5uEj uexp$2w j%.

Separating the real and imaginary parts, we find from
~36!,

]h j

]z
52

]H 8

]w j
, ~37!

]w j

]z
5

]H 8

]h j
.

These equations have the form of Hamilton equations
classical canonical mechanics with action and angle v
ablesh j , and w j ‘‘time,’’ z, and the Hamiltonian function
H 85 1

2 Nl0.

B. Constants of motion for resonant three-wave mixing

For atomic systems with a closed loop of transitions,
set of canonical equations~37! can be further simplified and
in fact under some conditions explicitly integrated. This
the case when the number of coherent fields involved is
too large. To illustrate the procedure, let us consider the
genvalue equation~35! for the three-level system in Fig. 1
In the rotating-wave approximation, the light-atom intera
tion Hamiltonian is given by

Ĥ52\@d2u2&^2u1d3u3&^3u#2\V1u1&^2u

2\V2eiwu2&^3u2\V3u1&^3u1H.c., ~38!

and the eigenvalues are determined by the character
equation

l0~d21l0!~d31l0!2~V1
21V2

21V3
2!l02V1

2d32V3
2d2

522V1V2V3cosw. ~39!

HereV j are the Rabi frequencies, related to the photon fl
via the coefficientsm j , Eq. ~13!, asV j5Am jh j .

The relative phasew of the EM waves is

w5w11w22w32Dkz, ~40!

which includes the residual phase mismatchDk. Also the
multiphoton resonance condition
03380
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v35v11v2 ~41!

has been used.
One can see from Eq.~39! thatl0 and, henceH 8, depend

on the field phasesw j only through the relative phasew.
Therefore, we have

]H 8

]w1
5

]H 8

]w2
52

]H 8

]w3
S 5

]H 8

]w D . ~42!

An immediate consequence of this symmetry ofH 8 is the
existence of constants of motion. Substituting the above E
~42! into the first line of Eqs.~37! yields the well-known
Manley-Rowe relations@9#:

]h1

]z
5

]h2

]z
52

]h3

]z
, ~43!

which correspond to two independent constants of motio

h11h35h101h30, ~44!

h12h25h102h20.

Here h j 05h j (z50) are the photon flux values at the e
trance to the medium. Taking into account the multiphot
resonance condition~41!, one finds, furthermore, that the to
tal intensity of the EM fields is conserved:I 11I 21I 3
5const(z). The Manley-Rowe relations and the constants
motion tell us that in the process under consideration,
energy is transferred from the frequency componentsv1 , v2
into v3 and back, with equal rates and without losses, wh
of course is expected for a dissipationless nonlinear medi

The relations Eq.~44! enable us to rewriteh j as

h1~z!5h102J~z!,

h2~z!5h202J~z!, ~45!

h3~z!5h301J~z!.

J(z) characterizes the amount of energy exchange betw
the waves and has the initial conditionJ(z50)50.

Thus the original problem with six amplitude and pha
variables can be reduced to two variablesJ andw by a ca-
nonical transformation. This leads to

]J

]z
52

]H
]w

, ~46!

]w

]z
5

]H
]J

, ~47!

with the new Hamiltonian function

H5
1

2
Nl01DkJ[

1

2
Nl. ~48!

As can be seen from Eqs.~48! and ~39!, H ~or l) does not
depend on the coordinatez explicitly. Therefore,H ~or l) is
8-6
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a fourth constant of motion expressing the conservation
the energy density of the medium with respect toz.

C. Solution of the wave-propagation problem

To solve the remaining two equations of motion forJ(z)
andw(z), the Rabi frequenciesV j are expressed in terms o
h j 0 and J, and the characteristic equation~39! is written in
the form

G~l,J!5g~J!cosw. ~49!

Differentiating both sides with respect tow yields

]G

]w
5

]G

]l

]l

]w
52g sinw56Ag22G2.

Substituting this relation into Eq.~46!, we find

]J

]z
56

N

2

Ag22G2

]G/]l
. ~50!

The choice of the sign in Eq.~50! depends on the sign o
sinw at z50. Integration of Eq.~50! gives an implicit solu-
tion for J(z):

6
N

2
z5E

0

J]G~J8!

