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Optimization of the positive-P representation for the anharmonic oscillator
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We demonstrate how the freedom in the definition of the posRivepresentation may be used to reduce
stochastic sampling errors, using the single-mode anharmonic oscillator as an example. In the modeling of this
system, which is well known for being problematic, we achieve an improvement of more than 20 orders of
magnitude in the distribution of the trajectories.
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[. INTRODUCTION derivation of stochastic differential equatiof®DES9 directly
from a quantum Hamiltoniah8—10|. Its main advantage is

The lack of numerical convergence of the positReep-  that it makes the freedom involved in the derivation of
resentation[1] for undamped systems with a strond® quantum-classical mappings more manageable, allowing one
component is well known and is a severe problem for investo optimize the stochastics in tlienumber equations.
tigations of the quantum-dynamical properties of Bose- For the purposes of demonstration we consider a single-
Einstein condensate®EC) [2]. The problem is that indi- mode bosonic quantum field with quartic interaction: the
vidual stochastic trajectories can visit regions of the phaserr oscillator. It is described by the Hamiltonian
space where any computer loses its numerical accuracy.
While the process of evaporative cooling by which a conden- aga  Karon,
sate is formed has been successfully modeled, the numerics H=wea'a+7a"a’, (1)
quickly break down once condensation has been achieved
[3]. Unless we wish to model processes for which the inter

esting physics happens over a very short t[d stochastic . . LA oa
g phy Pp y lFi Qperators, with commutation relatiofa,a’]=1. We use

integration of the condensate equations has not been a real*, . )
istic option. Although at least two methods have been pro-unItS such thati =1. Following either the usual methofig]

posed and are under development in an attempt to solve thf¥ thloze outlined in kF)Refsl[)S—llo]d the folloyvingf pair of
problem[5,6], general methods of taming the positiPerep- ~ cOUPIed It0SDES can be obtained in a rotating frame:
resentation are yet to be developed.

The essence of phase-space technidig¢ds replacing
g-number equations for operators bynumber equations for . o *
certain randont-number quantities, averages of which equal 10wa,(1) = kay(t)ay (1) + np(t)ay(t).
the operator averages. In this way, dlreqt computer S.'mUIaThe standard positive- representatior{1,7] is found by
tions of quantum systems become possible. From this per- . . : .

. I . . cIPoosmg the noises, , 7, to be proportional to independent
spective, any representation in phase space is a mapping O | standardized Gaussian noi
the quantum system in question onto a classical stochastl€ Ses X2,
system. As has been pointed out recently by Plimiadl. [8], _f T . _
this mapping is anything but unique. What we demonstrate in (O =D, X Ox(1)=gt=t), kil 1’%:;)
this paper is that it is possible, using this freedom, to achieve
an improvement of many orders of magnitude in the samstochastic averages over trajectories of theumber vari-
pling error for the single-mode anharmonic oscillator casegples equal the quantum operator expectation values. More
This results in a dramatic reduction in sampling noise,precisely speaking, one finds the time-normally ordered av-

changing things from “computable in principle” to “com- erages of the Heisenberg operat@),a'(t), mapped onto

putable in practice.” . i
Although our demonstration is based on the existence o tsocff;?setfar?]\l/geléages of the random c-numbaegét).ax(t),

analytical solutions to the positiie-equations for this par-
ticular system, this example is important in that it points to XTI T
s L . = . 4
one avenue of investigation for further enquiry. What we are (@'(tha()=ay(t)az (t') @
able to show is that the principle is valid. Generalization tO\ e that the time argument signifies that these are now

systems where analytical solutions are not known, which 'SHeisenberg operators, as opposed to the ‘Sfihger opera-
exactly where stochastic simulation is useful, is subject tq,.5 ysed in Eq(1). '

further work.

Wwherea anda' are the usual pair of annihilation and creation

idgiay(t) = kaZ(t)aj (1) + ny(t)ay(t), (2a)

(2b)

The positiveP equations for this system are notorious for
numerical problems upon computer simulation. Some rea-
sons for this difficulty are easy to understand. If we rewrite

Recently, an alternative field-theoretical approach tothem as Stratonovich equations, which is equivalent to the
phase-space techniques has been proposed that allows ﬂe@lacemenal,zae*”‘“zal,z, and also assume that(0)

Il. GENERALIZED POSITIVE- P REPRESENTATION
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FIG. 1. A sample of 20 trajectories generated Witth'Ut noise F|G. 2. A sample of 20 trajectories generated with noise opti-
optimization @=1) in units of N for N=10* and x=10"2. mization (A=300) in units of N for N=10" and x=10"2.

