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The influence of decoherence on quantum memories for photons based on atomic ensembles is discussed. It
is shown that despite the large entanglement of the collective storage states, corresponding to single photons or
nonclassical states of light, the sensitivity to decoherence does not scale with the number of atoms. This is due
to the existence of equivalence classes of storage states, which have the same projection onto the relevant
quasiparticle mode �dark-state polariton�. Several decoherence processes resulting from uncorrelated individual
reservoir couplings are analyzed in detail: single-atom spin flips and dephasing, atom loss, and motion of
atoms. Furthermore, it is shown that the sensitivity to collective decoherence processes that affect all polariton
modes with comparable strength does also not increase with the number of atoms.
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I. INTRODUCTION

One of the essential ingredients for quantum information
processing with photons as information carrier �1,2� is a re-
liable quantum memory, capable of a faithful storage of the
quantum state of photons. It plays a key role in network
quantum computing �3�, in long-distance, secure quantum
communication, and quantum teleportation �4–8�. The appli-
cation to teleportation is of particular interest because of its
potentials for quantum information processing with linear
optical elements �9,10�. While photons are one of the most
easy to handle information carriers, atoms or similar systems
like quantum dots are reliable and long-lived storage units.
Furthermore, Raman transitions provide a controllable and
decoherence insensitive way of coupling between light and
atoms. The conceptually simplest and for processing pur-
poses best suited storage system for photonic qubits are in-
dividual atoms. Here coherent techniques have been devel-
oped that allow a controlled transfer of quantum information
from light to the atom and vice versa �3�. However, strong-
coupling resonators are required in order to achieve reason-
able fidelities for the transfer �11�. On the other hand, if
atomic ensembles are used rather than individual atoms, no
such requirements exist and coherent and reversible transfer
techniques for individual photon wave packets �12–18� and
cw light fields �19–23� have been proposed and in part ex-
perimentally implemented.

The substantially alleviated requirements for the light-
matter interface in the case of atomic ensembles are due to
the enhanced coupling between collective many-atom states
and the radiation field. The corresponding collective excita-
tions of the ensemble are highly entangled many-particle
states if nonclassical states of light are stored. So while clas-
sical information encoded—e.g., in single-particle Raman
coherences—can be rather robust against decoherence pro-
cesses, this is not a priori clear for quantum correlations
stored in the entire ensemble. In fact, one might naively ex-
pect that the lifetime of quantum correlations decreases with
the number of atoms involved, in which case the system
would be practically useless as a quantum memory. We
therefore analyze in the present paper the influence of vari-
ous decoherence mechanisms on the fidelity of the quantum

memory. We show that each quantum state of the radiation
field, stored in the atomic ensemble, corresponds to a whole
class of many-particle states. These equivalence classes rep-
resent all states with the same projection onto specific qua-
siparticle modes: the dark-state polaritons. Because of them,
the quantum memory does not show an enhanced sensitivity
to (a) individual and (b) homogeneous collective decoher-
ence processes when compared to single-particle storage
units.

In order to simplify the discussion we will restrict our-
selves to a quantum memory for a single-mode radiation
field, realized, for example, in a weak-coupling resonator
�13�. In doing so we do not need to take into account effects
on the longitudinal profile of a stored pulse arising from
atomic motion, which are, however, important in free-space
configurations �14,24�. First we reexamine the adiabatic
transfer scheme of �13,14� in terms of quasiparticles �dark
and bright polaritons� in Sec. II. We will show that only
specific quasiparticle modes are relevant for the storage in
the adiabatic limit. In Sec. III we first discuss the effect of
different individual decoherence mechanisms, such as ran-
dom spin flips, dephasing of Raman coherences, loss of at-
oms, atomic motion, and imperfect preparation. It will be
shown that the decoherence rate of the stored quantum state
does not depend on the number of atoms in all of these cases.
We then discuss the influence of collective dephasing pro-
cesses. If these processes affect all collective modes with
comparable strength, the decoherence rate in the ensemble
case is again of the same order of magnitude as in the single-
particle case. This is because excitations of any quasiparticle
mode other than the relevant dark-polariton mode do not
influence the quantum state of the readout light field, pro-
vided the readout is adiabatic. They may matter, however, if
nonadiabatic couplings are taken into account. We will there-
fore discuss the effect of decoherence in the presence of
nonadiabatic couplings in Sec. VI.

II. DARK AND BRIGHT POLARITONS: EQUIVALENCE
CLASSES OF STORAGE STATES

Let us consider an ensemble of N three-level atoms with
internal states �a�, �b�, and �c�. The states are resonantly
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coupled to a single-quantized mode of a resonator field with
mode function eik0z and a classical control field of Rabi fre-
quency � with mode function eik1·r as shown in Fig. 1. The
dynamics of this system is described by the Hamiltonian
�Eb=��b=0�

H = ��a†a + ��a�
j=1

N

�aa
j + ��c�

j=1

N

�cc
j + �g�

j=1

N

a�ab
j eik0zj

+ ���t�e−i�t�
j=1

N

eik1·rj�ac
j + H.c. �1�

Here ���
j = ��� j j��� is the flip operator of the jth atom and the

vacuum Rabi frequency g is assumed to be equal for all
atoms. For the time being we disregard atomic motion and
thus the phase factors eik0zj as well as eik1·rj will be absorbed
into the definition of the atomic states �a� j and �c� j. We will,
however, come back to the issue of atomic motion in Sec. III.

