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Interaction of impurity atoms in Bose-Einstein condensates
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The interaction of two spatially separated impurity atoms through phonon exchange in a Bose-Einstein
condensate is studied within a Bogoliubov approach. The impurity atoms are held by deep and narrow trap
potentials and experience level shifts which consist of a mean-field part and vacuum contributions from the
Bogoliubov phonons. In addition, there is a conditional energy shift resulting from the exchange of phonons
between the impurity atoms, which can be employed for a transfer of quantum information between the atoms.
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I. INTRODUCTION Il. EFFECTIVE INTERACTION OF IMPURITY ATOMS
IN ABEC

The ability to engineer the collisional interaction of ultra-  \we consider here a Bose-Einstein condensale=é with
cold individual atoms or ions as well as degenerate enmpurity atoms at fixed locations,; andr,, which can be
sembles of atoms, such as Bose-Einstein condend39  realized, e.g., by tightly confining trap potentials as shown in
[1], has dramatically improved in the last couple of years byFig. 1. The traps are separated such that any direct interac-
the development of quantum-optical tools such as singletion of the atoms can be excluded. The atoms are assumed to
atom microtrap$2—4], optical latticed5-7], atom chipd8], have two relevant internal staté®) and|1) and shall un-
and others. Controlled collisional interactions of individual dergo s-wave scattering interactions with the atoms of the
atoms are of fundamental interest but also have importarBEC if they are in statél). If the traps are sufficiently deep,
potential applications in quantum information processlg  the atoms will stay in the corresponding ground stéte
Recently, the coupling of single-atom quantum dots to Bosewhose size is assumed to be small compared to the coherence
Einstein condensates was Studied:]]ﬁ)] and the use of an length of the BEC. In this case, the interaction of the con-
impurity atom in a one-dimensional optical lattice as an atonflensate and the impurities can be expressed by the local
transistor was proposddl]. We study here the mutual in- Hamiltonian
teraction between two separated, well localized impurity at- . K - - - -
oms through the exchange of Bogoliubov phonons in a BEC Hint = EE |, BY v, BILS b (r )T ) + Sp1th (r ) ()],
at zero temperature and its potential application for the trans- B
fer of quantum information between the atoms. This is mo- (1)

tivated by the analogy to cavity quantum electrodynamicsyhere|q, 8) denotes therth internal state of the first and the

where the off-resonant scattering of resonator photons fromy, internal state of the second impurity atom. The coupling

two atoms or quantum dots in the strong-coupling regimeg the condensate is described by the state-dependent cou-

can be used to implement a universal two-qubit dat.  pling constants. The condensate wave function is denoted

When impurity atoms in a BEC undergo a state—dependerg g

scattering with the condensate atoms, in addition to mean- In. order to derive an effective Hamiltonian for the two

field level shifts and levels shifts from the interaction with impurity atoms, it is convenient to first separate the interac-

the vaccum fluctuations of the Bogoliubov phonons, also gj5, (1) into a mean-field and a fluctuation part,

conditional level shift emerges which results from phonon

exchange between the impurities. This conditional shift is oK T (e Y

calculated and its dependence on trap geometry, impurity Hin = 2 2, 10wy

separation, and the strength of the interactions within the

condensate is studied and applications to quantum informa- K B B

tion processing are discussed. " 2% [ B AL 021Ba(®) + 0 Bo0], (2)
In Sec. Il, we derive an effective coarse-grained interac-

tion Hamiltonian for the impurity atoms and relate the levelWhere

j=1,2

shifts to correlation functions of quasiparticle excitations. Sy — e NSy e N
These will then be calculated within a Bogoliubov approxi- Bi(t) = ¢ (r)glny) = (@ () iry). ©)
mation for a condensate in a box potential in Sec. Ill. It isSThe terms in the first line of Eq2) result in a mean-field

shown that the coupling between the impurity atoms is stronlevel shift of the internal statdl). They are of no interest in
gest for a highly asymmetric geometry. For this reason, wehe present discussion and will be absorbed in the free
consider in Sec. IV a quasi-one-dimensional condensate. Mamiltonian of the impurity atoms.

simple analytic expression for the level shift is derived using We proceed by deriving an equation of motion for the
a Thomas-Fermi approximation. statistical operator of the impurities interacting with the BEC
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FIG. 1. (Color onling Impurity atoms held by tight confining s _x_.
potentials in a Bose-Einstein condensate. When in internal |4fate RlA|
the atoms undergos-wave scattering interactions with the - -y
condensate. [11)