=ay(0)=a,, they can easily be solved analytically. Defining

piAt) =2, (1)a% (1), we may write the equation of motion general, the noises; and 7, are not bound to be Gaussian,

nor even Markovian. In this paper we do not explore this
- _ freedom in full, confining our analysis to a pair of
7] t)= t t), 5 T . .

1P121) = 712 1)p12AV) © o-correlated Gaussian noises. Of eight cumulants character-
where 7,,(t) = 71(t) — 7% (t), so that izing such a pair, the five that are essential for a correct
relation to the quantum problem are fixed by

: (6)

t
Plz(t):NeXF{iJ dt’ my5(t")
0 (1) =7m2()=0, 7(t) 93 (t")=0,

where N=|ay|? is the average number of quanta in the ®)
mode. Hence, ; N /
71(1) 71(t") = 72(t) (1) =ik S(t—t").

t
al(t)=a0ex;{—ixt/2—if dt’nl(t’)}
0 The three inessential cumulantg,(t) 73 (t'), 7,(t) 75 (t'),

t " and n4(t) 7,(t"), will be chosen so as to reduce the effect of
Xexp[ —iNKJ dt’ ex;{ —iJ dt”r;lz(t”)“, the nonlinearity on the noise in the solutiofrs.
0 0

(78

a,(t)=ag exp{ —ikt/2—i Ltdt’ nz(t’)}

><exp[ —iNKjtdt, ex;{i ft’dt”ﬂ’fz(t”)”.
0 0
(7b)

One reason for the bad behavior of the positr/eepresen-
tation now becomes evident. =1, which is generally the
case in physical systems, the exponent in the second factor 0.2
can become very large even when the “small noise” condi-
tion, kt<1, holds.

The quantum-field-theoretical techniques of Rgfs-10]
expose a huge freedom that exists in choosing the noises

71,72. Formally, only stochastic cumulants involving, FIG. 3. Modulus of the correlation functioil4), in units of N,

and 7; have to be fixedfor a definition of cumulants see, found by simulating the noise-tuned positiPe-equations A
e.g.,[11]). Cumulants mixing these with their complex con- =300) for N=10* and x=10"2. Results found with samples of
jugates may be chosen almost at will, with the only reservai@? and 1@ trajectories are plotted as, respectively, dash-dotted and
tion being that they correspond to a positive probability. Insolid lines; the analytical resu{iL4) is plotted as a dashed line.
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Ill. OPTIMIZATION OF THE POSITIVE P note that we have neglected correlations between B@s.

i —————— and(11), so that our estimates are only correct within an
Note, first of all, that the averagen;(t)n7.(t") order of magnitude.
= 7D 71 (') + 72(1) 75 (1) = 2R 7 () (1) is inessen- These results can be viewed from a different perpective.
tial. However, it cannot be simply made zero. This wouldwithout optimization A= 1), the time for which the noise in
requiren;(t) = 75 (t), which is incompatible with the essen- Eq. (7) becomes large is estimated B§xto)%?~1. With
tial averages. We therefore assume thaf(t)»}(t’)  optimization, this becomeNllzktopt~l, so thattyy /tg
=m0 75 (1) =ikAS(t—t'), where A=1 is a constant, ~ VNkto~ NY. This reflects an increase in the time interval
and then use the remaining freedom in the averagéver which Oneblcan expect S|rr|1_|ulat|ons using E_(?- o
(D) 7(1) SO as to minimizen (1) (1) This results in _'€Main reasonably convergent. However, even with optimi-
(U 7a(t) e71a(t) miAt") zation the small noise condition N*?kt o, <1, N0t ktopy

() =ikl x () VA+1—ix,() VA—1],  (9a) =1. Fort>tgy, the no.ise stiII_ grows egpqnentially. o