When all atoms are initially prepared in level �b�, the only
states coupled by the interaction are the totally symmetric
Dicke states �25� �after absorption of the spatial phase factors
into the definition of the states�

�b�N = �b1,b2, . . . ,bN� , �2�

�a1�N =
1

	N
�
j=1

N

�b1, . . . ,aj, . . . ,bN� , �3�

�c1�N =
1

	N
�
j=1

N

�b1, . . . ,cj, . . . ,bN� , �4�

�c2�N = 
N

2
�−1/2

�
i�j=1

N

�b1, . . . ,ci, . . . ,cj, . . . ,bN� , �5�

etc.

The interaction part of Eq. �1� only connects states within
certain subspaces distinguished by the number of atoms, N,
and by the excitation number n, which corresponds to the
maximum number of photons that can occur. Due to the sym-
metry of the interaction, there is no coupling between sub-
spaces of different excitation. Classes with different atom
number are coupled through the decay out of the excited
state or through atom losses. The couplings within the sub-
systems corresponding to a single and a double excitation are
shown in Fig. 2.

It is important to note that the matrix element between
�b ,1� and �a1 ,0� is enhanced by a factor 	N in an ensemble
system, while that between �a1 ,0� and �c1 ,0� is the same as
in the single-atom case:

��b,1�H�a1,0�� = �g	N , �6�

��a1,0�H�c1,0�� = ���t� . �7�

In the following we will restrict ourselves to two-photon
resonance—i.e., �=�a−�c−�. Furthermore, for simplicity,
single-photon resonance is assumed. This is sufficient since
we are not interested in the fidelity of the transfer process
itself. The influence of a finite two-photon detuning on the
transfer process is discussed in detail in �26�. In the case of
two-photon resonance, the interaction of the N-atom system
with the quantized radiation mode has a family of dark
states—i.e., adiabatic eigenstates with vanishing component
of the excited states �a� j:

�D,n�N = �
k=0

n

	nk�− sin 
�k�cos 
�n−k�ck,n − k�N,

	nk �	 n!

k!�n − k�!
, tan 
�t� �

g	N

��t�
. �8�

As can be seen from Eqs. �6� and �7� the minimum energy
splitting of the dark states to other states, belonging to the
same sub-system, is given by �g	N. Thus adiabatic evolu-
tion occurs if

g	NT � 1, �9�

where T is the characteristic time of changes. One recognizes
that for a sufficiently large number of atoms this condition is
much less stringent than the strong-coupling condition gT
�1 of single-atom cavity QED. It should also be noted that
although the dark states �D ,n�N for different n and N are
degenerate, there is no transition between them, even if
nonadiabatic corrections are taken into account, due to the
symmetry of the interaction Hamiltonian.

As can be seen from Eq. �8�, adiabatically rotating the
mixing angle 
 from 0 to � /2 leads to a complete and re-
versible transfer of arbitrary photonic states to a collective
atomic excitation, if the maximum number of photons, nmax,
is less than the number of atoms, N. If the initial quantum
state of the single-mode light field is described by the density
matrix  f =�n,m

nmaxnm�n��m�, the transfer process generates a

FIG. 1. Three-level atoms coupled to single-quantized resonator
mode and classical control field of �real� Rabi frequency ��t�;
g-vacuum Rabi frequency; the dashed line indicates spontaneous
decay. FIG. 2. Coupling of bare eigenstates of atom plus cavity system

for at most two photons.
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quantum state of collective excitations according to

�
n,m

nmax

nm�n��m� � �b�NN�b�

↓

�
n,m

nmax

nm�D,n�NN�D,m�

↓

�0��0� � �
n,m

nmax

nm�cn�NN�cm� . �10�

The dark states of the N-atom system can be identified as
quasiparticle excitations in the space of atoms and cavity
mode: the so-called dark-state polaritons � �14�:

�D,n�N =
1

	n!
��†�n�b,0�N. �11�

Here �b�N is the total ground state of the N-atom system and
�0� the vacuum state of the cavity mode. The dark-state po-
lariton, defined as

� = cos 
�t�a − sin 
�t�
1

	N
�
j=1

N

�bc
j , �12�

is a superposition of the resonator mode and the collective
spin, corresponding to the ground-state transition �b�↔ �c�.
Associated with the dark polariton is a bright polariton

�0 = sin 
�t�a + cos 
�t�
1

	N
�
j=1

N

�bc
j . �13�

To obtain a complete set of operators in the space of the
cavity mode and the N atoms in internal states �b� and �c�, we
also need to introduce the operators