]l

dJ8

Ag2~J8!2G2~J8!
. ~51!

To analytically evaluate the remaining integral, we note t
both functionsg22G2 and]G/]l are polynomials inJ:

g522Am1m2m3A~h102J!~h202J!~h301J!,

G5G01 (
m51

3

AmJm,

]G

]l
5 (

m50

2

amJm.

Therefore, Eq.~50! describes a one-dimensional finite m
tion of a pendulum in an external potential. The solution
in general, given by some combination of elliptic functio
@18# with parameters determined mainly by the rootsJn of
the polynomial equation:

g2~J!2G2~J!50. ~52!

The allowed range ofJ, corresponding to the region of clas
sically allowed motion of the pendulum, lies between ze
and the smallest positive rootJ1 of the polynomial~52!.

The eigenvaluel is a constant of motion@cf. Eq. ~48!#,
and can thus be found from the characteristic equation~49!
with parameters taken at the medium entrancez50:

G0~l!5g~z50!cosw~z50!. ~53!

Thus, we have reduced the propagation problem to s
ing two algebraic equations: Eq.~53! for l and Eq.~52! for
the rootsJn . If this can be done explicitly, the Hamiltonia
03380
f
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method provides an analytical solution to the propagat
problem. But even if an explicit solution is not possible,
considerably simplifies numerical calculations. Apart fro
the advantage of being convenient from the formal point
view, the Hamiltonian method allows a deeper insight in
the nature of the wave-propagation process. For example
method provides a direct access to the stability analysis
the solution by referring to a well-developed theory
Hamiltonian systems@14#.

To understand the dynamics of the system, in particu
interesting quantities such as the conversion efficiency,
useful to discuss the physical meaning of the coefficientsAm
andam . Considering the canonical equation~47! for the rela-
tive phase:

]w

]z
5

N

2

]l

]J
5

N

2

]G/]J

]G/]l
5

N

2

A112A2J13A3J2

a01a1J1a2J2
, ~54!

one recognizes that theAm and am describe the linear and
nonlinear refraction coefficients of the medium. For e
ample, ifJ is sufficiently small, the first termNA1/2a0 on the
right-hand side of Eq.~54! can be identified with the phas
mismatch induced by the linear refraction, including bo
contributions from the three-level interaction and the resid
mismatchDk.

D. Generation of field with frequency v3

In the context of the present discussion we are most
terested in the generation of thev3 mode from vacuum
h3050. In this case, the eigenvalue equation~53! reduces to

G0~l!5l~l1d2!~l1d3!2m1h10~l1d3!2m2h20l50.

~55!

The nonvanishing coefficients in the expansion ofG and
]G/]l are given by

A15q@~l1d2!~l1d3!1l~l1d2!1l~l1d3!2m1h10

2m2h20#1m1~l1d3!1m2l2m3~l1d2!, ~56!

A25q2~3l1d21d3!1q~m11m22m3!, ~57!

A35q3, ~58!

a053l212l~d21d3!1d2d32m1h102m2h20, ~59!

a152q~3l1d21d3!1~m11m22m3!, ~60!

a253q2, ~61!

where

q522Dk/N. ~62!

With this one finds for the denominator in the integr
~51!, which determines the allowed values ofJ:

g22G254m1m2m3J~h102J!~h202J!

2~A11A2J1A3J2!2J250. ~63!
8-7
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The second term in this expression is nonpositive, so
smallest positive root of the polynomial is bounded by t
minimum ofh10 andh20. This reflects the fact that the con
version process stops when the energy of the weaker o
two pump fields is entirely depleted. In order to reach t
limit and thus in order to attain maximum conversion ef
ciency, the second term in Eq.~63! should be small, which
corresponds to the phase mismatch to be negligible:

A11A2J1A3J2'0. ~64!

In order to see what parameters are required to appr
mately satisfy this condition, we have to analyze the coe
cientsAm .

It is worthwhile to point out that the behavior of the tot
phase is described by Eq.~49!:

cosw~z!5
G

g
5

A1J1A2J21A3J3

2Am1m2m3J~h102J!~h202J!
. ~65!

