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Nonperturbative quantum solutions to resonant four-wave mixing
of two single-photon wave packets

Mattias Johnsson and Michael Fleischhauer
Fachbereich Physik, Universita¨t Kaiserslautern, D-67663 Kaiserslautern, Germany

~Received 10 April 2003; published 13 August 2003!

We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-
photon wave packets. We present analytic expressions for the two-photon wave function, and show that
quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the
modes. Potential applications including quantum-information processing are discussed.
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I. INTRODUCTION

The cancellation of resonant linear absorption and refr
tion via electromagnetically induced transparency~EIT! @1,2#
has led to a range of new possibilities in nonlinear opti
One important application is optical frequency mixing clo
to atomic resonances which allows the use of the enhan
nonlinear interaction without suffering from linear absor
tion and refraction. It has been predicted that EIT could le
to a new regime of nonlinear optics on the level of few lig
quanta@3–7#. Several schemes for resonant nonlinear p
cesses have been proposed and analyzed, both theoret
and experimentally@6#. A particularly interesting system i
the resonant four-wave mixing using atoms with a doubleL
configuration@8–11#. Efficient frequency conversion, gen
eration of squeezing@12#, as well as the possibility of mir-
rorless oscillations@13# with extremely low thresholds an
narrow linewidth have been predicted@14# and, in part, ex-
perimentally observed@15#.

Most theoretical and experimental studies of reson
nonlinear processes have been carried out for classical fi
or assuming small quantum fluctuations. For on
dimensional setups where common comoving frames e
full analytical solutions have been derived for the interact
of classical pulses in the adiabatic limit@16#. Quantum as-
pects of resonant nonlinear processes, such as the gene
of squeezing, have been discussed almost exclusively w
linearization approximations@17#. In view of the potential
for an efficient nonlinear interaction on the level of few ph
tons, however, a full quantum-theoretical analysis of th
systems is necessary. In addition, in order to take into
count finite-size effects which become increasingly imp
tant in the few-photon regime, and to analyze the poten
for quantum-information processing, such a quantum an
sis has to go beyond linearization approaches. Here,
little work has been done, the few exceptions being the in
grable models of resonantly enhanced Kerr interaction@18#
and photon blockade@3,19#.

In a previous paper@7#, we have shown numerically tha
if single-mode fields are considered, it is possible to use
atomic vapor in a four-wave mixing double-L configuration
to obtain full conversion from two input fields into two gen
erated fields within a few centimeters of interaction leng
even if the input fields only consist of single-light quan
1050-2947/2003/68~2!/023804~7!/$20.00 68 0238
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The treatment was fully quantum, but being restricted to
single-mode analysis propagation effects of wave pack
were not considered. In the present paper, we extend
study by undertaking a multimode analysis in one spa
dimension and for copropagating fields. In order to keep
problem tractable, we restrict ourselves to the special cas
two single-photon wave packets as inputs. For this case
obtain simple analytic solutions and compare them with
merical simulations. We show that quantum solutions ex
which display an oscillatory exchange of excitation betwe
the two input and the two generated fields. Finally, we d
cuss briefly the possible applications of single-photon fo
wave mixing to quantum-information processing and e
tanglement generation.

II. SYSTEM AND EFFECTIVE FIELD EQUATIONS

The situation we consider is resonantly enhanced fo
wave mixing in the modified double-L system shown in Fig.
1. Note that a five-level atomic system is used instead of
original four-level system put forward in Refs.@8,13#. This is
due to the fact that in the four-level system, the finite detu
ing D is associated with an ac Stark effect, which leads
intensity-dependent dynamical phase shifts of the fie
These phase shifts are of minor consequence in the
where the fields are counterpropagating@20#, but for co-

FIG. 1. Four-wave mixing in a modified double-L system with
sgn(d42/d41)] 52sgn(d32/d31), with di j being the dipole momen
of the u i &2u j & transition.
©2003 The American Physical Society04-1
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propagating fields these have a detrimental influence, lea
to impaired phase matching and inefficient frequency c
version. As shown in Ref.@21#, these phase shifts are elim
nated in the five-level scheme when the relative sign of
dipole moments of theu4&→u2&,u1& transitions is opposite to
that of theu3&→u2&,u1& transitions.