�l =
1

	N
�
j=1

N

�bc
j exp2�i

lj

N
�, l = 1, . . . ,N − 1. �14�

We will also refer to the �l’s as bright polaritons. In the limit
of small atomic excitations the polariton operators obey ap-
proximately bosonic commutation relations

��,�†� = cos2 
 + sin2 

1

N�
j=1

N

��bb
j − �cc

j � = 1 + O
nc

N
� ,

�15�

��0,�0
†� = sin2 
 + cos2 


1

N�
j=1

N

��bb
j − �cc

j � = 1 + O
nc

N
� ,

�16�

��l,�m
† � = �lm

1

N�
j=1

N

��bb
j − �cc

j � = �lm + O
nc

N
� , �17�

where nc= �� j�cc
j ��N is the total population in level �c�.

Polariton operators of different type commute in lowest order
of nc /N:

��i,�
�†�� = O
nc

N
� . �18�

It should be noted that the dark and bright polariton opera-
tors are explicitly time dependent through the mixing angle

�t�.

The collective storage state corresponding to a coherent
state of light factorizes as can be seen quite easily:

e���2/2�b,��N = e�a†
�b,0�N

↓

e��†
�b,0�N

↓

exp−
�

	N
�

j

�cb
j ��b,0�N = �

j

1 −

��cb
j

	N
��b,0�N.

�19�

On the other hand, storage states corresponding to nonclas-
sical states of light, such as Fock states, are maximally en-
tangled N-particle states �cn�N, as can be seen from Eqs. �4�
and �5�. These states are known to be rather sensitive to
decoherence processes. For example, if for an initial state
�c1�N the atom number one undergoes a transition from level
�b� to an auxiliary state, say, �d�, the resulting state is almost
orthogonal to the original one

�c1,b2, . . . ,bN� + �b1,c2, . . . ,bN� + ¯ �b1,b2, . . . ,cN�

↓

�c1,b2, . . . ,bN� + �d1,c2, . . . ,bN� + ¯ �d1,b2, . . . ,cN� .

�20�

If p denotes the probability of one atom to undergo a transi-
tion from �b� to �d� due to environmental interactions, the
total probability Perror to end up in an orthogonal state scales
as Perror�1− �1− p�N� pN. Thus one might naively expect
that for the storage of a single photon the collective quantum
memory will have an N times enhanced sensitivity to deco-
herence as compared to a single-atom device. In some appli-
cations of maximally entangled N-atom states like Eqs. �4�
and �5�, such as subshot noise spectroscopy suggested in
�27�, this is indeed the case. Also, in the proposed application
of light storage for efficient photon counting �28� or in the
proposed quantum gate based on dipole blockade �29�, a
single atom spin-flip can mimic an additional photon and
thus there is an N times enhanced sensitivity to single-atom
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errors. We will now show that this conclusion is generally
not correct for the quantum memory.

From the inverse relation between the polariton modes
and the field mode

a = cos 
�t�� + sin 
�t��0, �21�

one recognizes that for the resonator field only excitations of
the dark polariton � and the bright polariton �0 matter. Fur-
thermore, if after the storage of photon states in the atomic
system the electromagnetic excitations are read out by rotat-
ing 
 back from � /2 to 0, only excitations in the dark polar-
iton mode are relevant. I.e., if W denotes the total density
operator of the combined atom-cavity system after the writ-
ing process, only the reduced density operator

 = Tr��W� �22�

is relevant for the storage. Here Tr� denotes the partial trace
over all bright-polariton excitations. For this reason all states
of the total system that have the same projection onto the
dark-polariton modes but an arbitrary number of excitations
in any bright-polariton mode are equivalent from the point of
view of storage. I.e., there exist equivalence classes of the
form

�D,n�N � �
i,j,. . .

�
k,l,. . .

Ci,j. . .
k,l,. . .��i

†�k�� j
†�l

¯ ��†�n�b,0�N.

�23�

It is important to note that any perturbation that acts only
onto bright-polariton modes does also not destroy superposi-
tions of storage states, since ��l ,��=0:

�l
†�

n

�n�D,n�N = �l
†�

n

�n

	n!
��†�n�b,0�N

= �
n

�n

	n!
��†�n��l

†�b,0�N� . �24�

Likewise all dark states with the same number of excitations,
n, but with a different number of atoms, N�n, are equiva-
lent, because in the adiabatic readout process dark-polariton
operators that correspond to different N have the same
asymptotic mapping �→a for 
→0:

�D,n�N � �D,n�N�, if N,N� � n . �25�

This will be important later on when discussing the effect of
atom losses from the system. The importance of the equiva-
lence classes stems from the fact that unwanted interactions
with the environment, which lead only to transitions within
the equivalence classes and which do not destroy the relative
phase between them, do not affect the fidelity of the quantum
memory.

