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Optimization of the positive-P representation for the anharmonic oscillator
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We demonstrate how the freedom in the definition of the positive-P representation may be used to reduce
stochastic sampling errors, using the single-mode anharmonic oscillator as an example. In the modeling of this
system, which is well known for being problematic, we achieve an improvement of more than 20 orders of
magnitude in the distribution of the trajectories.
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I. INTRODUCTION

The lack of numerical convergence of the positive-P rep-
resentation@1# for undamped systems with a strongx (3)

component is well known and is a severe problem for inv
tigations of the quantum-dynamical properties of Bo
Einstein condensates~BEC! @2#. The problem is that indi-
vidual stochastic trajectories can visit regions of the ph
space where any computer loses its numerical accur
While the process of evaporative cooling by which a cond
sate is formed has been successfully modeled, the num
quickly break down once condensation has been achie
@3#. Unless we wish to model processes for which the in
esting physics happens over a very short time@4#, stochastic
integration of the condensate equations has not been a
istic option. Although at least two methods have been p
posed and are under development in an attempt to solve
problem@5,6#, general methods of taming the positive-P rep-
resentation are yet to be developed.

The essence of phase-space techniques@7# is replacing
q-number equations for operators byc-number equations fo
certain randomc-number quantities, averages of which equ
the operator averages. In this way, direct computer sim
tions of quantum systems become possible. From this
spective, any representation in phase space is a mappin
the quantum system in question onto a classical stocha
system. As has been pointed out recently by Plimaket al. @8#,
this mapping is anything but unique. What we demonstrat
this paper is that it is possible, using this freedom, to achi
an improvement of many orders of magnitude in the sa
pling error for the single-mode anharmonic oscillator ca
This results in a dramatic reduction in sampling noi
changing things from ‘‘computable in principle’’ to ‘‘com
putable in practice.’’

Although our demonstration is based on the existence
analytical solutions to the positive-P equations for this par-
ticular system, this example is important in that it points
one avenue of investigation for further enquiry. What we
able to show is that the principle is valid. Generalization
systems where analytical solutions are not known, which
exactly where stochastic simulation is useful, is subject
further work.

II. GENERALIZED POSITIVE- P REPRESENTATION

Recently, an alternative field-theoretical approach
phase-space techniques has been proposed that allow
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derivation of stochastic differential equations~SDEs! directly
from a quantum Hamiltonian@8–10#. Its main advantage is
that it makes the freedom involved in the derivation
quantum-classical mappings more manageable, allowing
to optimize the stochastics in thec-number equations.

For the purposes of demonstration we consider a sin
mode bosonic quantum field with quartic interaction: t
Kerr oscillator. It is described by the Hamiltonian

H5v0â†â1
k

2
â†2â2, ~1!

whereâ andâ† are the usual pair of annihilation and creatio
operators, with commutation relation@ â,â†#51. We use
units such that\51. Following either the usual methods@7#
or those outlined in Refs.@8–10#, the following pair of
coupled ItôSDEs can be obtained in a rotating frame:

i ] ta1~ t !5ka1
2~ t !a2* ~ t !1h1~ t !a1~ t !, ~2a!

i ] ta2~ t !5ka2
2~ t !a1* ~ t !1h2~ t !a2~ t !. ~2b!

The standard positive-P representation@1,7# is found by
choosing the noisesh1 ,h2 to be proportional to independen
real standardized Gaussian noises,x1 ,x2,

hk~ t !5Aikxk~ t !, xk~ t !xl~ t8!5dkld~ t2t8!, k,l 51,2.
~3!

Stochastic averages over trajectories of thec-number vari-
ables equal the quantum operator expectation values. M
precisely speaking, one finds the time-normally ordered
erages of the Heisenberg operators,â(t),â†(t), mapped onto
stochastic averages of the random c-numbers,a1(t),a2(t),
as, for example,

^â†~ t8!â~ t !&5a1~ t !a2* ~ t8!. ~4!

Note that the time argument signifies that these are n
Heisenberg operators, as opposed to the Schro¨dinger opera-
tors used in Eq.~1!.

The positive-P equations for this system are notorious f
numerical problems upon computer simulation. Some r
sons for this difficulty are easy to understand. If we rewr
them as Stratonovich equations, which is equivalent to
replacementa1,2→e2 ikt/2a1,2, and also assume thata1(0)
©2001 The American Physical Society01-1
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5a2(0)5a0, they can easily be solved analytically. Definin
r12(t)5a1(t)a2* (t), we may write the equation of motion,

i ] tr12~ t !5h12~ t !r12~ t !, ~5!

whereh12(t)5h1(t)2h2* (t), so that

r12~ t !5N expF2 i E
0

t

dt8h12~ t8!G , ~6!

where N5ua0u2 is the average number of quanta in t
mode. Hence,

a1~ t !5a0 expF2 ikt/22 i E
0

t

dt8h1~ t8!G
3expH 2 iNkE

0

t

dt8 expF2 i E
0

t8
dt9h12~ t9!G J ,

~7a!

a2~ t !5a0 expF2 ikt/22 i E
0

t

dt8h2~ t8!G
3expH 2 iNkE

0

t

dt8 expF i E
0

t8
dt9h12* ~ t9!G J .

~7b!

One reason for the bad behavior of the positive-P represen-
tation now becomes evident. IfN@1, which is generally the
case in physical systems, the exponent in the second fa
can become very large even when the ‘‘small noise’’ con
tion, kt!1, holds.