When the total phase mismatch is compensated,A11A2J
1A3J2'0, the phase follows the equation

cosw~z!50,

that is, the phase is constant and equal to1p/2 or 2p/2
when all of the waves are present, and jumps byp to
2p/2 or 1p/2 when one of the wave intensities approach
zero.

As it is seen from Eqs.~57!, ~58!, the termsA2 , A3 re-
sponsible for the intensity-dependent refractive index
both proportional to the residual phase mismatchDk. One
can show that in atomic~molecular! media, where the back
ground refractive index is given by Eq.~25!, Dk is always
sufficiently small so that the leading term in the phase m
match isA1, while A2J andA3J2 are negligibly small. It is
also true that the influence of the intensity-dependent ph
mismatch remains insignificant even when the linear refr
tion is compensated:A150. Therefore, in what follows, we
will disregard the termsA2J and A3J2. In this case, the
solution of the propagation equation~51! gives the following
dependence ofJ(z) in implicit form:

6kz1x05F@g1~J!,p#1
a1J2

a0
H F@g2~J!,p#

1S 12
J1

J2
DP@g2~J!,p2,p#J , ~66!

where x0 is an integration constant, andF(g,p) and
P(g,r ,p) are the elliptic integrals of the first and third kind
respectively@18#. k is the nonlinear conversion coefficien
defined as

k5
N

2

Am1m2m3J2

a0
. ~67!

The parameters of the elliptic integrals are
03380
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g1~J!5arcsinA J

J1
,

g2~J!5arcsinAJ2~J12J!

J1~J22J!
,

p5AJ1

J2
~68!

with J1 andJ2 being the roots of Eq.~63!:

J2,15
1

2
~h101h201B1!6

1

2
A~h101h201B1!224h10h20,

~69!

B15
A1

2

4m1m2m3
.

In the following section we discuss the solution of th
propagation problem for several field-atom interaction co
figurations resulting in the EIT-assisted, maximum
coherence, and conventional nonlinear-optical regimes of
frequency conversion.

IV. ANALYTICAL SOLUTIONS FOR RESONANT
THREE-WAVE MIXING

We assume in our simple three-level model system t
the transitionsu1&2u3&, u2&2u3& as well asu1&2u2& are
allowed. To take into account the much weaker coupling
tween levelsu1& and u2&, which in reality is a two-photon
transition, we assumem1!m2. An analytic solution for the
more general four-wave-mixing system can also be obtai
within the Hamiltonian formalism@15#. The explicit results
are, however, rather lengthy and not very instructive.

A. EIT-based up-conversion

The EIT scheme implies two-photon resonance betw
the statesu1& and u3&: d350. According to the idea of EIT-
assisted nonlinear optics, we suppose here thath20>h10.
Sincem2@ m1, we always haveV2@V1. We allow, for the
moment, for spontaneous decay from stateu3& out of the
system, but require the initial Rabi frequencyV20 to be much
larger than the decay rate:V20@g. Under these conditions
the eigenstate that asymptotically connects to the gro
state of atoms the fort→2` is the state

uc0~z50!&'
V20

AV10
2 1V20

2
u1&2

V10e
2 iw

AV10
2 1V20

2
u3&,

corresponding to the complex eigenvalue

l' ig
V10

2

V20
2

.

Since V10!V20, one has ulu!g. Correspondingly, the
probability of spontaneous decay of the stateuc0&, which
8-8
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can be defined as Im(l)t with t being the characteristic
pulse length, remains small even for rather long pulsest
!t0[(V20

2 /V10
2 )g21 with t0@g21. For such pulses, we

can safely disregard the spontaneous emission and pl
'0, which means that the corresponding adiabatic stat
the usual dark state of EIT. Moreover, sinceV10! V20 the
eigenstateuc0(z50)& is an only slightly disturbed ground
state u1&. Therefore, the requirement of adiabaticity of t
process is satisfied automatically at the medium entrancz
50.

The coefficientsA1 and am are given for the regime o
EIT by the following expressions:

A1.2qm2h202m3d2 , ~70!

a0.2m2h20, ~71!

a152qd21~m11m22m3!. ~72!