In order to understand the adiabatic dynamics of the sys-
tem we will now take into account losses from the excited
state �a� outside the three-level system. To this end we intro-
duce a superoperator L acting on the atomic density operator
 projected to the three states ��a� , �b� , �c��:

L = −
i

�
�H,� −

�

2 �
j=1

N

��aa
j  + �aa

j � . �26�

Here H is the Hamiltonian �1�. Adiabatically eliminating the
excited states, assuming two-photon resonance, and express-
ing L in terms of the polariton operators yields in a rotating
frame

L = −
i

�
�Heff,� −

�2�t�
2�

�
l=1

N−1

��l
†�l + �l

†�l − 2�l�l
†� ,

�27�

Heff = ��c
�†� + �
l=0

N−1

�l
†�l� . �28�

We here see two important points: First of all, the adiabatic
dynamics does not couple different polariton modes. Second,
all bright-polariton excitations �l, l=1,2 , . . . ,N−1, decay by
optical pumping—i.e., by excitation to the excited state and
successive spontaneous emission if ��0—while the dark
polaritons � as well as the bright polaritons �0 are immune
to spontaneous emission.

III. INFLUENCE OF SINGLE-PARTICLE DECOHERENCE
ON STORAGE FIDELITY

In order to discuss the influence of decoherence processes
on the fidelity of the collective quantum memory, we have to
distinguish between individual and collective reservoir cou-
plings. The first is characterized by an interaction of all par-
ticles to distinguishable and independent reservoirs. The cor-
responding interaction Hamiltonian has the structure

Hint
�ind� = �

j=1

N

�
k

gjk���
j bjk + H.a., �29�

where the bjk are reservoir operators corresponding to the jth
atom. �bjk ,bil�=0, if j� i and the unperturbed reservoir den-
sity operator factorizes res=� j=1

N res
�j� . The second reservoir-

coupling model is characterized by collective variables, de-
fined through the unitary transformation

���
l =

1
	N

�
j=1

N

�lj���
j , l = 1, . . . ,N , �30�

where �lj is a phase factor obeying

�
l=1

N

� jl
* �li = N�ij . �31�

The interaction Hamiltonian of a collective reservoir interac-
tion is of the form

Hint
�coll� = �

l=1

N

�
k

f lk���
l Blk + H.a., �32�

where Blk is a reservoir operator corresponding to the collec-
tive mode l. Reservoir operators corresponding to different
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modes are independent; i.e., they commute and the unper-
turbed density matrix factorizes in the collective modes. In
reality reservoir interactions are of neither of the two types
but somewhere in between; i.e., the individual or collective
reservoirs do have some correlations. Many decoherence
phenomena can, however, be described by one or the other
model, and we will restrict ourselves to either one of the two.
Since for dilute systems such as atomic vapors the individual
reservoir model is more appropriate, we will discuss this case
in detail in the present section. The effect of collective deco-
herence processes will be considered in the following one.

A. Imperfect preparation

In the description of the storage process given in the last
section we had assumed that every atom in the ensemble was
prepared in the ground state �b�. If the ensemble is large
enough, the probability to find an atom, e.g., in state �c� will,
however, be non-negligible—e.g., in the presence of a finite-
temperature reservoir. Naively one might expect that any
atom left in state �c� after preparation of the ensemble would
mimic a stored photon. This would require one to make the
initial probability to find an atom in state �c� small compared
to 1/N. This is indeed not the case. It is rather sufficient that
the initial probability of excitation of a dark-state polariton is
small compared to unity. If we consider, e.g., as initial state a
thermal state of temperature �=1/kBT �
=� /2�,

0 =
1

Z
exp− ���c
�†� + �

l=1

N−1

�l
†�l�� , �33�

with Z being the statistical sum, the mean number of initially
excited dark-state polaritons is independent of N and given
by

��†�� =
e−���c

1 − e−���c
=

1

N
�
j=1

N

��cc
j � . �34�

Thus, if the probability that an atom is initially in level �c� is
small compared to unity, the number of initial dark-polariton
excitations is small compared to unity as well.

B. Random spin flips and dephasing

On the level of individual atoms the storage occurs within
the two-state system consisting of �b� and �c�. If we assume
that all other atomic states including �a� are energetically
much higher, we may safely neglect decoherence processes
involving the excitation of those states. Then decoherence
caused by individual and independent reservoir interactions
can be described by the action of the two-level Pauli opera-
tors

Xj = �bc
j + �cb

j , Zj = ��bc
j ,�cb

j �, Y j = i�bc
j − i�cb

j .

