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The interaction of two spatially separated impurity atoms through phonon exchange in a Bose-Einstein
condensate is studied within a Bogoliubov approach. The impurity atoms are held by deep and narrow trap
potentials and experience level shifts which consist of a mean-field part and vacuum contributions from the
Bogoliubov phonons. In addition, there is a conditional energy shift resulting from the exchange of phonons
between the impurity atoms, which can be employed for a transfer of quantum information between the atoms.
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I. INTRODUCTION

The ability to engineer the collisional interaction of ultra-
cold individual atoms or ions as well as degenerate en-
sembles of atoms, such as Bose-Einstein condensatessBECsd
f1g, has dramatically improved in the last couple of years by
the development of quantum-optical tools such as single-
atom microtrapsf2–4g, optical latticesf5–7g, atom chipsf8g,
and others. Controlled collisional interactions of individual
atoms are of fundamental interest but also have important
potential applications in quantum information processingf9g.
Recently, the coupling of single-atom quantum dots to Bose-
Einstein condensates was studied inf10g and the use of an
impurity atom in a one-dimensional optical lattice as an atom
transistor was proposedf11g. We study here the mutual in-
teraction between two separated, well localized impurity at-
oms through the exchange of Bogoliubov phonons in a BEC
at zero temperature and its potential application for the trans-
fer of quantum information between the atoms. This is mo-
tivated by the analogy to cavity quantum electrodynamics
where the off-resonant scattering of resonator photons from
two atoms or quantum dots in the strong-coupling regime
can be used to implement a universal two-qubit gatef12g.
When impurity atoms in a BEC undergo a state-dependent
scattering with the condensate atoms, in addition to mean-
field level shifts and levels shifts from the interaction with
the vaccum fluctuations of the Bogoliubov phonons, also a
conditional level shift emerges which results from phonon
exchange between the impurities. This conditional shift is
calculated and its dependence on trap geometry, impurity
separation, and the strength of the interactions within the
condensate is studied and applications to quantum informa-
tion processing are discussed.

In Sec. II, we derive an effective coarse-grained interac-
tion Hamiltonian for the impurity atoms and relate the level
shifts to correlation functions of quasiparticle excitations.
These will then be calculated within a Bogoliubov approxi-
mation for a condensate in a box potential in Sec. III. It is
shown that the coupling between the impurity atoms is stron-
gest for a highly asymmetric geometry. For this reason, we
consider in Sec. IV a quasi-one-dimensional condensate. A
simple analytic expression for the level shift is derived using
a Thomas-Fermi approximation.

II. EFFECTIVE INTERACTION OF IMPURITY ATOMS
IN A BEC

We consider here a Bose-Einstein condensate atT=0 with
impurity atoms at fixed locations,r 1 and r 2, which can be
realized, e.g., by tightly confining trap potentials as shown in
Fig. 1. The traps are separated such that any direct interac-
tion of the atoms can be excluded. The atoms are assumed to
have two relevant internal statesu0l and u1l and shall un-
dergo s-wave scattering interactions with the atoms of the
BEC if they are in stateu1l. If the traps are sufficiently deep,
the atoms will stay in the corresponding ground statef0,
whose size is assumed to be small compared to the coherence
length of the BEC. In this case, the interaction of the con-
densate and the impurities can be expressed by the local
Hamiltonian

Ĥint =
k

2o
a,b

ua,blka,bufda1ĉ†sr 1dĉsr 1d + db1ĉ†sr 2dĉsr 2dg,

s1d

whereua ,bl denotes theath internal state of the first and the
bth internal state of the second impurity atom. The coupling
to the condensate is described by the state-dependent cou-
pling constantk. The condensate wave function is denoted

by ĉ.
In order to derive an effective Hamiltonian for the two

impurity atoms, it is convenient to first separate the interac-
tion s1d into a mean-field and a fluctuation part,

Ĥint =
k

2 o
j=1,2

u1l j jk1ukĉ†sr jdĉsr jdl

+
k

2o
a,b

ua,blka,bufda1B̂1std + db1B̂2stdg, s2d

where

B̂lstd = ĉ†sr ldĉsr ld − kĉ†sr ldĉsr ldl. s3d

The terms in the first line of Eq.s2d result in a mean-field
level shift of the internal stateu1l. They are of no interest in
the present discussion and will be absorbed in the free
Hamiltonian of the impurity atoms.