1. Undepleted EIT-generating field

In the original proposal of EIT-assisted frequency conv
sion, thev2 field is assumed to be very strong and und
pleted. The latter condition impliesh10!h20. In this situa-
tion the solution~66! can be well approximated by

J5
h10

11S Dk8

2ke
D 2 sin2FkezA11S Dk8

2ke
D 2G , ~73!

ke5
N

2
Am1m3

m2h20
, ~74!

Dk85Dk2
N

2

m3d2

m2h20
, ~75!

which, of course, coincides with that obtained in Sec. II, E
~14! and~15!, under the undepleted drive approximation. T
influence of the intensity-dependent phase mismatch~terms
A2J and A3J2) is negligible in this case, as was discuss
above.

One can immediately see from Eqs.~70!, ~57!, and ~58!
that for vanishing residual phase mismatchq50 ~which can
be realized by adding a buffer gas with proper dispers
@19#! and for d250, there is perfect phase matching:A1
5A25A350. Consequently maximum energy transfer in
the generated wavev3 is possible. This applies also for th
case when linear refraction is compensated by a detuningd2:

d25
2

N

m2h20

m3
Dk. ~76!

For both of these phase-matching procedures, the maxim
value ofh35J achieved atze5p/2ke is equal toh10. Thus
the instantaneous fractional conversion efficiency defined

e[
Jmax

min~h10,h20!
~77!
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can become unity. It should be noted thate51 is, in general,
only achieved at a specific instant of time sinceke depends
on time viah20(t2z/c)[h̄20 f 20(t2z/c) @h̄20 is the ampli-
tude andf 20(t2z/c) is the temporal envelope of theh20(t
2z/c) pulse#. Hence the transfer of energy is complete on
for the part of thev1 pulse which satisfies the conditio
Af 20(t2z/c)'1. A high overall conversion requires a fla
temporal profile of the ‘‘coupling’’ pulsev2. This is easy to
implement, however, since alwaysh35J!h2 ('h20) and
h1!h20. We have thenV1 ,V3!V2 for the whole medium,
which means, in particular, that all the atoms throughout
medium are essentially in the ground state. Therefore, thev2
pulse can be arbitrarily long.

In contrast to the fractional conversion efficiency, E
~77!, the total conversion efficiency defined as

W~z![
E dt v3h3~z,t !

E dt@v1h1~z,t !1v2h2~z,t !#

~78!

remains very small becauseh10!h20.

2. Depletion of the pump fields

Conversion with«'1 can be achieved, however, also f
the case when both pump fieldsv1 andv2 are of comparable
intensity. For example, for exact phase matching andh10
5h20[h0 ~which would correspond, e.g., to the second h
monic generation!, the solution Eq.~66! can be written as

m2

m3
kez5arctanSA J

h0
D 2

~m11m22m3!

m3
A J

h0
, ~79!

which demonstrates thatJ monotonically approachesh0 asz
increases. The form of this solution for given retarded time
shown in Fig. 2. The monotonic dependence ensures
after a sufficiently long propagation length all parts of t
pulseh105h20 are converted into thev3 wave so that not
only «'1, but also the total energy conversion efficiencyW
reaches unity.

When the phase mismatch is not compensated, the s
tion for h105h20[h0 is given by a more general expressio
Eq. ~66!, with B15h0(Dk8/2ke)

2 and J2,1'h0(1
6Dk8/2ke). The spatial dependence of the generated fi
intensity ~Fig. 3! differs only slightly from

J5h0S 12
Dk8

2ke
D sn2FkezA11

Dk8

2ke
;AJ1

J2
G ,

where sn@x;p# is the Jacobi elliptic sine function. The perio
of intensity oscillations seen in Fig. 3 can be estimated
@18#

ze. ln~16ke /Dk8!.