. . L . FIG. 2. Energy scheme of the effective Hamiltonian for sym-
following the quantum optical approach as it is used, €.9., ifnetric arrangement of impurity atoms. Here, a negative siga of
cavity QED. Within the lowest-order Born approximation yas assumed, although positive values are possible.

and as outlined in Appendix A, one finds

_ 2t - = evolution corresponding to frequencies below the lowest ex-
%Q1000= ~ 457 | C100dt')(B1(1)B1(t")), (4 citation frequency, the interaction of the impurity atoms with
to the condensate simply results in level shift. Appendix
by A), i.e.,
A K I'? N/R = ! .
9Q01,00= ~ @Jto dt’@o1,0dt' N(B2(1)Ba(t')), (5) Bapyst) = Buupyo0) € Watr, (10)
t The corresponding frequencies read
~ K> j - ~ o~ ~ o~
HC11,00= = 773 | At @11,0dt" H(Bo()By(t)) + (B1(t)Bx(t')) Kol
C1L007 T g2 ) T Sre0eT R n ©apys= 5y 2 AL (8,1~ 0) +§(2,2(85 = 55
i Hi
+ (terms with 1< 2)}, (6) :

. - : o +[§(1,2 + S(2,D]1(8,1051 = Sar9p)}- (13)
where the tilde denotes quantities in the interaction picture ) _
and the matrix elements of the statistical operator are delhis corresponds to an effective—coarse-grained—
noted by©,z,5=(aB,t[e|ys,t). In the first-order Born ap- Hamiltonian

proxnn_anon, the correlation functlc_)r(B,(t)BV(t_)) are to be Flot = | 10010/ 10,00+ | 010U w01 0o+ [ 111U fw1 1 oo
taken in the absence of the coupling to the impurity atoms.

We will show in Appendix B that the first-order Born ap- 12
proximation is here well justified. The energy scheme of this Hamiltonian is shown in Fig. 2.
The correlationgB,B,/) are calculated using the standard One recognizes from Eq12) for symmetric impurity loca-

Bogoliubov approach, i.e., by setting tions a level shift

A - 2
- Kl
YD = dolr) + €. 0 2= @000= or00= = 4y 2 E §LY <0 (13
with ¢ being the solution of the Gross-Pitaevskii equation A
and ¢ a small operator-valued correction and neglectingof each impurity atom independent of the presence of the

higher-order terms i (see Appendix € Within the Bogo-  Other. This level shift is due to the interaction with vacuum

: . S fluctuations of the Bogoliubov quasiparticl§shonon$. In
liubov approach, we disregard terms of the or@e?) in addition, there is a conditional level shift due to the exchange

(B;B;) and find of Bogoliubov quasiparticle@honong between the two im-
BOB(1) = S e IES (1), ® purities,
i

K2

1
A=w -w -w =-—>, —{S(1,2+S(2,1)}.
The E;’'s are the Bogoliubov energies and 11,007 0,00 0100 4ﬁ$ Ej{%( )+ 52D}

S(L1") = ol ) ehor )Ly (ry) = vy (r)I0Y; (1) = v ()] (14)

9) It should be noted that the coarse-graining approximation

. . is consistent with the collective level shift only if
The functions u; and v; are the solutions of the y

Bogoliubov—de Gennes equatiofef. Appendix G and the 1 .
prime at the sum indicates that the ground state is excluded. A< %m_m’(Ej), (19

A calculation of the correlation functions shows that the .
Markov approximation often used in a quantum optical con-where the prime indicates that the ground state is excluded.
text cannot straightforwardly be applied to Ed4)—(6). In the following, we will explicitly calculate the level shifts
However, if we are interested only in a coarse-grained timdor a homogeneous condensate, for an ideal condensate in a
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harmonic trap, and a weakly interacting condensate in a trap
in the Thomas-Fermi limit.

i e
0.1y Oss
S5SNI

IIl. HOMOGENEOUS CONDENSATE 0+

In this section, we calculate the energy shiftandA for < =014
the case of an interacting, homogeneous condensate with pe-
riodic boundary conditions of spatial periodicity, Ly, L,, -0.24
respectively. The solutions of the Bogoliubov—de Gennes
equations are then given by plane wavgs (f, +f,)/2 and
v =(fe=f,)/2 with