We proceed by deriving an equation of motion for the
statistical operator of the impurities interacting with the BEC
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following the quantum optical approach as it is used, e.g., in
cavity QED. Within the lowest-order Born approximation
and as outlined in Appendix A, one finds

]t%̃10,00= −
k2

4"2E
t0

t

dt8%̃10,00st8dkB̃1stdB̃1st8dl, s4d

]t%̃01,00= −
k2

4"2E
t0

t

dt8%̃01,00st8dkB̃2stdB̃2st8dl, s5d

]t%̃11,00= −
k2

4"2E
t0

t

dt8%̃11,00st8dhkB̃1stdB̃1st8dl + kB̃1stdB̃2st8dl

+ sterms with 1↔ 2dj, s6d

where the tilde denotes quantities in the interaction picture
and the matrix elements of the statistical operator are de-
noted by%̃ab,gd=kab ,tu%̃ugd ,tl. In the first-order Born ap-

proximation, the correlation functionskB̃lstdB̃l8stdl are to be
taken in the absence of the coupling to the impurity atoms.
We will show in Appendix B that the first-order Born ap-
proximation is here well justified.

The correlationskB̃lB̃l8l are calculated using the standard
Bogoliubov approach, i.e., by setting

ĉsr ,td = c0sr d + ĵsr ,td s7d

with c0 being the solution of the Gross-Pitaevskii equation

and ĵ a small operator-valued correction and neglecting

higher-order terms inĵ ssee Appendix Cd. Within the Bogo-

liubov approach, we disregard terms of the orderOsĵ4d in

kB̃iB̃jl and find

kB̃lstdB̃l8st8dl = o
j

8e−si/"dEjst−t8dSjsl,l8d. s8d

The Ej’s are the Bogoliubov energies and

Sjsl,l8d = c0sr ldc0sr l8dfujsr ld − v jsr ldgfuj
*sr l8d − v j

*sr l8dg.

s9d

The functions uj and v j are the solutions of the
Bogoliubov–de Gennes equationsscf. Appendix Cd and the
prime at the sum indicates that the ground state is excluded.

A calculation of the correlation functions shows that the
Markov approximation often used in a quantum optical con-
text cannot straightforwardly be applied to Eqs.s4d–s6d.
However, if we are interested only in a coarse-grained time

evolution corresponding to frequencies below the lowest ex-
citation frequency, the interaction of the impurity atoms with
the condensate simply results in level shiftsscf. Appendix
Ad, i.e.,

%̃ab,gdstd = %̃ab,gds0de−ivab,gdt. s10d

The corresponding frequencies read

vab,gd =
k2

4"
o

j

8
1

Ej
hSjs1,1dsdg1 − da1d + Sjs2,2dsdd1 − db1d

+ fSjs1,2d + Sjs2,1dgsdg1dd1 − da1db1dj. s11d

This corresponds to an effective—coarse-grained—
Hamiltonian

H̃eff = u10lk10u"v10,00+ u01lk01u"v01,00+ u11lk11u"v11,00.

s12d

The energy scheme of this Hamiltonian is shown in Fig. 2.
One recognizes from Eq.s12d for symmetric impurity loca-
tions a level shift

d = v10,00= v01,00= −
k2

4"
o

j

8
1

Ej
Sjs1,1d , 0 s13d

of each impurity atom independent of the presence of the
other. This level shift is due to the interaction with vacuum
fluctuations of the Bogoliubov quasiparticlessphononsd. In
addition, there is a conditional level shift due to the exchange
of Bogoliubov quasiparticlessphononsd between the two im-
purities,