Since in the EIT regime we have alwaysDk8!2ke , very
high total conversion efficiency is achieved without pha
matching also forh10'h20 when the drive fields are sub
stantially depleted.
8-9
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3. Evolution of the atomic state

In the case of EIT with comparable intensities of thev1
and v2 pump fields, the intensity of thev3 wave increases
with z and eventually exceeds that of thev1 ,v2 waves.
Therefore, the adiabatic state of the atomic system will
longer approximately coincide with the ground stateu1& over
the entire medium length at a given retarded time. It w
evolve via different superpositions of the bare statesu1& and

FIG. 2. EIT up-conversion for perfect phase matching. So
line: spatial evolution ofJ according to Eq.~79! for given retarded
time. For sufficiently large propagation length there is compl
conversion. Dotted lines: corresponding spatial evolution of
atomic bare state probabilities. The amplitude of the excited s
u3& is negligibly small ~not shown!. Parameters:m2 /m350.5,
m1 /m350.05.

FIG. 3. EIT up-conversion with finite phase mismatch. So
line: spatial evolution ofJ. Dotted lines: corresponding spatial ev
lution of the atomic bare state probabilities. The amplitude of
excited stateu3& is negligibly small~not shown!. Parameters are th
same as in Fig. 2,Dk8/2ke50.06.
03380
o

l

u2& following the change of the fields~Figs. 2 and 3! @20#.
We see that the ‘‘conventional’’ EIT regime~one strong and
one weak field, and thus one highly populated and o
slightly populated state! does not hold over the full conver
sion cycle. We should stress, however, that the atoms rem
in the adiabatic state corresponding tol50, i.e., in the dark
state. Therefore, all the features of the EIT-assisted con
sion process such as vanishing linear absorption and re
tion as well as resonantly enhanced nonlinearity are pre
even when the pump field is depleted.

When most of the input energy is transferred to thev3
pulse, i.e., for larger propagation distances into the medi
the dark stateuc0& approaches the bare stateu2&,

uc0&→u2&,

which does not coincide with the initial atomic state~i.e., the
ground stateu1&). Thus we encounter two problems: Firs
since all atoms are in the ground state before the arriva
the pulses, there must be an adiabatic transfer in the in
phase fromu1& to uc0&. This requires a specific time order o
the pulses. In particular,V2 should arrive after the othe
pulses. This time ordering is, however, not reflected in o
solutions. Second, after the interaction with the pulses, th
is energy left in the atomic system. This is in apparent c
tradiction to the fact that full conversion of photon ener
has taken place and no energy got lost. It should be no
though that the size of the effect is rather small in the c
sidered limit of a large initial number of photons. This co
tradictory behavior is a result of the limited validity of th
assumptions made. We have here completely neglected n
diabatic corrections, which are small on the level of ind
vidual atoms, but add up in the field evolution when int
grated over the whole sample. The most important eff
ignored by this is the group-velocity delay of the weak field

Although the group delay cannot be treated within t
current approach, it may resolve the problems. In the fi
part of the medium, i.e., for smallNz the generated field is
still small. Thus the group velocities of the pulsesV1 andV3
should be smaller than that of the strong drive fieldV2. Then
the leading edge of theV2 pulse will always propagate ahea
of the other pulses, guaranteeing that the adiabatic stateuc0&
asymptotically matches with the ground state at early tim
for all values ofz. For larger propagation distances into th
medium and for times in the central part of the pulses
substantial portion of the energy is transferred to the fi
V3. Now the situation is reversed.V3 is strong andV2 is
weak. Thus the pulseV2 will have a smaller group velocity
and should lag behind at the trailing edge of the pulses. C
sequently also for large times, the adiabatic eigenstateuc0&
approaches asymptotically the ground stateu1&.

A full quantitative account of the leading-order nonad
batic corrections requires, however, a reformulation of
Hamiltonian approach. This is beyond the scope of
present work and will be presented in a future publicatio

B. Maximum-coherence case

The mechanism of nonlinear optics with maximum coh
ence is realized when the detuningd3 is much larger than the

e
e
te

e
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other parameters including all Rabi frequencies andd2. In
this case the coefficientsA1 andam are as follows:

A1.q@~2l1d2!d32m1h102m2h20#1m1d31m2l

2m3~l1d2!, ~80!

a0.~2l1d2!d32m1h102m2h20, ~81!

a152qd31~m11m22m3!. ~82!