Lo 1 Ek)ﬂ ”
frr)=—\\/ = €. 16
k(r) V/\_/< 32 ( )

The wave vectork have to be chosen in such a way that FIG. 3. (Color onling Energy shift in units ofc®NgmgL2/%3V?
they fulfill the periodic boundary conditions. Since thg  for two impurities in a homogeneous condensate with periodic
andv,’s have to be orthogonal to the ground state, the casboundary conditions. The interaction of BEC atoms is characterized
k=0 is excluded. The Bogoliubov energies are given by by the dimensionless parametérgNo2mgL5/#2V=2L3/1%,, The
impurities are located on theaxis, L,=L,=0.9_, and a finite size
Ec= \gﬁ(sg +2gny) (17) 7,=0.09., of the impurity traps was assumed to eliminate the sin-

. 0_ 222 ) . gularity atz;=z,.
with g, =A%k/2mg. One can easily calculate the correlation

functions, whereL,/l s, is not too large. In the thermodynamic limit,
N 0 . the shift disappears.
<~B|(t)~B|,(t’)) = —‘;E'iexp<— I—Ek(t—t’)> It is alls_o very instruc_:tive to consider the .dependence of
\% Ex h the conditional level shifA on the aspect ratio of the con-

o densate, i.e., on the ratlq,4/L,, whereL ,4=L,=L,. This is
xXexdik - (r;=rp)]. (18) illustrated in Fig. 4. One recognizes that the absolute value

Here,N, denotes the number of atoms in the condensate an@f the energy shift increases as the ratig/L, decreases.
V=L,L,L,. It should be noted that the sum in E48) is in Thus the energy shift is largest for a hlghl)_/ nonsymmetric
general UV-divergent, which is due to the assumption of égeometry of the BEC. The strongest effect is thus to be ex-
pointlike interaction in Eq(1). In a more accurate descrip- Pected in a quasi-one-dimensional condensate of sufficiently
tion, the small but finite extension, of the ground state of small size. For this reason, we will investigate in the follow-
the impurity trap should be taken into account, which woulding section the energy shift in the case of a BEC in a har-
lead to an effective cutoff gk|~1/z,. The value ofzy is,  Monic trap only for a one-dimensional condensate.
however, of no relevance for the conditional phase shift and
is dropped here. With Eq18), one finds for the level shifts V. 1D CONDENSATE IN A TRAP

In this section, we consider a quasi-one-dimensional con-

5= K2N02/8_(k) (19) densate confined in a harmonic trdg,=mgw3z?/2. We first
= 5 ,
AVARr Sy
KN, ,88
A=- —cogk - Ar), 20
2ﬁv2§k: EZ i ) 20

whereAr =r,-r,. The conditional energy shiff is shown in

Fig. 3. For very small distances of the impuritiésjs nega-

tive and its absolute value approaches its maximum, i.e., that
of 26 (a finite value of§ is obtained only with a cutoff For
increasing distance, the value Afincreases monotonously
and eventually changes its sign. The monotonous increase
would correspond to an attractive force between the impurity
atoms if they could move freely. One recognizes that for
larger values of the dimensionless interaction paramiéter

=2L2/12,,~d, where ln=%/\mgr(0) is the coherence FIG. 4. (Color onling Influence of condensate geometry on en-
length, the energy shift decreases and the spatial dependenggy shift in a box with periodic boundary conditiorsis in units
becomes less pronounced. This can be explained by the inf x22mg/443, K is defined as in Fig. 3. The impurities are located
creasing self-energy of the Bogoliubov excitations. Thus then the z axis with a distance of 0l5. L,=12x10°%m, andL,
conditional energy shift is appreciable only in finite systems=L, has been varied.
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FIG. 5. Energy shiftA in an ideal 1D condensate as a function
of impurity distance. The shift is given in units of
K%DNolzﬁz(x)B’ﬂZé. Hereil:_iz.

consider the case of an ideal, i.e., noninteracting gas. In this
case, the solutions of the Gross-Pitaevskii equation and the
Bogoliubov—de Gennes equations are just the solutions of the

harmonic oscillator,

Jol2) = || e, (21)
N 7Zg
uj(2) = ,ﬁe‘zz’zzéHKi), (22)
V2 mrzg Zg
v(2)=0, (23)
E = jfiwg. (24)

Here, zz=A/mwg is the ground-state width of the 1D har-
monic trap. By calculating E(9), one finds

_ﬁ) - No expl- Z - %)

A=
2h 1= hwgmZar2"y!