D = v11,00− v10,00− v01,00= −
k2

4"
o

j

8
1

Ej
hSjs1,2d + Sjs2,1dj.

s14d

It should be noted that the coarse-graining approximation
is consistent with the collective level shift only if

D !
1

"
min

j
8sEjd, s15d

where the prime indicates that the ground state is excluded.
In the following, we will explicitly calculate the level shifts
for a homogeneous condensate, for an ideal condensate in a

FIG. 1. sColor onlined Impurity atoms held by tight confining
potentials in a Bose-Einstein condensate. When in internal stateu1l,
the atoms undergos-wave scattering interactions with the
condensate.

FIG. 2. Energy scheme of the effective Hamiltonian for sym-
metric arrangement of impurity atoms. Here, a negative sign ofD
was assumed, although positive values are possible.
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harmonic trap, and a weakly interacting condensate in a trap
in the Thomas-Fermi limit.

III. HOMOGENEOUS CONDENSATE

In this section, we calculate the energy shiftsd andD for
the case of an interacting, homogeneous condensate with pe-
riodic boundary conditions of spatial periodicityLx, Ly, Lz,
respectively. The solutions of the Bogoliubov–de Gennes
equations are then given by plane wavesuk =sfk

++ fk
−d /2 and

vk =sfk
+− fk

−d /2 with

fk
±sr d =

1
ÎV

SÎEk

«k
0D±1

eik·r . s16d

The wave vectorsk have to be chosen in such a way that
they fulfill the periodic boundary conditions. Since theuk
andvk’s have to be orthogonal to the ground state, the case
k =0 is excluded. The Bogoliubov energies are given by

Ek = Î«k
0s«k

0 + 2gn0d s17d

with «k
0="2k2/2mB. One can easily calculate the correlation

functions,

kB̃lstdB̃l8st8dl =
N0

V2o
k

8
«k

0

Ek
expS−

i

"
Ekst − t8dD

3expfik · sr l − r l8dg. s18d

Here,N0 denotes the number of atoms in the condensate and
V=LxLyLz. It should be noted that the sum in Eq.s18d is in
general UV-divergent, which is due to the assumption of a
pointlike interaction in Eq.s1d. In a more accurate descrip-
tion, the small but finite extensionz0 of the ground state of
the impurity trap should be taken into account, which would
lead to an effective cutoff atuk u,1/z0. The value ofz0 is,
however, of no relevance for the conditional phase shift and
is dropped here. With Eq.s18d, one finds for the level shifts

d = −
k2N0

4"V2o
k

8
«k

0

Ek
2 , s19d

D = −
k2N0

2"V2o
k

8
«k

0

Ek
2cossk · Dr d, s20d

whereDr =r 1−r 2. The conditional energy shiftD is shown in
Fig. 3. For very small distances of the impurities,D is nega-
tive and its absolute value approaches its maximum, i.e., that
of 2d sa finite value ofd is obtained only with a cutoffd. For
increasing distance, the value ofD increases monotonously
and eventually changes its sign. The monotonous increase
would correspond to an attractive force between the impurity
atoms if they could move freely. One recognizes that for
larger values of the dimensionless interaction parameterK
=2Lz

2/ lcoh
2 ,g, where lcoh=" /Îmgns0d is the coherence

length, the energy shift decreases and the spatial dependence
becomes less pronounced. This can be explained by the in-
creasing self-energy of the Bogoliubov excitations. Thus the
conditional energy shift is appreciable only in finite systems,

whereLz/ lcoh is not too large. In the thermodynamic limit,
the shift disappears.

It is also very instructive to consider the dependence of
the conditional level shiftD on the aspect ratio of the con-
densate, i.e., on the ratioLrad/Lz, whereLrad=Lx=Ly. This is
illustrated in Fig. 4. One recognizes that the absolute value
of the energy shift increases as the ratioLrad/Lz decreases.
Thus the energy shift is largest for a highly nonsymmetric
geometry of the BEC. The strongest effect is thus to be ex-
pected in a quasi-one-dimensional condensate of sufficiently
small size. For this reason, we will investigate in the follow-
ing section the energy shift in the case of a BEC in a har-
monic trap only for a one-dimensional condensate.