�35�

Xj describes a symmetric spin flip of the jth atom, Zj a phase
flip, and Y j a combination of both. Any single-atom error can
be expressed in terms of these, and we will restrict the dis-
cussion here to the action of Xj �symmetric spin flip�, Xj

+ iY j �asymmetric spin flip�, and Zj �phase flip�.
Inverting relations �12�, �13�, and �14� one easily finds a

representation of �cb
j in terms of polaritons:

�cb
j =

1
	N


�
l=1

N−1

exp− 2�i
lj

N
��l

† − �†�
=

1
	N


�
l=1

N−1

� jl�l
† − �†�

=
Xj + iY j

2
. �36�

Here and in the following 
=� /2 is assumed, unless stated
otherwise, which corresponds to the case of a completed
transfer from the radiation field to the ensemble. Further-
more,

Xj =
1

	N
�

l=1

N−1

�� jl�l
† + � jl

* �l� − � − �†� �37�

and

Zj =
1

N��
l=1

N−1

� jl
* �l − �, �

m=1

N−1

� jm�m
† − �†� . �38�

One recognizes at this point that applying the approximate
commutation relations �15�–�18�, which have been obtained
with the assumption �bb

j �1 and �cc
j �0, would lead to Zj

=1 j. Thus care must be taken when using operators quadratic
in the polaritons such as Zj.

1. Spin flip from �b‹\ �c‹

Consider a quantum memory initially in an ideal storage
state W0—i.e., without bright-polariton excitations. Suppose
an atom undergoes a spin flip to the internal state �c� if it is
initially in state �b�. Such a spin-flip process, which could
mimic a stored photon, can be described by the positive map

W0 → W1 =
�cb

j W0�bc
j

Tr��cb
j W0�bc

j �
. �39�

As noted in the previous section, only the reduced density
operator traced over the bright-polariton modes is of rel-
evance for the memory. Carrying out this trace yields

Tr���cb
j W0�bc

j � =
1

N
Tr���

l,m

N−1

� jl�l
†W0� jm

* �m� +
1

N
�†0�

−
1

N
Tr���

l

N−1

� jl�l
†W0� + H.a.� , �40�

where 0=Tr��W0�. If we make use of the fact that the bright
and dark polaritons commute in first order of 1 /N, we see
that the last term in Eq. �40� vanishes, since there are no
excitations of bright polaritons in the initial state W0. For the
same reason,
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Tr��� jl�l
†W0� jm

* �m� = 0�lm, �41�

and the first term in Eq. �40� evaluates to �1−1/N�0. Thus
we arrive at

Tr���cb
j W0�bc

j � = 
1 −
1

N
�0 +

1

N
�†0�

and

1 = Tr��W1� =

1 −

1

N
�0 +

1

N
�†0�

1 +
1

N
��†��

. �42�

One recognizes that the spin flip of an individual atom only
causes an error of order 1 /N. This exactly compensates for
the fact that the total probability of the N atoms is N times
the probability of a single-atom spin flip.

From Eq. �42� one can easily calculate the fidelity of the
quantum memory after a single spin-flip error, which for the
case of an initial pure state 0= ��0���0� is defined as

f���0�� = ��0�1��0� = Tr�10� . �43�

One finds, e.g., for a stored Fock-state �n� with n�N

fb→c��n�� =

1 −
1

N

1 +
n

N

= 1 −
n + 1

N
+ O
 1

N2� , �44�

while for a coherent state ��� holds:

fb→c����� =

1 −
1

N
+

���2

N

1 +
���2

N

= 1 −
1

N
+ O
 1

N2� . �45�

The difference of the two results reflects the general property
of nonclassical states to be more sensitive to decoherence
than classical ones.

An alternative way of demonstrating that spin-flip errors
do not depend on the number of atoms is to consider the
Liouville operator L describing uncorrelated spin flips with
rate �:

Ẇ = LW = �
j=1

N

L jW , �46�

L jW = −
�

2
��bc

j �cb
j W + W�bc

j �cb
j − 2�cb

j W�bc
j � . �47�

Substituting expression �36� yields after tracing over the
bright-polariton excitations,

L = −
�

2
��†� + �†� − 2�†�� . �48�

One recognizes that the decoherence rate of the reduced den-
sity operator of the ensemble of atoms due to spin flips is the
same as for a single atom.

2. Symmetric spin flip

If instead of the asymmetric spin flip �cb
j =Xj + iY j a sym-

metric flip happens, Eq. �39� attains the form

W0 → W1 =
XjW0Xj

Tr�XjW0Xj�
. �49�

We here have kept the normalization denominator although
Tr�XjW0Xj�=1 because we want to make use of the approxi-
mate commutation relations between dark and bright polari-
tons, which hold only to first order in 1/N. Thus both the
numerator and denominator in Eq. �49� have to be expanded
in the same way to keep the normalization. Carrying out the
trace over the bright polaritons yields

Tr��XjW0Xj�

=
1

N
Tr���

l,m

N−1

�� jl�l
† + H.a.�W0�� jm�m

† + H.a.��
+

1

N
��† + ��0��† + ��

−
1

N
Tr���

l

N−1

�� jl�l
† + � jl

* �l�W0�� + �†� + H.a.� . �50�

Again the last term in Eq. �50� vanishes since there are no
excitations of bright polaritons in the initial state W0 and in
the first term only the combination

Tr��� jl�l
†W0� jm

* �m� = 0�lm �51�

remains, which evaluates to �1−1/N�0. This yields

Tr��XjW0Xj� = 
1 −
1

N
�0 +

1

N
��† + ��0��† + �� .