H V(il) H V(EZ) ’ (25)

where Z=z/zz. We also have introduced the one-
dimensional coupling constamlD:K/(Zwai) with the ra-
dial confinement? =#/mgw , . The conditional level shift is
shown in Fig. 5.

It is interesting to note that, different from the case of a
condensate in a box, the force between the impurities is n
always attractive. One recognizes that this is only the case

the distance is sufficiently small. If the distance is larger than,

a certain value, in our casp-7,~2X0.6, the force be-
comes repulsive.

We now consider the case of a weakly interacting 1D gas.

In order to solve the Gross-Pitaevskii equation, we make us
of the Thomas-Ferm{TF) approximation. Although the re-
sults obtained in this way cannot be smoothly connected t

the ideal-condensate case, the TF approximation allows us to
derive a compact expression for the level shift. The TF con-

densate wave function is given by

PHYSICAL REVIEW A 71, 033605(2005

| m z )
= —\1-—1,
ol 910< R'ZI'F

where the TF radius is given = \J’Z,u/mbé. u denotes
the chemical potential, and the one-dimensional interaction
parameterg,p is defined analogous ta;p. To solve the
Bogoliubov—de Gennes equations analytically, further ap-
proximations are needed as discussefll®]. We here take
over the results for the function‘$ obtained in[14],

=R

Rer
with the energiesE;=fiwg\j(j+1)/2. The P; are Legendre
polynomials. Using the completeness of the Legendre poly-
nomials, one can explicitly evaluate expressidd). As
shown in Appendix D, the sunmcluding the j=0 term van-
ishes if the overlap of the impurity wave functions is negli-
gible. Thus the energy shiftl4) is determined only by the
j=0 term, which yields the simple expression

(26)

z

Rre

2u
E;

fy

&4 ) (27)

2
_ Kip

= (28
8AiRrF Y10

This result does not depend on the distance of the impurity
atoms, which is due to the Thomas-Fermi approximation.
The shift is always positive and becomes larger for smaller
interactions in the BEC and, as expected from the noninter-
acting case, for larger 1D confinement. It is instructive to
expressA in terms of the impurity-BEC stattering lengéh

and the BEC scattering length One finds

2 2
A=LTs & (29
4 m" Rrea
Here we havem,=2mgms/(mg+mg). Thus assuming a tight
transversal confinement with, =27 X 10* Hz, a large scat-
tering length between impurities and BE&£=200 nm, a
small scattering within the BE@=5 nm, a small trap with
Rrr=20um, andmg=mg, one finds a conditional frequency
shift of 27X 10° Hz.
As shown in Appendix D, the result of E€R8) should be
valid as long as the following conditions are fulfilled:
N,|z1 - 2| > z5. (30
Here, &r denotes the distance of one of the impurities to the
dge of the condensate. Furthermore, due to the Thomas-
ermi approximation, the interaction strength of the conden-
ate has to fulfill the condition

2hwgR
O1p > %- (31
e 0
CI)—Ience, we have the restriction
. 3N0K5D
A<min og =55 (- (32
164 R‘%FwB
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(iii) Finally, anothers pulse is applied to the first impu-
rity atom. The atoms are again in their original state but now

Fiw with conditional phases as indicated in Fig. 6.
The result of the pulse sequence is equivalent to the truth-
)¢ )4 table of a phase gate up to an unimportant local operation. To
4 —_— implement this scheme successfully, it is necessary that the
|or) |00) |0} characteristic time of the pulses is long compared to the in-
verse frequency shith™%. Hence the main restriction results
Q) m-pulse Q; 2m-pulse ) w-pulse from condition(32), i.e., the gate speed is limited by the trap
frequencywg.
[00) ——— i]10) —— {|10) ——— - |00)
VI. CONCLUSIONS
[r0) —— |r0) ——> ~|r0) —— —|r0)