IV. 1D CONDENSATE IN A TRAP

In this section, we consider a quasi-one-dimensional con-
densate confined in a harmonic trapVext=mBvB

2z2/2. We first

FIG. 3. sColor onlined Energy shift in units ofk2N0mBLz
2/"3V2

for two impurities in a homogeneous condensate with periodic
boundary conditions. The interaction of BEC atoms is characterized
by the dimensionless parameterK=gN02mBLz

2/"2V=2Lz
2/ lcoh

2 . The
impurities are located on thez axis,Lx=Ly=0.5Lz, and a finite size
z0=0.05Lz of the impurity traps was assumed to eliminate the sin-
gularity atz1=z2.

FIG. 4. sColor onlined Influence of condensate geometry on en-
ergy shift in a box with periodic boundary conditions.D is in units
of k22mB/4"3, K is defined as in Fig. 3. The impurities are located
on the z axis with a distance of 0.5Lz. Lz=12310−6 m, and Lx

=Ly has been varied.
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consider the case of an ideal, i.e., noninteracting gas. In this
case, the solutions of the Gross-Pitaevskii equation and the
Bogoliubov–de Gennes equations are just the solutions of the
harmonic oscillator,

c0szd =Î N0

ÎpzB

e−z2/2zB
2
, s21d

ujszd =
1

Î2j j !ÎpzB

e−z2/2zB
2
HjS z

zB
D , s22d

v jszd = 0, s23d

Ej = j"vB. s24d

Here,zB=Î" /mvB is the ground-state width of the 1D har-
monic trap. By calculating Eq.s9d, one finds

D = −
k1D

2

2"
o
n=1

`
N0 exps− ž1

2 − ž2
2d

"vBpzB
2n2nn!

Hnsž1dHnsž2d, s25d

where žl =zl /zB. We also have introduced the one-
dimensional coupling constantk1D=k / s2pa'

2 d with the ra-
dial confinementa'

2 =" /mBv'. The conditional level shift is
shown in Fig. 5.

It is interesting to note that, different from the case of a
condensate in a box, the force between the impurities is not
always attractive. One recognizes that this is only the case if
the distance is sufficiently small. If the distance is larger than
a certain value, in our casež1− ž2<230.6, the force be-
comes repulsive.

We now consider the case of a weakly interacting 1D gas.
In order to solve the Gross-Pitaevskii equation, we make use
of the Thomas-FermisTFd approximation. Although the re-
sults obtained in this way cannot be smoothly connected to
the ideal-condensate case, the TF approximation allows us to
derive a compact expression for the level shift. The TF con-
densate wave function is given by

c0szd =Î m

g1D
S1 −

z2

RTF
2 D , s26d

where the TF radius is given byRTF=Î2m /mBvB
2. m denotes

the chemical potential, and the one-dimensional interaction
parameterg1D is defined analogous tok1D. To solve the
Bogoliubov–de Gennes equations analytically, further ap-
proximations are needed as discussed inf13g. We here take
over the results for the functionsf j

± obtained inf14g,

f j
±szd =Î2j + 1

2RTF
F2m

Ej
S1 −

z2

RTF
2 DG±1/2

PjS z

RTF
D s27d

with the energiesEj ="vBÎjs j +1d /2. The Pj are Legendre
polynomials. Using the completeness of the Legendre poly-
nomials, one can explicitly evaluate expressions14d. As
shown in Appendix D, the sumincluding the j =0 term van-
ishes if the overlap of the impurity wave functions is negli-
gible. Thus the energy shifts14d is determined only by the
j =0 term, which yields the simple expression

D =
k1D

2

8"RTFg1D
. s28d

This result does not depend on the distance of the impurity
atoms, which is due to the Thomas-Fermi approximation.
The shift is always positive and becomes larger for smaller
interactions in the BEC and, as expected from the noninter-
acting case, for larger 1D confinement. It is instructive to
expressD in terms of the impurity-BEC stattering lengthai
and the BEC scattering lengtha. One finds