�52�

Thus we arrive at

1 =

1 −

1

N
�0 +

1

N
��† + ��0��† + ��

1 −
1

N
+

1

N
���† + ��2�

, �53�

which is similar to the case of an asymmetric spin flip, Eq.
�42�. Once again, it is seen that the collective quantum
memory does not have an enhanced sensitivity to spin-flip
errors as compared to a single-atom system.

The fidelity of the memory now reads for a stored Fock
and coherent state after a symmetric spin flip

fb↔c��n�� = 1 −
2n + 1

N
+ O
 1

N2� , �54�

fb↔c����� = 1 −
1

N
+ O
 1

N2� . �55�
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3. Phase flip

If after the preparation of an ideal storage state an atom
undergoes a phase flip, the corresponding positive map
would read

W0 → W1 =
ZjW0Zj

Tr�ZjW0Zj�
. �56�

This map is, however, not a good starting point for further
discussions because the approximations used when introduc-
ing bosonic polariton operators lead to Zj �1 j. For this rea-
son we follow a different approach and calculate the fidelity
of the quantum memory directly. Consider an ideal storage
state initially of the form

��0� = �
n=0

nmax

cn�D,n� = �
n=0

nmax cn

	n!
��†�n�b,0� , �57�

where nmax�N. If the kth atom undergoes a phase flip, the
state changes according to

��0� → ��1� = �
n=0

nmax

cn
1

	n!
��̃†�n�b,0� , �58�

where

�̃ � −
1

	N��
j�k

�bc
j − �bc

k � = � +
2

	N
�bc

k . �59�

Using Eq. �36� this can be written in the form

�̃ = 
1 −
2

N
�� +

2

N
�
l=1

N−1

�kl
* �l. �60�

This yields in lowest order of 1 /N

�̃n = 
1 −
2n

N
��n +

2n

N
�

l

�kl
* �l�

n−1 + O
 1

N2� . �61�

Tracing over the bright-polariton excitations leads to the re-
duced density operator

1 = Tr����1���1�� = �
n,m=0

nmax

cn
*cm
1 −

2�n + m�
N

��D,n��D,m�

�62�

and eventually to the fidelity

fdeph���0�� = 1 −
4�n�

N
+ O
 1

N2� , �63�

where �n�= ��†�� is the average number of dark-state po-
laritons in the initial state. One recognizes that a phase flip of
a single atom leads to a fidelity reduction which is of the
order of 1 /N. The term 1/N again compensates for the fact
that in an N-atom ensemble the likelihood that one arbitrary
atom undergoes a phase flip is N times the probability of a
phase flip for a single atom. It is interesting to note that the
fidelity only depends on the average dark-state polariton
number. I.e., dephasing affects in lowest order of 1 /N clas-
sical and nonclassical states in a similar way.

C. One-atom losses

Another important source of errors in a collective quan-
tum memory is the loss of an atom from the ensemble. As
discussed in Sec. II, all storage states corresponding to the
same dark-state excitations in ensembles of different atom
number are equivalent as long as the atom number is large
compared to the relevant number of stored photons. We now
calculate the fidelity of the quantum memory after loss of
one atom. We consider again an ideal initial storage state

��0�N = �
n=0

nmax

cn�D,n�N, �64�

where the subscript N denotes the total number of atoms in
the ensemble and nmax�N. The loss of an atom, which, with-
out loss of generality, can be taken to be the Nth atom, can be
described by the partial trace over the degrees of freedom of
that atom:

W1 = TrN���0���0�� . �65�

To carry out the trace let us first consider the case of a Fock
state of n polaritons �D ,n�N

�D,n�N = 
N

n
�−1/2

�
j1�. . .�jn

N

�b1, . . . ,cj1, . . . ,cjn, . . . ,bN� .

�66�

Tracing over the Nth atom results in

TrN��D,n�NN�D,n�� = 
N

n
�−1/2

� �
j1�. . .�jn

N−1

�b1, . . . ,cj1, . . . ,cjn, . . . ,bN−1��¯ � + 
N

n
�−1/2

� �
j1�. . .�jn−1

N−1

��b1, . . . ,cj1, . . . ,cj�n−1�, . . . ,bN−1��¯ � �67�

=
N − n

N
�D,n�N−1N−1�D,n� +

n

N
�D,n − 1�N−1N−1�D,n − 1� .

�68�

Thus the fidelity of the quantum memory for a Fock state �n�
after loss of a single atom is given by

f loss��n�� = 1 −
n

N
. �69�

The decrease of the fidelity again scales only as 1/N. This
result could of course have been expected as the n excita-
tions are equally distributed over all atoms. Thus removing
one reduces the stored information only by the amount n /N.
Generalizing the above result to nondiagonal elements leads
after some calculation to
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TrN��D,n�NN�D,m�� =
	�N − n��N − m�

N
�D,n�N−1N−1�D,m�

+
	nm

N
�D,n − 1�N−1N−1�D,m − 1� .

