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Many-particle entanglement in the gaped antiferromagnetic Lipkin model
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Bipartite and global entanglement are analyzed for the ground state of a system of N spin-1/2 particles
interacting via a collective spin-spin coupling described by the Lipkin-Meshkov-Glick Hamiltonian. Under
certain conditions, which include the special case of supersymmetry, the ground state can be constructed
analytically. In the case of antiferromagnetic coupling and for an even number of particles, the system has a
finite energy gap and the ground state undergoes a smooth transition, as a function of the continuous anisotropy
parameter 7y, from a separable (y=%) to a maximally entangled state (y=0). From the analytic expression for
the ground state, the bipartite entanglement between two subsets of spins as well as the global entanglement are
calculated. Despite the absence of a quantum phase transition a discontinuous change of the scaling of the
bipartite entanglement with the number of spins in the subsystem is found at the isotropy point y=0: While at
y=0 the entanglement grows logarithmically with the system size with no upper bound, it saturates for

y#0 at a level only depending on 7.
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I. INTRODUCTION

Since the early days of quantum theory it was realized
that quantum systems can possess correlations that do not
have a classical counterpart [1-3]. For a long time this phe-
nomenon, called entanglement, has been of interest mostly in
the context of foundations of quantum mechanics. With the
advent of quantum-information science [4], it has been real-
ized that entanglement is an essential resource for efficient
computation and communication. This initiated a more sys-
tematic study of its properties. While entanglement in small
systems is by now well understood, many-particle entangle-
ment is still a wide open field. It is well known that quantum
correlations and entanglement naturally occur in interacting
many-particle systems, but we are only beginning to under-
stand their role in these systems [5].

Recently the entanglement properties of quantum systems
near the critical points of quantum phase transitions [6] have
attracted much attention. Two-particle entanglement has been
studied in terms of concurrence [7], €.g., in one-dimensional
spin chains [8—12]. The concurrence contains, however, only
limited information about the global distribution of entangle-
ment, and other measures such as the bipartite entanglement
between blocks of spins may be of larger interest. Bipartite
entanglement was analyzed, e.g., in one-dimensional quan-
tum spin chains in [12], where it was shown that it scales
logarithmically with the system size in the critical regime,
with a prefactor determined by the universality class, and
saturates in the noncritical regime.

It is now commonly believed that a quantum phase tran-
sition is also reflected in the entanglement properties of a
system. In the present paper we will show that the reverse is
not true, however. We discuss a system that shows a discon-
tinuous change of scaling of entanglement with the system
size in the absence of a quantum phase transition.

In particular we study the bipartite entanglement in a sys-
tem of spins with a collective coupling described by a gen-
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eralization of the Lipkin-Meshkov-Glick (LMG) Hamil-
tonian [13]. Since this Hamiltonian is symmetric under the
exchange of particles, the Hilbert space separates into sub-
spaces whose dimensions grow only linearly with the num-
ber of particles, which makes them numerically accessible.
In particular we consider the case of an even number of spins
and an antiferromagnetic coupling. Furthermore we concen-
trate on the case where the Hamiltonian can be factorized in
a product of two terms each being linear in the total spin
operators. Under these conditions, which include the special
case of supersymmetry (SUSY) [14,15], the ground state can
be constructed explicitly [16]. This ground state undergoes a
smooth transition from a separable to a maximally entangled
state as a function of the parameter 7y, which characterizes
the asymmetry between the collective spin coupling in the x
and y directions. The two-particle concurrence in this system
has been analyzed in [17]. Recently also bipartite entangle-
ment has been studied in [18] and [19], but for the ferromag-
netic version of the LMG model, where there is a quantum
phase transition. Although in the antiferromagnetic case con-
sidered here there is no quantum phase transition, we find a
discontinuous behavior of the entanglement when vy is
changed. While for y# 0 the entanglement entropy is always
finite, it grows logarithmically with the number of spins in
the subsystem with no upper bound at the isotropy point
v=0. We show that we have a gapped system for arbitrary 7.
Only very recently a similar behavior has been found in a
quantum spin-1 chain with finite energy gap, but for localiz-
able entanglement [20].