1. Preparation of maximum atomic coherence

The energy eigenvalue for larged3 is given by

l52
1

2 S d22
V20

2

d̃3
D 1

1

2
AS d22

V20
2

d̃3
D 2

14V10
2 , ~83!

whered̃35d31 ig. The amplitudes of the adiabatic state co
responding to this eigenvalue at the entrance to the med
z50, are

c15
V10

Al21V10
2

, ~84!

c252
l

Al21V10
2

, ~85!

c3!c1 ,c2 .

Similar to the EIT case, the probability of spontaneous de
of the stateuc0& is small: Im(l)t!1 for large detuning as
sumed here,d3@g, even for pulses that are longer thang21:
t!(d3

2/V20
2 )g21. Again, we will consider only such pulse

and neglect spontaneous emission.
The situation of maximum coherence,uc1u5uc2u51/A2,

takes place when the Rabi frequency exceeds the detunin
transition u1&2u2& including the ac Stark shift induced b
the v2 field: V10@ud22V20

2 /d3u. In this casel'V10 and
the atomic state at the medium entrance is the superposi
uc0(z50)&5(u1&2u2&)/A2. However, in order for the at
oms to get there from the ground state, one first has to h
the inverse situationd2@V10, and then adiabatically de
creased2, simultaneously increasingV10. This can be ac-
complished by, e.g., Stark-chirped rapid adiabatic pass
@8#. We will not include this process explicitly in the consid
eration, but assume that when thev2 pulse arrives, the con
dition V10@d2 is already satisfied. As a consequence,
energy taken from the leading edge of thev1 pulse for the
superposition preparation is not taken into account. Howe
if the number of photons in thev1 pulse is much larger than
the total number of atoms along the field propagation pa
these preparation energy losses (\v1/2 per atom! can be
neglected.

2. Undepleted coherence-generating field

When a strong, undepletedv1 field is supposed:h20
!h10 ~implying also undepleted coherence onu1&2u2& tran-
03380
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sition!, the generated field intensity experiences sinuso
oscillations with respect to the propagation length:

J5
h20

11S Dk8

2km
D 2sin2FkmzA11S Dk8

2km
D 2G , ~86!

km5
N

4

Am2m3

d3
, ~87!

Dk85Dk2
N

4 SAm1

h10
1

~m22m3!

d3
D , ~88!

in correspondence with the analysis of Sec. II, Eqs.~14!,
~22!, and~24!, and assuminguc1u25uc2u25r1251/2.

Sincekm is of the order ofDk8, substantial transfer o
energy from thev2 field into thev3 field occurs even with-
out compensation of the phase mismatch. If one can man
to makeDk8 small:Dk8!km , then the best possible regim
for conversion can be attained. Not only complete trans
for the pulse maximum is realized:J1'Jmax5h20, but also
the conversion lengthl 5km

21 does not depend on time, an
hence, all parts of thev2 pulse are homogeneously convert
into thev3 wave.

There are several possibilities to reach this regime. F
one may setDk to zero by use of the buffer gas, and choo
the input laser parameters such that

d352
~m22m3!

m1
Am1h10. ~89!

This condition can be satisfied only for the time interv
whenAf 10(t2z/c)'1. That is, a flat temporal profile of th
v1 pulse is required. Since this is not always possible,
other method can be used. One may simply increase the
tensity h10 so that the refraction contribution of theu1&
2u2& transition becomes small:Am1 /h10!(m22m3)/d3,
and choose the detuningd3 as

d35
~m22m3!

2q
. ~90!

Since in this regimeh35J!h10, we have at any propa
gation distance,V1@V2

2/d3 , V3
2/d3. Therefore, the atoms

remain in a superpositionuc0&5(u1&2u2&)/A2 throughout
the medium.

It should be noted that although the instantaneous con
sion efficiencye can reach unity, the total energy conversi
efficiency is always small,W!1, becauseJ1'h20!h10.

3. Depletion of the pump fields

The situation is completely different for comparable i
tensities of the two pump waves:h20'h10.

For the maximum coherence regime,uc1u5uc2u51/A2, to
be attained, the conditionV1@V2

2/d3 must be satisfied~see
above!, which reduces toAm2h10!d3Am1 /m2 at h20
'h10. That is, the intensity of the pump pulses cannot
8-11
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large, and the refraction contribution of theu1&2u2& transi-
tion (;Am1 /h10) is not small, so that Dk8
'(N/4)Am1 /h10@km . Thus, the ‘‘exact maximum-
coherence’’ regime fails when the drive field is depleted.