�70�

Thus the fidelity after the loss of an atom reads for the case
of a general state

f loss���0�� = 1 −
1

N
���†�� − ��†����� + O
 1

N2� . �71�

If the initial storage state corresponds, e.g., to a coherent
state, the second and third terms in Eq. �71� compensate each
other, and the fidelity differs from unity only in order 1 /N2.
Here again the robustness of classical states becomes appar-
ent.

D. Atomic motion

Until now it has been assumed that the atoms used in the
quantum memory are at a fixed position during the entire
storage time. Since the coupling of the atoms to the quantum
and control fields contains, however, a spatial phase �see Eq.
�1��, atomic motion results in an effective dephasing and will
lead to a reduction of the fidelity. Recently Sun et al. have
argued that inhomogeneities of the atom-light interaction
strength or in the control field together with atomic motion
lead to an increase of the characteristic decoherence rate by a
factor 	N �30�. We thus will analyze the effect of atomic
motion in the following in more detail. To this end we will
follow the approach of Sec. III B 3 and describe the motion
by the map of an initially ideal storage state ��0�, Eq. �57�,
according to

��0� → ��1� = �
n

cn
1

n!
��̌†�t��n�b,0� , �72�

where

�̌†�t� = −
1

	N
�

j

�bc
j exp�− i�k� · r� j�t�� , �73�

with r� j�t� denoting the position of the jth atom at time t and
�k� =k�1−k0e�z is the wave-vector difference between control
field and quantized mode. It should be noted that Eq. �73� is
equivalent to a coupling field with inhomogeneous phase.

To reduce the effect of motion in an atomic vapor one
could either reduce the temperature or use a buffer gas of
sufficient density. In the latter case, which has been used in
room-temperature gas-cell experiments �8,15�, the free mo-
tion is replaced by a diffusion. In the following we will re-
strict the discussion to this important case. We thus can as-
sume that the phase

�� j�t� � �k� · r� j�t� �74�

follows a Wiener diffusion process �31�:

d

dt
�� j�t� = � j�t� , �75�

� j�t� = 0, �76�

� j�t��k�t�� = D� jk��t − t�� , �77�

with D being a characteristic diffusion rate. We now want to
show that the decrease in fidelity due to the phase diffusion
is only determined by D and independent of the number of
atoms N. For this it is sufficient to consider an initial Fock
state �n=1�. Expressing the single-atom flip operators in
terms of collective ones yields

�̌† =
1

N
�

j

ei��j�− �
l=1

N−1

� jl�l
† + �†� . �78�

With this one finds for an initial Fock state W0
= �D ,1��D ,1�

W1�t� = ��̌†��b,0��b,0���̌� , �79�

where the overbar denotes averaging over the phase diffusion
process. From W1�t� we can calculate the fidelity of the
quantum memory by first tracing over the bright polaritons
and then sandwiching with the original state �D ,1�. This
yields

fmotion��1�� = �D,1�Tr��W1�t���D,1� ,

=
 1

N
�

j

ei��j�
 1

N
�

k

e−i��k�
=

1

N
+

1

N2 �
j�k

ei��je−i��k

=
1

N
�1 + �N − 1�e−Dt�

� e−Dt. �80�

A generalization to an arbitrary fock state �D ,n� leads to a
fidelity decay proportional to exp�−nDt�. One recognizes
that the atomic motion causes a decay of the fidelity with a
rate given only by the single-atom diffusion rate D. In con-
trast to the results of Sun, Yi, and You �30�, we find that there
is no enhancement of the decay with increasing number of
atoms, which is again due to the existence of equivalence
classes.

IV. COLLECTIVE DECOHERENCE PROCESSES

In the previous section we have discussed the influence of
decoherence processes due to individual reservoir interac-
tions. This model describes a number of important processes
relevant for dilute atomic vapors such as collisions with at-
oms of a background gas. On the other hand, even for dilute
gases there are certain errors sources, such as fluctuating
magnetic fields, which are of collective nature and are not
covered by this model. We therefore discuss in this section
collective reservoir interactions. For this we assume that
each collective mode ���

l as introduced in Eq. �30� couples
to an independent reservoir. We furthermore restrict our-
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selves to Markovian processes. In this case the dynamics of
the N-atom density operator can be described by a Lindblad
equation of the type

d

dt
��decoh = �

l=1

N
�l

2
�2�l�l† − �l†�l − �l†�l� , �81�

where �l and �l† are the collective operators introduced in
Eq. �30� and the lower indices have been suppressed for
simplicity. In order to compare the effect of collective deco-
herence processes on the ensemble with that on an individual
atom we express the collective operators in terms of single-
atom variables. This yields