In the present paper, we have analyzed the interaction of
[ory ———— i[lr) ——> ijlr) — —|{0r) impurity atoms in a Bose-Einstein condensate localized at
specific positions by tight confining potentials. It was shown
that in addition to the level shift caused byvave scattering
FIG. 6. Implementation of a quantum phase gigand|r) are with the macrosc_opic Condens_ate field, there are also contri-
the logical states of the qubit, whelré does not couple to the other butlon_s from the interaction with vacuum_fluctuatlons of the
states ), is the Rabi frequency of the transition fro) to 1) of ~ Bogoliubov phonons. The self- and conditonal energy shifts
the jth impurity. The pulse sequence for the implementation of thewere calculated for a BEC in a box with periodic boundary

frr) ———> frr) —— ) —— |mm)

gate is explained in the text. conditions. It was shown that size and sign of the conditional
energy shift depends on the separation of the impurities and
V. CONDITIONAL PHASE GATE is largest for a highly anisotropic condensate geometry and

for small interactions within the condensate. With increasing

The conditional frequency shift of the two-atom stateinteraction of the condensate atoms, the spatial dependence
|1,1) due to phonon exchange can be used to implement Becomes less and less pronounced. Motivated by these find-
universal two-qubit gate, which is an essential building blockings, the level shift in a quasi-one-dimensional harmonic trap
of any quantum computdd]. To this end, we extend the was calculated. In the Thomas-Fermi limit, a rather simple
two-state model of Eq) to a third stater), in which there  analytic expression was obtained from a Bogoliubov ap-
shall be no scattering with condensate atoms. The sf@fes proach. For small trap sizes, a conditional frequency shift in
and |r>j, j€{1,2 of the two atoms encode a qubit each. the range of several kHz seems feasible, which could be of
Since in both internal states there is no scattering interactiomterest for the implementation of a quantum phase gate.
with the condensate, the two qubits are decoupled. In order

to provide a qubit-qubit interaction, which is required for the ACKNOWLEDGMENTS
quantum gate, we assume that a laser coufflesind |1). This work was supported by the Deutsche Forschungsge-
Then a so-called quantum phase gate, up to an overall phaggeinschaft through the SPP 1116 “Interactions in Ultracold
characterized by the truthtable Atomic and Molecular Gases.” A.K. thanks the Studienstif-
tung des Deutschen Volkes for financial support.
100) — — |00}, 9 pp
APPENDIX A: DERIVATION OF THE EQUATION
|r0> - |r0>' OF MOTION FOR THE STATISTICAL OPERATOR
(33 The total statistical operator of both the condensate and
|Or) — —10r), the impurities is denoted by. Its time evolution is then
given by the Liouville—-von Neumann equatioifd, x(t)
ey — [rr), =[H, x(t)], whereH=Hg +Hg+H;, is the Hamiltonian of the
can be realized by the following sequence of operatisee ~ Whole system, wittHg being the Hamiltonian of the conden-
also Fig. 6. sate, Hg that of the impurities andH, the interaction.

(i) A 7 pulse is applied to the first atom, i.e., the laser isChanging into the interaction picture yields
controlled in such a way thatyQ,(t')dt' ==. This leads to _ ~ -
the transitiong0) —i|1) and|r)—|r) of the first atom inde- i (1) = [Hind D), X(0)]. (AL)
pendently of the state of atom 2. Formal integration and resubstitution leads to

(ii) To the second impurity, a2 pulse is applied. Since 1
the doubly excited statdl , 1) is detuned by the amouni, 9= = TH. ~ = . T4\ (4
the effectyof this pulse %n the second atgm depends on théﬁatX(t) (Hin0): x(t0)] + iﬁJto " [Hin (1), [Hin ), ()T
state vector of the first atom. If the first atom is in stae, (A2)
one gets0),— —|0),. If the first atom is, however, in state
|1), nothing happens because the transition frequency iblere,t, is the time when the interaction starts. The statistical
shifted byA, see Fig. 6. operator for the impurity atoms can be obtained by tracing
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out the condensate, i.€2(t)=Trg[X(t)]. This yields [0s(to)Hin(t)]=0. With these approximations, we obtain
o T~ ~ 1t ~ ~ - ~
ifia0(t) TrB{[Htlnt(t)aX(tO)]} 3o == 3 j dt' Trg([Hin(t),[Hin(t"), 0(t") ® 2g(to) 1.
1 ’ I 0 N (! o
S KA GRUIGRUETE (1)

(A3) The interaction Hamiltonian in the interaction picture can be

expressed as
Following the standard approach, we assume that the influ-

ence of the impurity atoms on the condensate can be ne- oS K = =
glected and that the statistical operator of the whole system ()= 2% Sl 0{aB 16,1810 + 5:8,1)], (A6)
seperates as
where
X)) =0(t) ® 0g(t) +Xeor(t) = 0(1) ® 0g(ty). (A4) Bt Bt = e(i/ﬁ)(':'3+':|3)t|a,B}(a,B|e_(i/h)(':|5+':|B)t.