D =
v'

4

mB
2

mi
2

ai
2

RTFa
. s29d

Here we havemi =2mBmS/ smB+mSd. Thus assuming a tight
transversal confinement withv'=2p3104 Hz, a large scat-
tering length between impurities and BECai =200 nm, a
small scattering within the BECa=5 nm, a small trap with
RTF=20mm, andmS<mB, one finds a conditional frequency
shift of 2p3103 Hz.

As shown in Appendix D, the result of Eq.s28d should be
valid as long as the following conditions are fulfilled:

dr,uz1 − z2u @ zB. s30d

Here,dr denotes the distance of one of the impurities to the
edge of the condensate. Furthermore, due to the Thomas-
Fermi approximation, the interaction strength of the conden-
sate has to fulfill the condition

g1D @
2"vBRTF

3N0
. s31d

Hence, we have the restriction

D ! minHvB,
3N0k1D

2

16"2RTF
2 vB

J . s32d

FIG. 5. Energy shiftD in an ideal 1D condensate as a function
of impurity distance. The shift is given in units of
k1D

2 N0/2"2vBpzB
2. Here ž1=−ž2.
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V. CONDITIONAL PHASE GATE

The conditional frequency shift of the two-atom state
u1,1l due to phonon exchange can be used to implement a
universal two-qubit gate, which is an essential building block
of any quantum computerf9g. To this end, we extend the
two-state model of Eq.s1d to a third stateurl, in which there
shall be no scattering with condensate atoms. The statesu0l j
and url j, j [ h1,2j of the two atoms encode a qubit each.
Since in both internal states there is no scattering interaction
with the condensate, the two qubits are decoupled. In order
to provide a qubit-qubit interaction, which is required for the
quantum gate, we assume that a laser couplesu0l and u1l.
Then a so-called quantum phase gate, up to an overall phase
characterized by the truthtable

u00l → − u00l,

ur0l → − ur0l,

s33d
u0rl → − u0rl,

urr l → urr l,

can be realized by the following sequence of operationsssee
also Fig. 6d.

sid A p pulse is applied to the first atom, i.e., the laser is
controlled in such a way thate0

t V1st8ddt8=p. This leads to
the transitionsu0l→ i u1l and url→ url of the first atom inde-
pendently of the state of atom 2.

sii d To the second impurity, a 2p pulse is applied. Since
the doubly excited stateu1,1l is detuned by the amountD,
the effect of this pulse on the second atom depends on the
state vector of the first atom. If the first atom is in stateurl1,
one getsu0l2→−u0l2. If the first atom is, however, in state
u1l, nothing happens because the transition frequency is
shifted byD, see Fig. 6.

siii d Finally, anotherp pulse is applied to the first impu-
rity atom. The atoms are again in their original state but now
with conditional phases as indicated in Fig. 6.

The result of the pulse sequence is equivalent to the truth-
table of a phase gate up to an unimportant local operation. To
implement this scheme successfully, it is necessary that the
characteristic time of the pulses is long compared to the in-
verse frequency shiftD−1. Hence the main restriction results
from conditions32d, i.e., the gate speed is limited by the trap
frequencyvB.

VI. CONCLUSIONS

In the present paper, we have analyzed the interaction of
impurity atoms in a Bose-Einstein condensate localized at
specific positions by tight confining potentials. It was shown
that in addition to the level shift caused bys-wave scattering
with the macroscopic condensate field, there are also contri-
butions from the interaction with vacuum fluctuations of the
Bogoliubov phonons. The self- and conditonal energy shifts
were calculated for a BEC in a box with periodic boundary
conditions. It was shown that size and sign of the conditional
energy shift depends on the separation of the impurities and
is largest for a highly anisotropic condensate geometry and
for small interactions within the condensate. With increasing
interaction of the condensate atoms, the spatial dependence
becomes less and less pronounced. Motivated by these find-
ings, the level shift in a quasi-one-dimensional harmonic trap
was calculated. In the Thomas-Fermi limit, a rather simple
analytic expression was obtained from a Bogoliubov ap-
proach. For small trap sizes, a conditional frequency shift in
the range of several kHz seems feasible, which could be of
interest for the implementation of a quantum phase gate.
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION FOR THE STATISTICAL OPERATOR