The two fields with carrier frequenciesnV1 andnV2 and
slowly varying amplitudesV1 and V2 are initially excited
and form the pump fields. The other fields of carrier frequ
ciesnE1 andnE2 and slowly varying amplitudesE1 andE2
are generated during the interaction process and are ass
to be initially zero.V1 and E1 are taken to be exactly o
resonance, i.e.,nV15v52, nE1

5v51, while the other two

fields are detuned by an amountD, i.e., nV25v412D
5v311D andnE25v422D5v321D. A finite detuningD,
large compared to the Rabi frequencies, the Doppler bro
ening, and the decay rates from the excited states, is ne
sary to maximize the ratio of nonlinear gain to linear abso
tion. Decay from the two lower levels is considered to
negligible and all fields have the same propagation direct

Because of energy conservation, there is an overall fo
photon resonance, i.e.,nV11nV25nE11nE2. It can be
shown that the contributions of the resonant transitions to
linear refractive index vanish if the fields are pairwise in t
two-photon resonance. Phase matching will thus favor tw
photon resonance, and we assume that this condition is
filled for the carrier frequencies of the four pulses, i.e.,nE1
2nV15nV22nE25v21.

Extending the analysis of Ref.@7# to a multimode descrip-
tion, the interaction can be described by the effective ad
batic Hamiltonian@22#

H int5
\gc

D E dz
V̂1

†V̂2
†Ê1Ê21Ê1

†Ê2
†V̂1V̂2

V̂1
†V̂11Ê1

†Ê1

. ~1!

The denominator commutes with the numerator and sho
of course be read as premultiplication or postmultiplicat

by (V̂1
†V̂11Ê1

†Ê1)21. Writing the Hamiltonian in the form
above, however, highlights the resonant nature of the in

action. V̂1(z),V̂1
†(z), etc., denote dimensionless, slow

varying ~both in time and space! positive- and negative
frequency components of the corresponding electric field

Êj~z!5
1

AL
(

k
âjk eikzeinE j(t2z/c), ~2!

V̂ j~z!5
1

AL
(

k
b̂jk eikz einV j (t2z/c). ~3!

L is the quantization length andk>2n/c is the wave-vector
component in thez-direction relative ton/c. In the deriva-
tion of Eq. ~1!, the rotating wave approximation was used
the atom-field interaction. This is only justified if all th
fields change neither over times of the order of the osci
tion period nor over distances of the order of the carr
wavelength. Thus, when discussing the local form of the
proximate interaction operator, one should remember th
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spatial coarse graining over distances larger than the w
length is implied. The four fields are assumed to have eit
sufficiently different carrier frequencies or different polariz
tions. Thus, operators corresponding to different fields co
mute. The commutator between positive- and negati
frequency components can be approximated by a spatid
function

@Êi~z!,Êj
†~z8!#5

d i j

L (
k

eik(z2z8)'d i j d~z2z8!. ~4!

We furthermore assume in Eq.~1! that all the four transitions
give rise to the same couplingg5Ndi

2v i /(2\ce0)
53Nl2g/8p, whereN is the atomic number density,l the
typical wavelength of the fields, andg the typical radiative
decay rate.

The structure of the denominator results from the satu
tion of the two-photon transitionu1&-u2&, whose coherence
lifetime is taken to be infinite. If a finite decay rateg0 of the
u1&-u2& coherence is taken into account, a term proportio
to gg0 has to be added in the denominator.

The nonpolynomial character of the interaction Ham
tonian causes the nonlinear coupling to behave unusually
shown in Ref.@7#, the interaction increases with decreasi
pump field strength, making effective nonlinear frequen
conversion possible even for single photons. In the deri
tion of the effective Hamiltonian in Ref.@7#, adiabatic con-
ditions were assumed. This limits the applicability of Eq.~1!
in the multimode case to sufficiently long pulses. A discu
sion of nonadiabatic corrections and their effect on
propagation of the pulses is, however, outside of the scop
the present paper and will be discussed elsewhere.

As shown in the Appendix, the slowly varying amplitude
of the electric field obey

] t Ê j~z,t !52c]zÊj~z,t !1
i

\
@Ĥ int ,Êj~z,t !# ~5!

and similarly for V̂ j . Thus, from Eq.~1! we arrive at the
following equations of motion:

~] t1c ]z!Ê15 ikcL̂~V̂1
†V̂2

†Ê1Ê1Ê22V̂1
†Ê2

†V̂1V̂1V̂2!L̂,
~6!