However, the phase matching can still be performed
h20'h10 if the requirement foruc1u5uc2u51/A2 is lifted.
One of the possibilities is to cancel the residual refraction
the addition of the buffer gas:Dk50 ~thenA25A350), and
to choose the interaction parameters such thatA1'0. The
latter condition can be satisfied for specific relations betw
the detuningd2 and/ord3, and the input intensitiesh10,h20.
For example, forh105h20[h0 and whenm2,m3, one may
choose the detuningsd250 andd3 such that

m3h05
m1

~m32m2!
d3

2 . ~91!

Taking into account the condition~91!, the eigenenergyl is
reduced in this regime to

l5Am1h0A m3

~m32m2!
5V10z, ~92!

and the corresponding adiabatic state at the entrance to
medium is

uc0~z50!&5
1

A11z2
~ u1&2zu2&). ~93!

Thus, the atoms are prepared not with maximum cohere
r1251/2, but in a specific superposition withr125z/(1
1z2), which is also not small.

The propagation problem solution in this case resemb
that of the EIT regime, Eq.~79!:

km

2

z
z5arctanSA J

h0
D 2

m11m22m3

m3
A J

h0
, ~94!

z5A m3

~m32m2!
, ~95!

which is demonstrated in Fig. 4. The conversion coeffici
differs from that of the undepleted coherence casekm , Eq.
~87!, only by a numerical factor 2A(m32m2)/m3. As we can
see, although the total conversion efficiency may appro
unity, the robustness of the maximum coherence schem
the phase mismatch is lost. One has to fulfill the pha
matching conditions@like Eq. ~91!# with sufficient accuracy
to get a large conversion. A considerable transfer of ene
into the generated wave can be expected when the enve
of the pump pulse satisfies the condition:

12Af 10~ t2z/c!<A 4m2

~m32m2!
,

and the detuningd35d3
01d38 differs from the valued3

0,
given by condition~91!, by not more than
03380
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d38<A m2

~m32m2!
d3

0 .

Both of these conditions require that the values of the tr
sition coupling constants,m2 andm3, be close.

Similar to the EIT regime, the adiabatic superpositi
does not coincide with the stateuc0(z50)&, Eq. ~93!, over
the entire medium, but will evolve in the course of propag
tion, following the change of the fields~Fig. 4!. For large
density-length productsNz when V1!V3

2/d3, the atomic
state tends to the ground state:uc0&→u1&. Thus, ‘‘the maxi-
mum coherence’’ is not maintained throughout the lig
propagation path, although it is still sufficiently large fo
most part of the medium. One can see from Fig. 4 that as
coherence gets smaller, the conversion slows down, and
very largeNz ~hence, for small atomic coherence!, the gen-
erated intensity only slowly approaches its maximum.

Here again we encounter an apparent contradiction rel
to the limited validity of the adiabatic approximation. Th
atoms do not return to the initial state despite the ove
energy conservation. Now the preparation energy for
atomic coherence is extracted as well. Under the conditi
discussed here, i.e., large photon number as compare
number of atoms, this is however a small effect. A resolut
of this problem should be found when nonadiabatic corr
tions are taken into account, which will be the subject
further investigations.

C. Conventional nonlinear optics„weak excitation…

Finally, we consider the regime corresponding to conv
tional nonlinear optics. This regime takes place at weak
citation when both detuningsd2 andd3 are much larger than

FIG. 4. Up-conversion with initial maximum coherence. So
line: spatial evolution ofJ according to Eq.~94! for given retarded
time. For sufficiently large propagation length there is compl
conversion. Dotted lines: corresponding spatial evolution of
atomic bare state probabilities. The amplitude of the excited s
u3& is negligibly small ~not shown!. Parameters:m2 /m350.5,
m1 /m350.05.
8-12
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all Rabi frequencies. Then we havel'V10
2 /d2 and uc0&

'u1& for all atoms in the medium.
The coefficientsA1 andam do not depend on laser inten

sities in this case:

A1.qd2d31m1d32m3d2 , ~96!

a0.d2d3 , ~97!

a152q~d21d3!1~m11m22m3!. ~98!