d

dt
��decoh = �

i,j=1

N
Cij

2
�2� j�i

† − �i
†� j − �i

†� j� , �82�

where Cij =1/N�k=1
N �ik

* � jk�k.
Let �max be the largest collective decay rate. Then one

easily verifies

d

dt
��decoh � �max�

j=1

N

�2� j� j
† − � j

†� j − � j
†� j� , �83�

where relation �31� was used. A quantum state stored in an
individual atom would decay with a rate slower than the
maximum collective decay rate. Thus, if the collective deco-
herence rates of the relevant dark-state polariton modes are
of the same order of magnitude as the maximum collective
rate �max, the decoherence time of the collective storage state
is not much different from that of the quantum state stored in
an individual atom. An example for the latter case is an iso-
tropic and homogeneous, but fast fluctuating magnetic field.
The fluctuating magnetic field causes a dephasing of the Zee-
man coherences of every atom. If the magnetic field is iso-
tropic and homogeneous, the resulting dephasing of the dark-
and bright-polariton modes is the same. Thus an ensemble-
based quantum memory is also as robust against collective
decoherence processes as single atoms provided the decoher-
ence affects all collective modes with comparable strength.

V. NONADIABATIC COUPLING AND DECOHERENCE

In Sec. II it was shown that for the retrieval of a stored
quantum state of light only the reduced density operator �22�
is relevant. For this reason all states of the system which
have the same number of dark-state polariton excitations but
an arbitrary number of excitations in the bright-state polar-
iton modes belong to the same equivalence class and lead to
the same result, provided the readout process is adiabatic.
Due to decoherence, a large number of bright-state polaritons
may be excited in the system after the storage period. Now
the question arises what happens to these excitations if the
readout process is not adiabatic. Even if there is only a weak
nonadiabatic coupling between bright- and dark-state polar-
iton modes, it may be sufficient to transfer some of the un-
wanted excitations into the dark-polariton mode. We will
show in the following that only the bright-polariton mode �0
can lead to nonadiabatic contributions to the readout signal.

For this we consider the effective interaction Hamiltonian,
Eq. �28�, in a rotating frame and add the coupling of the
quantized resonator mode a to free-space modes bk:

Heff = ��c
�†� + �
l=0

N−1

�l
†�l� + ��

k

��cos 
�†

+ sin 
�0�bk + H.a. �84�

The equation of motion for the dark-state polariton operator,
�=cos 
�t�a−sin 
�t��bc, with �bc=� j�bc

j /	N, then reads

�̇ = − 
̇�t�sin 
�t�a + 
̇�t��bc +
i

�
�H,��

= − 
̇�t��0 + i� cos 
�t��
k

bk. �85�

Thus the dark polariton is coupled to the outside modes bk
and the bright-polariton operator �0=sin 
�t�a+cos 
�t��bc

only. In a similar way one finds for �0 and the bk’s:

�̇0 = 
̇�t�� , �86�

ḃk = i�a = i� cos 
�t�� + i� sin 
�t��0. �87�

One recognizes that �� ,�0 ,bk , � are a closed set of coupled
variables, even if nonadiabatic corrections are taken into ac-
count. Thus only decoherence-induced excitations generated
in �0 will influence the readout signal. All other N−1 bright-
polariton modes remain uncoupled from the storage systems.

VI. SUMMARY

In the present paper we have studied the influence of in-
dividual and certain collective decoherence processes on the
fidelity of a quantum memory for photons. Despite the fact
that the atomic storage states, corresponding to nonclassical
states of the radiation field, are entangled, the system shows
no enhanced sensitivity to decoherence as compared, e.g., to
single-atom storage systems if the error is caused by a cou-
pling of the atoms to individual reservoirs. The same holds
for collective reservoir couplings provided they are �approxi-
mately� homogeneous—i.e., affect all collective modes with
similar strength. This is due to the existence of equivalence
classes of storage states corresponding to the excitations of
only one eigenmode of the system: the dark-state polariton.
It was shown that all states with the same reduced density
operator after tracing out the N bright-polariton modes repro-
duce the same quantum state of light in the readout process
and are thus equivalent. For similar reasons no stringent re-
quirements for preparation of the atomic system before the
storage exist. It is sufficient that the number of atoms re-
maining in the storage level �c� after preparation of the en-
semble is small compared to the total number of atoms,
which can easily be achieved by optical pumping. It was
shown, moreover, that the loss of an atom from the sample
causes only an error of the order of 1 /N. Motion of atoms
during the storage time causes an effective dephasing and
thus leads to a decrease in fidelity. The corresponding error
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is, however, again independent of the number of atoms,
which is in contrast to the result of �30�. Finally since nona-
diabatic effects only couple one of the bright-polariton
modes to the dark-polariton moles, the potentially large num-
ber of excitations in the N bright-polariton modes caused by
decoherence processes does not leak into the readout signal
in a significant amount even if the readout process is not
adiabatic.

The present paper proves that atomic ensembles are suit-
able systems for the storage of quantum states of the

radiation field even in the presence of the most relevant de-
coherence processes.
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