~] t1c ]z!V̂15 ikcL̂~Ê1
†Ê2

†V̂1V̂1V̂22Ê1
†V̂2

†Ê1Ê1Ê2!L̂,

~] t1c ]z!Ê252 ikcL̂Ê1
†V̂1V̂2 ,

~] t1c ]z!V̂252 ikcL̂V̂1
†Ê1Ê2 ,

wherek5g/D and L̂5(V̂1
†V̂11Ê1

†Ê1)21.
These equations admit four independent constants of

tion:

~] t1c ]z!~V̂1
†V̂11Ê1

†Ê1!50, ~7!

~] t1c ]z!~V̂2
†V̂21Ê2

†Ê2!50,
4-2
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~] t1c]z!~V̂1
†V̂12V̂2

†V̂2!50,

~] t1c]z!~V̂1
†V̂2

†Ê1Ê21V̂1V̂2Ê1
†Ê2

†!50,

which represent the quantum analogs of the Manley-Ro
relations and additionally the conservation of the relat
phase between the fields.

If we assume that the input fields consist of two sing

photon wave packets inV̂1 and V̂2, then it is clear, due to
the constants of motion~7!, that the state of the system ca
be represented at all times by

uw~ t !&5(
k,k8

jkk8~ t !u1k1k800&1(
k,k8

hkk8~ t !u001k1k8&,

~8!

whereunkmk8pk9qk-& denotesn photons in thekth mode of

V̂1 , m photons in thek8th mode ofV̂2, and so on.

III. FIELD INTENSITIES

Since for the case of a single-photon input, the expe
tion values of all fields vanish at all times, all relevant info
mation about the state of the system is given by the m
intensities of the fields

^w~ t !uV̂ j
†~z!V̂ j~z!uw~ t !&, ^w~ t !uÊj

†~z!Êj~z!uw~ t !&,
~9!

and in expressions which we term as two-photon wave fu
tions

cV~z,z8,t !5^0uV̂1~z!V̂2~z8!uw~ t !&

5 (
k,k852`

`

e2p ikz/Le2p ik8z8/Ljkk8~ t !, ~10!

cE~z,z8,t !5^0uÊ1~z!Ê2~z8!uw~ t !&

5 (
k,k852`

`

e2p ikz/Le2p ik8z8/Lhkk8~ t !. ~11!

cV(z,z8,t) and cE(z,z8,t) represent the amplitude of find

ing theV̂1 (Ê1) photon at positionz and simultaneously the

V̂2 (Ê2) photon at positionz8. The c ’s are the two-
dimensional Fourier transforms from thek-space representa
tions jkk8 andhkk8 into a real-space representation.

It should be noted that although we call thec ’s ‘‘wave
functions,’’ they do not individually strictly meet the require
criteria as they are not normalized to unity and, as will
seen later, can exhibit discontinuities. Because the individ
c i(z,z8,t) give the amplitude of finding photons atz andz8
in field i, however, referring toc i as wave functions is con
venient.

We first discuss the dynamics of the mean intensities
the fields. Due to the constants of motion it is sufficient

calculate, say,̂V̂1
†V̂1&:
02380
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~] t1c]z!^wuV̂1
†V̂1uw&5 K wU i

\
@Ĥ,V̂1

†V̂1#Uw L
5 ikc^~V̂1

†V̂1V̂1
†V̂2

†Ê1Ê2

2V̂1V̂2Ê1
†Ê2

†V̂1
†V̂2

†!L̂&

5 ikc^Ê1
†Ê2

†V̂1V̂22V̂1
†V̂2

†Ê1Ê2&,

~12!

where we have dropped the common spatial coordinatez and

usedL̂uw&5uw&, as well as the fact that three annihilatio
operators acting onuw& give zero. Similarly, we find

~] t1c]z!^Ê1
†Ê2

†V̂1V̂22V̂1
†V̂2

†Ê1Ê2&

52ikc^V̂1
†V̂2

†V̂1V̂22Ê1
†Ê2

†Ê1Ê2&, ~13!

~] t1c]z!^V̂1
†V̂2

†V̂1V̂22Ê1
†Ê2

†Ê1Ê2&

52ikc^Ê1
†Ê2

†V̂1V̂22V̂1
†V̂2

†Ê1Ê2&. ~14!

Consequently, the differential equation we must solve is

~] t1c]z!
3^V̂1

†V̂1&524k2c2~] t1c]z!^V̂1
†V̂1&. ~15!