The total statistical operator of both the condensate and
the impurities is denoted byx̂. Its time evolution is then
given by the Liouville–von Neumann equationi"]tx̂std
=fĤ ,x̂stdg, whereĤ=ĤB+ĤS+Ĥint is the Hamiltonian of the

whole system, withĤB being the Hamiltonian of the conden-

sate, ĤS that of the impurities andĤint the interaction.
Changing into the interaction picture yields

i"]tx̃std = fH̃intstd,x̃stdg. sA1d

Formal integration and resubstitution leads to

i"]tx̃std = fH̃intstd,x̃st0dg +
1

i"
E

t0

t

dt8†H̃intstd,fH̃intst8d,x̃st8dg‡.

sA2d

Here,t0 is the time when the interaction starts. The statistical
operator for the impurity atoms can be obtained by tracing

FIG. 6. Implementation of a quantum phase gate:u0l andurl are
the logical states of the qubit, whereurl does not couple to the other
states.V j is the Rabi frequency of the transition fromu0l to u1l of
the j th impurity. The pulse sequence for the implementation of the
gate is explained in the text.
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out the condensate, i.e.,%̃std=TrBfx̃stdg. This yields

i"]t%̃std = TrBhfH̃intstd,x̃st0dgj

+
1

i"
E

t0

t

dt8TrBh†H̃intstd,fH̃intst8d,x̃st8dg‡j.

sA3d

Following the standard approach, we assume that the influ-
ence of the impurity atoms on the condensate can be ne-
glected and that the statistical operator of the whole system
seperates as

x̃std = %̃std ^ %̃Bstd + x̃corrstd < %̃std ^ %̃Bst0d. sA4d

Furthermore, since we have incorporated the mean-field con-
tribution to the free Hamiltonian of the impurities, the expec-
tation value of the interaction Hamiltonian vanishes, i.e., TrB

f%̃Bst0dH̃intstdg=0. With these approximations, we obtain

]t%̃std = −
1

"2E
t0

t

dt8TrB„†H̃intstd,fH̃intst8d,%̃st8d ^ %̃Bst0dg‡….

sA5d

The interaction Hamiltonian in the interaction picture can be
expressed as

H̃intstd = o
a,b

k

2
uab,tlkab,tufda,1B̃1std + db,1B̃2stdg, sA6d

where

uab,tlkab,tu = esi/"dsĤS+ĤBdtuablkabue−si/"dsĤS+ĤBdt.

sA7d

Substituting this into Eq.sA5d yields

]t%̃ab,gdstd = −
k2

4"2E
t0

t

dt8%̃ab,gdst8dfkB̃1stdB̃1st8dlsda,1 − da,1dg,1d + kB̃1stdB̃2st8dlsda,1db,1 − db,1dg,1d + kB̃2stdB̃1st8dlsda,1db,1

− da,1dd,1d + kB̃2stdB̃2st8dlsdb,1 − db,1dd,1d + kB̃1st8dB̃1stdlsdg,1 − da,1dg,1d + kB̃1st8dB̃2stdlsdg,1dd,1 − db,1dg,1d

+ kB̃2st8dB̃1stdlsdg,1dd,1 − da,1dd,1d + kB̃2st8dB̃2stdlsdd,1 − db,1dd,1dg. sA8d

Because the Markov approximation cannot be applied, we
instead first use a Laplace transformation. Settingt0=0, we
find