Furthermore, since we have incorporated the mean-field con- (A7)
tribution to the free Hamiltonian of the impurities, the expec-
tation value of the interaction Hamiltonian vanishes, i.eg Tr Substituting this into Eq(A5) yields

2 [ o o
30 ap,yst) = = 4ﬁ2f dt"0 s ,s(t’ )[(Bl(t)Bl(t W81 84105,1) +(Bi(D)Bo(t")) (841951~ 8518,,1) + (Ba(D)By(t'))(8,.195 1
= 8,105 + (Ba(DBA(t))(g.1 = 951950) + (Bu(t)BLD)(S,1 = 8,18,0) + (Ba(t)BAD)(S,,1851 = 95.18,,1)
+ <E2(t,)él(t)>(5y,155,l = 06,1051 * <§2(t/)éz(t)>(55,1 — 851051 ]. (A8)

Because the Markov approximation cannot be applied, weoarse-grained time evolution, it follows from the properties
instead first use a Laplace transformation. Settyw0, we  of the Laplace transformation that only smallare impor-
find tant. If, furthermore, the condition
0 Ap < min'(E; All
By lp=—2280 ag o PETE) AL
D+ —=M.sop) is fuIIf|Ied,' it is possible to neglect the dependence of
a2 Py M 45,45 Which amounts tVl,5.,5(P) — M 4z.,5(0). Hence re-
sult (10) follows directly.
It is also clear that this result is only valid for frequencies
which are consistent with the coarse-graining assumption,
leading to condition(15).

aP,y
with

Y Y

2
' Ky~ KuK K, = KoK
MagyeP) = 2" §(L,2) Y
J

[
p+£Ej p—gEj

APPENDIX B: BACKACTION OF IMPURITIES ON BEC

+ %(1,2) KoKp — KgK.y + KyKs~ KgKy . ' . .
N I—E B I—E In this appendix, we will calcualte the influence of the
P 5o P 5 impurity atoms on the condensate wave function for the case
of the ideal, one-dimensional condensate in the harmonic
+5(2,) KaKp ™ Kaks = KyKs™ KoKy trap. The Hamiltonian of the full problem reads
i [
p+_Ej p__EJ ~ ﬁz d2 1
f h H=- “mgw3Z - p+H B1
2de22 2 B®Wg MT Ry (B1)
Kp— KgK K KgK
+5(2,2| £ Iﬁ 24 =0 IB 211, (A10)  with
pP+-B P2 .
f f Hi= 2 8z-2). (B2)

In general, the Laplace transformatigA9) cannot be in-
verted analytically. However, if we are interested only in aThe solutions of the unperturbed Hamiltonian are
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equation. The ter oes not depend on operators and is

o 22 tion. The terniy d t depend t di

b (Z):—zi' — e eH; g (B3)  without consequence. In order to diagonalize the Hamil-
VEPNTZ tonian, we employ the Bogoliubov ansatz

with the energiess;=fiwg] and u=fiwg/2. Calculating the

wave functions in first-order pertubation theory, one gets &r)=2"u,rb,-v,(rb}, (CH
(0)(7) = K exy{—é—i) . . .
2hiwg(\mz5) 2 % 2% £'(r) =2 "u)(Nb}-v,(Nb,. (5
-1 z N N
X lE 2N S H [ g . (B4) Here,b: andb, are bosonic creation and annihilation opera-
1

tors of the Bogoliubov quasiparticles. The prime at the sum
The sum in this expression is of the order of 1. Since wendicates that the ground state is excluded in the summation.

want to neg'ect the inﬂuence df(l), we require If the wave funCtionSU,, and v, fulﬂ” the BOgO|iubOV—de
| 1)|2 , Gennes equationg)y is taken to be reg|
1 K
1> ) B5 h2A
' ahugmzy . {— o+ Vex(1) - M]U +alyo(2u,-v,) =E,u,,
B
Because of restrictiofil5), we have that (C6)
N 2
ha)B > ﬁA ~ ﬁ 0:2 . (B6) ﬁzA
“Bs8T |:_R+VeXt(r)_/'L:|Uv+g|‘1[/0|2(2vv_uv):_EVvV!
Thus, condition(B5) holds. Because of the interactions the 8
influence of the impurities should be even smaller in the (C7)

nonideal case. For the homogeneous condensate, one ggfsh the normalization,
analogous results.