We take the input to be two independent single-photon w

packets inV̂1 andV̂2 with the same spatial envelopef 0(z)
and vacuum in the other two fields, which corresponds t
separable initial state of the form

uw& in5[(
k

jk
0u1k&V1

] ^ [(
k

jk
0u1k&V2

] ^ u0&E1^ u0&E2 .

~16!

The jk
0 are Fourier transforms off 0(z),

f 0~z!5(
k

jk
0e2p ikz/L. ~17!

Thus,

^V̂1
†~z,t !V̂1~z,t !& in5^V̂2

†~z,t !V̂2~z,t !& in5c0~z2ct!,
~18!

wherec0(z)5 f 0
2(z). With these initial conditions, one find

^V̂1
†V̂1&5^V̂2

†V̂2&5c0~z2ct!cos2~kz!, ~19!

i.e., a sinusoidal exchange of excitation between the
pump and the two generated fields. A complete conversio
achieved atz5p/k. It is worthwhile noting that, as shown in
Ref. @7#, and contrary to the classical a dynamics, a comp
conversion can only be achieved in the quantum case
initial Fock states with one or two photons in the two pum
modes.
4-3
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IV. DYNAMICS OF THE TWO-PHOTON
WAVE FUNCTION

We proceed by calculating the two-photon wave fun
tions. The calculation ofcV(z,z8,t) can be split into two
distinct cases, depending on whetherz5z8 or zÞz8. Let us
first assumez5z8:

~] t1c]z!^0uV̂1V̂2uw&5 K 0U i

\
@Ĥ,V̂1V̂2#Uw L

52 ikc^0uV̂1V̂2~V̂1
†V̂2

†Ê1Ê2

1V̂1V̂2Ê1
†Ê2

†!L̂uw&

52 ikc^0uÊ1Ê2uw&, ~20!

where we have again used the results thatĤu0&50, L̂uw&
5uw&, and that three annihilation operators acting onuw&
give zero. Operating on̂0uÊ1Ê2uc&, we find

~] t1c]z!^0uÊ1Ê2uw&52 ikc^0uV̂1V̂2uw&. ~21!

Thus, to determinecV(z,z,t), we need to solve the differen
tial equation

~] t1c]z!
2cV~z,z,t !52k2c2cV~z,z,t !. ~22!

For an input consisting of two independent single-pho
wave packets with the same spatial shape, as consid
above, the initial two-photon wave function reads

cV~z,z8,t ! in5 f ~z2ct! f ~z82ct!. ~23!

We also have at the entrance of the medium

~] t1c]z!cV~z,z,t !uz5052 ikc^0uÊ1Ê2uw&uz5050,
~24!

so that solution to Eq.~22! is given by

cV~z,z,t !5c0~z2ct!cos~kz!, ~25!

with c0(z)5 f 2(z). Thus, the two-photon wave function a
equal spatial points propagates through the medium mo
lated by a factor of cos(kz). We see that after one full con
version cyclez5p/k, the phase of the wave function ha
changed sign. This agrees with a numerical simulation of
quantum problem, the results of which are shown in Fig.

We can use a similar procedure to findcE(z,z,t)

5^0uÊ1Ê2uw&, the wave function of the generated fields. W
obtain

cE~z,z,t !52 ic0~z2ct!sin~kz!. ~26!

The evolution of this field is shown in Fig. 3. Note that it
p/2 out of phase with the drive field wave functions,
expected.
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For full knowledge of the state of the system, we al
need to findc(z,z8,t), wherezÞz8. From Eq.~4! we see
that operators at different points in the space commute
that

~] t1c]z1c]z8!^0uV̂1~z!V̂2~z8!uw&

5
i

\
^0u@Ĥ,V̂1~z!#V̂2~z8!1V̂1~z!@Ĥ,V̂2~z8!#uw&. ~27!

Expanding the Hamiltonian, normal ordering the express
and again noting the form of Eq.~8!, we eventually arrive at

~] t1c]z1c]z8!^0uV̂1~z!V̂2~z8!uw&50. ~28!

Thus, the wave function of the system in the case wherz
Þz8 is simply given by the corresponding input expressio

c~z,z8,t !5 f ~z2ct! f ~z82ct!, zÞz8. ~29!

FIG. 2. 45-mode simulation of wave-function propagation in
comoving frame. Both initial wave packets are taken to be Gau
ian.