Lf%̃ab,gdstdgspd =
%̃ab,gds0d

p +
1

4"2Mab,gdspd
sA9d

with

Mab,gdspd = o
j

85Sjs1,1d1ka
2 − kakg

p +
i

"
Ej

+
kg

2 − kakg

p −
i

"
Ej 2

+ Sjs1,2d1kakb − kbkg

p +
i

"
Ej

+
kgkd − kbkg

p −
i

"
Ej 2

+ Sjs2,1d1kakb − kakd

p +
i

"
Ej

+
kgkd − kakd

p −
i

"
Ej 2

+ Sjs2,2d1kb
2 − kbkd

p +
i

"
Ej

+
kd

2 − kbkd

p −
i

"
Ej 26 . sA10d

In general, the Laplace transformationsA9d cannot be in-
verted analytically. However, if we are interested only in a

coarse-grained time evolution, it follows from the properties
of the Laplace transformation that only smallp are impor-
tant. If, furthermore, the condition

"p ! minj8sEjd sA11d

is fullfiled, it is possible to neglect thep dependence of
Mab,gd, which amounts toMab,gdspd→Mab,gds0d. Hence re-
sult s10d follows directly.

It is also clear that this result is only valid for frequencies
which are consistent with the coarse-graining assumption,
leading to conditions15d.

APPENDIX B: BACKACTION OF IMPURITIES ON BEC

In this appendix, we will calcualte the influence of the
impurity atoms on the condensate wave function for the case
of the ideal, one-dimensional condensate in the harmonic
trap. The Hamiltonian of the full problem reads

Ĥ = −
"2

2mB

d2

dz2 +
1

2
mBvB

2z2 − m + Ĥ1 sB1d

with

Ĥ1 =
k

2
dsz− z1d. sB2d

The solutions of the unperturbed Hamiltonian are

A. KLEIN AND M. FLEISCHHAUER PHYSICAL REVIEW A 71, 033605s2005d

033605-6



c j
s0dszd =

1

Î2j j !ÎpzB

e−z2/2zB
2
HjS z

zB
D sB3d

with the energiesEj ="vB j and m="vB/2. Calculating the
wave functions in first-order pertubation theory, one gets

c0
s1dszd =

k

2"vBsÎpzBd3/2
expS−

z1
2

zB
2 −

z2

2zB
2 D

3 o
l=1

`
− 1

l2ll!
HlS z1

zB
DHlS z

zB
D . sB4d

The sum in this expression is of the order of 1. Since we
want to neglect the influence ofc0

s1d, we require

1 @
uc0

s1du2

uc0
s0du2

<
k2

4"2vB
2pzB

2 . sB5d

Because of restrictions15d, we have that

"vB @ "D ,
N0k2

"vBzB
2p

. sB6d

Thus, conditionsB5d holds. Because of the interactions the
influence of the impurities should be even smaller in the
nonideal case. For the homogeneous condensate, one gets
analogous results.

APPENDIX C: BOGOLIUBOV THEORY

In this appendix, we briefly summarize the main results of
the Bogoliubov approach. We start with the Hamiltonian of
the Bose gas in thes-wave-scattering approximation,

ĤB =E dr ĉ†sr dS−
"2

2mB
D + Vextsr d − mDĉsr d

+
g

2
E dr ĉ†sr dĉ†sr dĉsr dĉsr d. sC1d

The field operatorĉ of the condensate is then devided into a
C-number functionc0 which represents the condensed part

of the Bose gas and an operatorĵ of quantum fluctuations:

ĉsr d=c0sr d+ ĵsr d. The wave function of the condensate is
given by the Gross-Pitaevskii equation

S−
"2

2mB
D + Vextsr d − m + guc0sr du2Dc0sr d = 0. sC2d

By plugging this into the Hamiltonian and neglecting terms

of the orderOsĵ3d and higher, one gets

ĤB < HB
0 +E drHĵ†sr dS−

"2

2mB
D + Vextsr d − mDĵsr d

+
g

2
f4uc0sr du2ĵ†sr dĵsr d + c0

2sr dĵ†sr dĵ†sr d

+ c0
*2sr dĵsr dĵsr dgJ . sC3d

The terms linear inĵ vanish because of the Gross-Pitaevskii

equation. The termHB
0 does not depend on operators and is

without consequence. In order to diagonalize the Hamil-
tonian, we employ the Bogoliubov ansatz