The effect of this noise optimization is illustrated in Figs.
72(0) =ikl Xo(t) VA+1—ix,(t)yA—1], (9 1,2, and 3. The goal was to estimate the quantum average
[also calculated analytically directly from E€L)],

wherex, ,X, are the pair of standardized real Gaussian noises

introduced by Eq(3). The usual positivé? representation (a'(t)a(0)y=exp{ —ixt/2+N[exp(—ixt)—1]}, (14)
follows with A=1.
Using Eq.(9) we find using stochastic integration. In Fid) a typical sample of 20

random trajectories is shown, which were gg?erated without
_ K optimization A=1) for the parameterdl=10", «=0.01,
1A 71At) = 26(A— VAT 1)~ A (10 over the timet=3t,,=3. The trajectories eventually span
more than 40 orders of magnitude, so without optimization a
where the final estimate holdsA4>1. Hence ifA—, the  sample of more than 19 trajectories would be needed in
noise in the second factor in solutiot®) is suppressed, order to suppress the sampling errors by brute force, and
while the noise in the first factor is enhanced. If for 1 the  each trajectory would have to be generated to more than 40
noise originating in the second factor dominates, then therdecimal places to prevent loss of accuracy. Without optimi-

must exist an optimah which minimizes the total noise. zation, stochastic integration of the correlation functi@)
Assume thatA>1 and that an eased small noise condi-is not feasible. The trajectories in Fig. 2 were generated for
tion, kt<<A, holds. Then, the same set of parameters but with optimizati®a=@300).

t t They span about two orders of magnitude, so that a sample
/ N L Mt N " of a hundred trajectories should suffice for a rough estimate
Jodt ex;{ Ijo At 2t )} t |J0dt fo At 71At") of (14). In Fig. 3 we present the results of the Monte Carlo
5 calculation of the modulus of E414), using samples of £0
i 11 and 10 noise-optimized trajectories. We see that averaging
3A/° (1D of as few as 100 trajectories gives an indication of the quan-
o tity sought, while averaging of fOtrajectories leads to a
where we writea= O(b), implying that|a|?=Db?. Similarly,  good resuilt.
t An interesting observation is thay,y is of the order of the
/ " hase-correlatiofcollapse time for the nonlinear oscillator.
dt’ 71(t")= O(JVAxt). 12 P : i
f 0 () =O0(AY) (12 Whether this reflects any fundamental properties of quantum

systems or is just a coincidence is subject to further investi-
By comparing these two estimates, we may find the optimigation.

zation condition

=t+0

3 ACKNOWLEDGMENTS
Nk [kt
2> NVN3a~ VAL, (13 This research was supported by the Marsden Fund of the
Royal Society of New Zealand. The authors would like to
resulting in A~Nkt. This corresponds to the contribution acknowledge encouragement by the late Dan Walls during

(11) to the noise being/N«t times suppressed. We should the early stages of this work.

[1] P. D. Drummond and C. W. Gardiner, J. Phys.18, 2353 [3] P. D. Drummond and J. F. Corney, Phys. Rev6@ R2661
(1980. (1999.

[2] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. [4] J. J. Hope and M. K. Olsen, Phys. Rev. L&, 3220(2002.
Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A [5] I. Carusotto, Y. Castin, and J. Dalibard, Phys. Rev63
58, 4824(1998. 023606(2001).

025801-3



BRIEF REPORTS PHYSICAL REVIEW A 64 025801

[6] P. Deuar and P.D. Drummond, Comput. Phys. Comn(onbe Proceedings of the Sixth International Conference on Path
published. Integrals from peV to TeWWorld Scientific, Singapore, 1998
[7] C. W. Gardiner, Quantum Noise(Springer-Verlag, Berlin, p. 241.
1991). [10] L. I. Plimak, M. Fleischhauer, and D. F. Walls, Europhys. Lett.
[8] L. I. Plimak, M. Fleischhauer, M. K. Olsen, and M. J. Collett, 43,641 (1998.
e-print cond-mat/0102483. [11] C. W. Gardiner,Handbook of Stochastic MethodSpringer-

[9] L. I. Plimak, M. J. Collett, D. F. Walls, and M. Fleischhauer, in Verlag, Berlin, 1985

025801-4