FIG. 3. Generated fields in the 45-mode simulation. Both init
wave packets are taken to be Gaussian.
4-4
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It is evident that the initial two-photon wave function at d
ferent coordinates propagates undisturbed throughout
medium, and that there is a discontinuous change in the
havior when moving away from the linez5z8. This is
clearly seen in Fig. 4, which shows the two-dimensio
wave functioncV(z,z8,t) at timet5p/k. This is the time
required for one full conversion from the pump fields to t
generated fields and back again. Essentially, we have at
time

cV~z,z8,t!52cV~z,z8! in , z5z8, ~30!

cV~z,z8,t!5cV~z,z8! in , zÞz8. ~31!

This behavior can easily be understood. The two-pho
wave function represents the joint probability amplitude t
a measurement of the two photons will find them at positio
z andz8. If they are separated, no nonlinear interaction c
occur. Put in another way, since the~approximate! nonlinear
interaction in Eq.~1! is local, the part of first wave packet a
z can only interact with the part of the second wave packe
the same pointz. Thus, only ifz5z8, there is a conversion
from the pump fields into the generated fields due to the lo
nonlinearity. When interpreting the discontinuity in the be
viour of the two-photon wave-function atz5z8, one should
remember that in deriving the effective interaction Ham
tonian a spatial coarse graining was implied.

The simple sign change in the wave function forz5z8
hints at the possibility of using the system as a phase gate
quantum computation, as was mentioned in the single-m
case considered in Ref.@7#. One chooses the length of th
nonlinear medium such that exactly one full convers
cycle can occur. If the entire wave function changes sign,
would have a system that behaves as a true phase ga
only one of the two inputs is populated the pulse exits
medium unchanged, but if both are present a phase shiftp
occurs.

FIG. 4. Numerical 45-mode calculation ofcV(z,z8,t), shown
after one full cycle of energy transferal from pump to genera
fields and back again. The sign flip forz5z8 is evident.
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However, due to the multimode nature of this problem
is c(z,z8,t) for all z andz8 which is a true reflection of the
system rather thanc(z,z,t), and there is no sign change fo
zÞz8. To see whether we can still use the system as
approximate phase gate, we consider the behavior of the
vector coefficients in Eq.~8!. Returning briefly to a picture
with 2N11 discrete modes, by using Eq.~A1! of the Appen-
dix one can show that Eqs.~30! and ~31! imply

jkk8~t!5jkk8~0!2
2

2N11 (
mn

dm1n,k1k8jmn~0!.

~32!

This gives a good picture of how the different modes ha
mixed among themselves, and shows that in general a sim
sign change of all the coefficients cannot exist. Only if w
can enforce that at least temporarily only a single effect
mode of the two pump fields is excited, e.g., by using
resonator setup is it possible to use the system as a p
gate.

We see, however, from Eq.~32! that after one full conver-
sion cycle the initially factorized state~16! evolves into an

entangled state between all modes of the fieldsV̂1 and V̂2.
Thus, the nonlinear interaction generates entanglement.

On the other hand, if the initial state is a two-photon wa
packet in an entangled state, such that the initial two-pho
wave function has only a contribution forz5z8,

cV~z,z8!u in5f0~z!d~z2z8!, ~33!

only diagonal components of the two-photon wave funct
will ever be nonzero. According to Eqs.~25! and ~26! they
undergo sinusoidal oscillations

cV~z,t !5f0~z2ct!cos~kz!, ~34!

cE~z,t !52 if0~z2ct!sin~kz!. ~35!

The superposition of pump and generated fields

F~z,t ![cos~kz!cV~z,t !1 i sin~kz!cE~z,t !5f0~z2ct!
~36!

propagates in a form-stable manner. The two-photon w
function F(z,t) of this quantum solution corresponds to
quasiparticle excitation

Ĉ†~z,t ![cos~kz!V̂1
†~z,t !V̂2

†~z,t !

2 i sin~kz!Ê1
†~z,t !Ê2

†~z,t !. ~37!

V. SUMMARY

In the present paper, we have presented a full quant
theoretical treatment of resonant forward four-wave mixi
for single-photon pulses. For this we have used an effec
Hamiltonian derived from the interaction of the fields wi
an ensemble of atoms in a double-L configuration using an
adiabatic approximation@7#. We were particularly interested
in the few-photon regime, since here quantum effects do

d

4-5
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M. JOHNSSON AND M. FLEISCHHAUER PHYSICAL REVIEW A68, 023804 ~2003!
nate the dynamics and because of potential application
quantum-information processing. Thus, we have restric
ourselves to the special case of an input consisting of
single-photon wave packets. For this case, we were abl
analytically solve the propagation equations for the field
tensities and two-photon wave functions which contain
relevant information about the quantum state.