Sincea1min(h10,h20)!a0, the solution Eq.~66! can be well
approximated by

J5J1sn2@knz;AJ1 /J2#, ~99!

kn5
N

2

Am1m2m3J2

d2d3
, ~100!

with J2,1 determined from Eqs.~69! and~96!. This formula is
valid for any relation betweenh10 andh20.

When the phase mismatch is compensated:A1'0, which
is made by proper tuning,

q5
m3

d3
2

m1

d2
, ~101!

the roots J2,1 are J15min(h10,h20), J25max(h10,h20).
Therefore, the optimum conversion can be realized also
the case of the off-resonant nonlinear optics. In particular,
h10'h20 the complete transfer of energy to the genera
wave occurs:

J5h0sn2@knz;p→1#'h0tanh2~knz!,

leading to perfect total conversion efficiency,W'1. How-
ever, the nonlinear conversion coefficientkn is much smaller
in this case than in the EIT and maximum-coherence regi
@ke andkm , Eqs.~74! and~87!, respectively#. Therefore, the
energy transfer is accomplished for much larger dens
length productsNz.

At last, we note that if the phase mismatch is not co
pensated, we haveB1@(h101h20) and the solution is re-
duced to the traditional formula of nonlinear optics@9#:

J5N2
m1m2m3h10h20

4d2
2d3

2

sin2~Dk8z/2!

~Dk8/2!2
, ~102!

with the total phase mismatchDk85Dk2Nm1/2d2
1Nm3/2d3.

V. SUMMARY

Resonant optical processes based on atomic coherenc
fects such as EIT or maximum coherence allow for a ma
mum nonlinear conversion of photons within a much sma
density-length product than possible in schemes of conv
tional off-resonant nonlinear optics. Since degrading mec
nisms such as phase mismatch and absorption scale wit
same density length product, EIT or maximum cohere
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can thus substantially reduce the requirements for effic
nonlinear optics. As a measure for the efficiency of us
atoms for nonlinear conversion processes, one can introd

the ratio of the number of converted photonsn;At j h̄ j 0 to
the number of atomsNat5NAl;NA/k needed (A is a
cross-sectional area andt j is the duration of the pulse!. This
figure of meritn/Nat is largest for the EIT scheme,n/Nat

5t1V10; considerably smaller for the maximum coheren
method,n/Nat5t2V20(V20/d3) ~with V20/d3!1); and is
very small for conventional nonlinear optics,n/Nat

5t2V20(V10V20/d3d2) ~with V20/d3!1 andV10/d2!1).
In previous theoretical studies of EIT- and maximum

coherence based nonlinear optics, undepleted drive field
a constant coherence was assumed. If one takes into acc
the resources to maintain the drive field or the constant
herence, the overall efficiency of the processes is in this li
tiny. We have shown in the present paper that when
restriction is lifted and coherence- or transparen
maintaining fields with comparable intensities to the pum
fields are considered, it is possible to achieve also a m
mum overall conversion. To study the conditions for this,
have derived analytical solutions for the pulse interaction
the adiabatic limit using an approach that maps the propa
tion problem to that of a nonlinear pendulum. Under cert
conditions this problem could be explicitly integrated allow
ing for a simple discussion of the physical processes
volved.

We have found that when the coherence- or transpare
maintaining fields are depleted, the atomic state does
remain constant but evolves along the propagation path
lowing the change of the fields. Therefore, the convers
process cannot be associated with maximum coherenc
EIT in the traditional sense alone. Nevertheless, the m
features of EIT—reduced linear absorption and refracti
and enhanced nonlinearity—are still present in the la
mechanism. Although in the maximum-coherence mec
nism the robustness to the phase mismatch is lost, the
linear conversion coefficient remains much larger than
conventional nonlinear optics. Thus, for both mechanism
complete conversion can be achieved within a small dens
length product.

We have also encountered several limitations of the str
adiabatic assumption used in the Hamiltonian approach.
extension of the approach to take into account nonadiab
corrections and thus such important effects as group d
are currently under investigation and the corresponding
sults will be presented elsewhere.
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