APPENDIX C: BOGOLIUBOV THEORY f {u(Nu,(r) —v (N, (N}dr =8, (C8)
In this appendix, we briefly summarize the main results of
the Bogoliubov approach. We start with the Hamiltonian of
the Bose gas in the-wave-scattering approximation, f{uv(r)u,,/(r) —u,(r)v,(r)}dr=0, (C9
A - #h2 .
Hg = J dr ,/,T(r)(_ Z—A + V(1) — M) (r) the Hamiltonian takes the very simple form
Mg

R R L O g0 Y 2 "= AR
+ngr¢*(r)t/f*(r)t/f(r)w(r)- 1) Hg = H3 2 EVf lv,(r)] dr+2y E,blb,. (C10

With this, the operator% in the interaction picture can

The field operatoi// of the condensate is then devided intoa .
easily be calculated

C-number functionigg which represents the condensed part
of the Bose gas and an operatpof quantum fluctuations: Erh) = E’uv(r)ﬁye‘iEv"h—v:(r)BIe”Ev”ﬁ. (C1D)
P(r)=up(r)+£&(r). The wave function of the condensate is

given by the Gross-Pitaevskii equation

ﬁZ
(‘ Z—mBA + Vo) =+ gllﬂo(r)|2) $o(r)=0. (C2) APPENDIX D: VALIDITY OF EQ. (28)

By plugging this into the Hamiltonian and neglecting terms In order to estimate the range of validity of the expression
f the ordero(2) and hiah for the conditional shift in TF approximation, E(8), we
of the orderO(¢") and higher, one gets start with the sum given i(l4), but including thej=0 term:

- A %2 )A
~ HO ()| - —A - 1,2
HB HB +f dr{g (r)< 2mB +VeXt(r) M f(r) E §(E_ EO E l//o(zl f (Z]_)lpo(zz)f (22) (Dl)
(R
+ g[4| Yo(N)IZE(NEr) + g3 E () E(r) Wherefj':uj—u]-. By using(27) we find
M !
+ waz(mé(r)é(r)]}. 3 > §(l—2 M(i,z—), (D2)
=0 Ej Rre Rre

The terms linear ir% vanish because of the Gross-Pitaevskiiwhere we have introduced

033605-7



A. KLEIN AND M. FLEISCHHAUER PHYSICAL REVIEW A 71, 033605(2005

—— =
or MM +1 2
X o ma) MMADL 2 gy
Rre V2 YM(M +1)

where &r is the distance from the edge of the condensate,
{=hogl2u=25IRer. i
This implies M <+v26r /Ry and with &> RyeV¢, also
following from Eq.(D4) we arrive atM < VZ. Thus the limit
M — oo cannot be taken ifD2). Nevertheless even for a
finite but sufficiently large upper limit of summatid the
AN N /\ /\ N\ NN sum is to a good approximation zero as can be seen as fol-
VvV \J \/ VV lows: In Fig. 72 is shown. One recognizes a pronounced
-1r T central maximum and vanishingly small oscillations. Hence,
. . . Eg. (D2) gets almost zero if the distance of the impurities is
-05 0, 0.5 1 much bigger than the width of the central maximum. We thus
need to estimate the width of this central peak. With the
FIG. 7. Picture off¥ for M=20. Stirling formula, one finds asymptotically for largé

n W » L8] (2] ~
T T T T T

[ S

X=X

f¥(0,0) = M. (D5)

M
2n+1 ; M _ ;
fé,"(x,x’) = S P (0P(X). (D3) Smcef_fp(o,s)ds—l_, the Wldt_h qf the c_;entral peak can be
=0 2 approximated ads=/M. This finally yields the condition
L-% H_ 28
=S As> (= — (D6)
Rre Rre
If M — co the sum approaches tigfunction aan'\P" gets zero  for which the sum in Eq(D2) is approximately 0. It should
as long as<# x’. On the other hand the solutiof7) of the  be noted that we have assumed the Thomas-Fermi ffmit
Bogoliubov-de Genne equations used here are only valid foi 1, which is essential for the analytic solution of the Gross-

[13] Pitaevskii and Bogoliubov—de Gennes equations.
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