We found that there is an oscillatory energy exchan
between the two pump and generated fields with 100% c
version at periodic intervals of interaction. This result
characteristic for a few-photon Fock-state input; for a coh
ent input, complete conversion can only be achieved asy
totically for very large input power.

We have also shown that after even multiples of the c
version length the two-photon wave functionc(z,z8,t) re-
gains its initial form, while after odd multiples there is a sig
flip for z5z8.

If the two input wave packets are not independent but
in a highly entangled state, the two-photon wave funct
can be made zero outside of the diagonal. It was shown
such a pair of input wave packets form a form-stable qu
tum solution, which is a superposition of pump and gen
ated fields with oscillating coefficients.

The process of resonant four-wave mixing was shown
generate large entanglement between the modes forming
two single-photon wave packets. Furthermore, the nonlin
interaction strength is large enough to generate a contro
phase shift of a single photon by the presence of another
Thus, if the number of relevant modes is at least tempora
restricted by some external means such as a resonato
system could have interesting applications as a photo
phase gate.
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APPENDIX

To simplify the transition from a single-mode descriptio
to a multimode one, we will first consider one single-mo

quantum fieldâ and then generalize the result to our fou
field system. Suppose that the single-mode Hamiltonian g

erning the evolution of â is given by Ĥ5\v0â†â

1Ĥ int(â,â†). To go over to the multimode description, w
consider an interaction region of lengthL, divided into 2N
11 cells, and consider a discrete set of modes around
carrier frequency of the field, i.e.,kn5k012np/L, 2N<n
<N. We now define localized field operators~denoted by a
tilde! via

ẫl5 (
k52N

N

âkexpF 2p ikl

2N11G , ~A1!
02380
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e
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e
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o
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t

v-

he

âk5
1

2N11 (
l 52N

N

ẫlexpF22p ikl

2N11 G , ~A2!

where theâk are annihilation operators for modek. ẫl is
related to the field strength in celll.

These localized field operators have the commutation
lations

@ ẫl ,ẫl 8
†

#5~2N11!d l l 8 . ~A3!

The multimode Hamiltonian can now be written as

Ĥ5\(
k

vkâk
†âk1(

l
Ĥ int~ ẫl ,ẫl

†!5
\v0

2N11 (
l

ẫl
†ẫl

2\(
l l 8

v l l 8ẫl
†ẫl 81(

l
Ĥ int~ ẫl ,ẫl

†!, ~A4!

wherev0 is the carrier frequency and

v l l 85 (
k52N

N
2pkc

~2N11!2L
expF2p ik~ l 2 l 8!

2N11 G . ~A5!

Commutation relations yield the following Heisenbe
equation of motion:

]

]t
ẫl52 iv0ẫl2 i ~2N11!(

l 8
v l l 8ẫl 81

i

\
@ Ĥ̃ int ,ẫ#.

~A6!

Now, as we letN→` we find

lL /~2N11!→z, ~A7!

ẫl→â~z,t !, ~A8!

2 i ~2N11!(
l 8

v l l 8ẫl 8→2c]zâ~z,t !, ~A9!

@ â~z,t !,â†~z8,t !#→Ld~z2z8!. ~A10!

Introducing slowly time-varying amplitudes, we obtain

~] t1c]z!â~z,t !5
i

\
@Ĥ int~ t !,â~z,t !#. ~A11!

Thus, the multimode equations of motion look exactly li
the single-mode equations of motion, with the exception t
a c]z term has been added and the fields now have a sp
dependence.

Returning to the four-wave mixing situation described
this paper, we see that the interaction Hamiltonian given
Eq. ~1! is of the form shown above, with the summatio
replaced by an integral in the continuum limit. The mul

mode annihilation and creation operatorsÊ(z) andV̂(z) de-
fined in Eqs.~2! and ~3! are analogous to the localized fie

operatorsâ(z,t) defined above, except for the factor ofAL
inserted to ensure correct commutation relations, regard
of the quantization length. Thus, the equation of motion~5!
follows from Eq.~A11! above.
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