The quantum-field-theoretical techniques of Refs.@8–10#
expose a huge freedom that exists in choosing the no
h1 ,h2. Formally, only stochastic cumulants involvingh1

and h2* have to be fixed~for a definition of cumulants see
e.g.,@11#!. Cumulants mixing these with their complex co
jugates may be chosen almost at will, with the only reser
tion being that they correspond to a positive probability.

FIG. 1. A sample of 20 trajectories generated without no
optimization (A51) in units ofAN for N5104 andk51022.
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general, the noisesh1 andh2 are not bound to be Gaussia
nor even Markovian. In this paper we do not explore th
freedom in full, confining our analysis to a pair o
d-correlated Gaussian noises. Of eight cumulants chara
izing such a pair, the five that are essential for a corr
relation to the quantum problem are fixed by

h1~ t !5h2~ t !50, h1~ t !h2* ~ t8!50,
~8!

h1~ t !h1~ t8!5h2~ t !h2~ t8!5 ikd~ t2t8!.

The three inessential cumulants,h1(t)h1* (t8), h2(t)h2* (t8),
andh1(t)h2(t8), will be chosen so as to reduce the effect
the nonlinearity on the noise in the solutions~7!.

e FIG. 2. A sample of 20 trajectories generated with noise o
mization (A5300) in units ofAN for N5104 andk51022.

FIG. 3. Modulus of the correlation function~14!, in units ofN,
found by simulating the noise-tuned positive-P equations (A
5300) for N5104 and k51022. Results found with samples o
102 and 104 trajectories are plotted as, respectively, dash-dotted
solid lines; the analytical result~14! is plotted as a dashed line.
1-2
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III. OPTIMIZATION OF THE POSITIVE P

Note, first of all, that the averageh12(t)h12* (t8)
5h1(t)h1* (t8)1h2(t)h2* (t8)22Rh1(t)h2(t8) is inessen-
tial. However, it cannot be simply made zero. This wou
requireh1(t)5h2* (t), which is incompatible with the essen
tial averages. We therefore assume thath1(t)h1* (t8)
5h2(t)h2* (t8)5 ikAd(t2t8), where A>1 is a constant,
and then use the remaining freedom in the aver
h1(t)h2(t8) so as to minimizeh12(t)h12* (t8). This results in

h1~ t !5Aik/2@x1~ t !AA112 ix2~ t !AA21#, ~9a!

h2~ t !5Aik/2@x2~ t !AA112 ix1~ t !AA21#, ~9b!

wherex1 ,x2 are the pair of standardized real Gaussian no
introduced by Eq.~3!. The usual positive-P representation
follows with A51.

Using Eq.~9! we find

h12~ t !h12* ~ t8!52k~A2AA221!'
k

A
, ~10!

where the final estimate holds ifA@1. Hence ifA→`, the
noise in the second factor in solutions~7! is suppressed
while the noise in the first factor is enhanced. If forA51 the
noise originating in the second factor dominates, then th
must exist an optimalA which minimizes the total noise.

Assume thatA@1 and that an eased small noise con
tion, kt!A, holds. Then,

E
0

t

dt8 expF2 i E
0

t8
dt9h12~ t9!G't2 i E

0

t

dt8E
0

t8
dt9h12~ t9!

5t1OSAkt3

3A D , ~11!

where we writea5O(b), implying thatuau25b2. Similarly,

E
0

t

dt8h1~ t8!5O~AAkt !. ~12!

By comparing these two estimates, we may find the opti
zation condition

Nk

2
Akt3

3A
;AAkt, ~13!

resulting in A;Nkt. This corresponds to the contributio
~11! to the noise beingANkt times suppressed. We shou
.
. A
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note that we have neglected correlations between Eqs.~12!
and ~11!, so that our estimates are only correct within
order of magnitude.

These results can be viewed from a different perpect
Without optimization (A51), the time for which the noise in
Eq. ~7! becomes large is estimated asN(kt0)3/2;1. With
optimization, this becomesN1/2ktopt;1, so that topt /t0

;ANkt0;N1/6. This reflects an increase in the time interv
over which one can expect simulations using Eqs.~2! to
remain reasonably convergent. However, even with opti
zation the small noise condition isN1/2kt opt&1, not ktopt
&1. For t@topt , the noise still grows exponentially.

The effect of this noise optimization is illustrated in Fig
1, 2, and 3. The goal was to estimate the quantum ave
@also calculated analytically directly from Eq.~1!#,

^â†~ t !â~0!&5exp$2 ikt/21N@exp~2 ikt !21#%, ~14!

using stochastic integration. In Fig. 1 a typical sample of 20
random trajectories is shown, which were generated with
optimization (A51) for the parametersN5104, k50.01,
over the timet53topt53. The trajectories eventually spa
more than 40 orders of magnitude, so without optimizatio
sample of more than 1040 trajectories would be needed i
order to suppress the sampling errors by brute force,
each trajectory would have to be generated to more than
decimal places to prevent loss of accuracy. Without optim
zation, stochastic integration of the correlation function~14!
is not feasible. The trajectories in Fig. 2 were generated
the same set of parameters but with optimization (A5300).
They span about two orders of magnitude, so that a sam
of a hundred trajectories should suffice for a rough estim
of ~14!. In Fig. 3 we present the results of the Monte Ca
calculation of the modulus of Eq.~14!, using samples of 102

and 104 noise-optimized trajectories. We see that averag
of as few as 100 trajectories gives an indication of the qu
tity sought, while averaging of 104 trajectories leads to a
good result.

An interesting observation is thattopt is of the order of the
phase-correlation~collapse! time for the nonlinear oscillator
Whether this reflects any fundamental properties of quan
systems or is just a coincidence is subject to further inve
gation.
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