ĵsr d = o
n

8unsr db̂n − vn
*sr db̂n

†, sC4d

ĵ†sr d = o
n

8un
*sr db̂n

† − vnsr db̂n. sC5d

Here,b̂n
† and b̂n are bosonic creation and annihilation opera-

tors of the Bogoliubov quasiparticles. The prime at the sum
indicates that the ground state is excluded in the summation.
If the wave functionsun and vn fulfill the Bogoliubov–de
Gennes equationssc0 is taken to be reald,

F−
"2D

2mB
+ Vextsr d − mGun + guc0u2s2un − vnd = Enun,

sC6d

F−
"2D

2mB
+ Vextsr d − mGvn + guc0u2s2vn − und = − Envn,

sC7d

with the normalization,

E hunsr dun8
* sr d − vnsr dvn8

* sr djdr = dnn8 sC8d

E hvnsr dun8sr d − unsr dvn8sr djdr = 0, sC9d

the Hamiltonian takes the very simple form

ĤB = HB
0 − o

n

8EnE uvnsr du2dr + o
n

8Enb̂n
†b̂n. sC10d

With this, the operatorsj̃ in the interaction picture can
easily be calculated

j̃sr ,td = o
n

8unsr db̂ne
−iEnt/" − vn

*sr db̂n
†e+iEnt/". sC11d

APPENDIX D: VALIDITY OF EQ. (28)

In order to estimate the range of validity of the expression
for the conditional shift in TF approximation, Eq.s28d, we
start with the sum given ins14d, but including thej =0 term:

o
j=0

M
Sjs1,2d

Ej
= o

j=0

M
1

Ej
c0sz1df j

−sz1dc0sz2df j
−sz2d, sD1d

where f j
−=uj −v j. By usings27d we find

o
j=0

M
Sjs1,2d

Ej
, fP

MS z

RTF
,

z8

RTF
D , sD2d

where we have introduced
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fP
Msx,x8d = o

n=0

M
2n + 1

2
PnsxdPnsx8d. sD3d

If M→` the sum approaches thed-function andfP
M gets zero

as long asxÞx8. On the other hand the solutionss27d of the
Bogoliubov-de Genne equations used here are only valid for
f13g

dr

RTF
@ maxFÎMsM + 1dz

Î2
,Î Î2z

ÎMsM + 1d
G , sD4d

where dr is the distance from the edge of the condensate,
z="vB/2m=zB

2 /RTF
2 .

This implies M !Î2dr /RTFz and with dr @RTF
Îz, also

following from Eq.sD4d we arrive atM !Î2
z . Thus the limit

M→` cannot be taken insD2d. Nevertheless even for a
finite but sufficiently large upper limit of summationM the
sum is to a good approximation zero as can be seen as fol-
lows: In Fig. 7 fP

20 is shown. One recognizes a pronounced
central maximum and vanishingly small oscillations. Hence,
Eq. sD2d gets almost zero if the distance of the impurities is
much bigger than the width of the central maximum. We thus
need to estimate the width of this central peak. With the
Stirling formula, one finds asymptotically for largeM

fP
Ms0,0d <

M

p
. sD5d

Since efP
Ms0,sdds=1, the width of the central peak can be

approximated asDs=p /M. This finally yields the condition

z1 − z2

RTF
. Ds@ Îz =

zB

RTF
sD6d

for which the sum in Eq.sD2d is approximately 0. It should
be noted that we have assumed the Thomas-Fermi limitz
!1, which is essential for the analytic solution of the Gross-
Pitaevskii and Bogoliubov–de Gennes equations.
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FIG. 7. Picture offP
M for M =20.

A. KLEIN AND M. FLEISCHHAUER PHYSICAL REVIEW A 71, 033605s2005d

033605-8