After discussing the LMG model and its ground state un-
der the condition of supersymmetry in Sec. II, we analyze
the bipartite entanglement of this state in terms of the von
Neumann entropy [21] in Sec. III. We show that for an iso-
tropic interaction (y=0) and in the thermodynamic limit the
entropy grows logarithmically with no upper bound. On the
other hand, for any nonvanishing 7y the entropy has an upper
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limit determined solely by 7. Furthermore it becomes a func-
tion of the ratio of the subsystem spin to the total spin rather
than a function of the subsystem spin alone. In a finite sys-
tem the transition between isotropic and anisotropic behavior
occurs at y.;=J"'. To understand the saturation of the en-
tanglement quantitatively, we give in Sec. IV an analytic
estimate for the global entanglement by determining the geo-
metric measure of entanglement.

II. COLLECTIVE SPIN COUPLING
AND SUPERSYMMETRY

Let us consider an even number N of spin-1/2 particles
interacting through a nonlinear coupling of the collective
spin J M:Ej-v:lé*’l;, where G, denotes the u’s component of the
single-particle spin. The interaction is assumed to be of sec-
ond order in the total spin and is thus a generalization of the
Lipkin-Meshkov-Glick Hamiltonian [13]

H=ajz+,8j§+j_\2,—2ufy. (1)

a and B are positive real numbers and thus the coupling is of
the antiferromagnetic type. H commutes with the total spin

J? and thus the total Hilbert space separates into subspaces
determined by the spin quantum number J. We here restrict
ourselves to the case of maximum spin, i.e., J=N/2. As has
been shown in [16], Eq. (1) can be written as a product of
two terms linear in the collective spin operators if 8=a?:

H=(a, +iJ,—ip)(ad, —iJ, +ip) - p2. 2)

H+u? is positive definite, and if w=m, with m e {-J,—(J
-1),...,(J=1),J},J=N/2 being the total angular momen-
tum, it possesses a nondegenerate ground state with E=0
obeying

(= iJ, +im)|¥) = 0.

Since this equation is linear the ground state can be easily
constructed, which yields

W) = My, m)exp(= yJ)|m, = m), A3)

where we have introduced the real anisotropy parameter y
through tanh(y)=a=0. It is interesting to note that an an-
isotropy in the spin coupling is reflected here in the nonuni-

tary term exp(—yjz). In the fully isotropic limit y=0, the
ground state is the state |m,=m) which is entangled for all
|m|<J. In the maximally anisotropic case y=0, the ground
state is |m,=-J), which is a product state. The loss of en-
tanglement in this case is due to the nonunitary term

exp(—yjz). Changing v, e.g., as function of time from < to 0
causes a smooth transition from a factorized to an entangled
many-body state.

Due to the symmetry of the coupling, all matrix elements
of the Hamiltonian between states corresponding to different
total spin J vanish exactly even for time-dependent param-
eter. Thus even though the ground state of Eq. (1) becomes
degenerate for y=0 with respect to the total spin J [17], the
system cannot undergo a quantum phase transition upon
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changing 7. Furthermore the degeneracy in J at y=0 can

casily be lifted by adding a term —\J? to Eq. (1), which has
no effect on |W).

In the following we will restrict ourselves to the most
interesting special case m=0. As has been shown in [22] and
[23] the collective state |m=0) has the largest global en-
tanglement and should thus be considered as the state with
maximum N-particle entanglement. A generalization to arbi-
trary m values is rather straightforward but less instructive.
An additional feature of the m=0 case is the presence of a
supersymmetry of the LMG Hamiltonian [16]. As a conse-
quence in every spin sector J the spectrum of Eq. (1) has for
all values of y a nondegenerate ground state and all excited
states are pairwise degenerate [15]. As shown in [16] the
energy gap between the ground state and the pair of first
excited states in every spin sector J does not close.

For m=0 the ground state (3) reads explicitly

eV
W) = ———|m, =0) (4)
VP (cosh2vy)

with P; being Legendre polynomials.

II1. BIPARTITE ENTANGLEMENT

In the following section we discuss the entanglement be-
tween two arbitrary partitions of the N particle system in the
SUSY ground state of the LMG model. As mentioned in the
Introduction it is not important here how the partitioning is
done. Due to the symmetry of the Hamiltonian only the num-
ber of particles in each partition is of relevance.

A. Entropy of entanglement and distribution of Schmidt
coefficients

A generally accepted quantitative measure for the en-
tanglement between two subsystems 1 and 2, if the total
system is in a pure state | V'), is the von Neumann entropy of
either of the two subsystems (entropy of entanglement):

S(W) =~ tri{piIn p;} =~ tro{psln py},

where

p1o=try {| TN}

are the reduced density matrices. S(W) is essentially a mea-
sure for the information loss due to division of the system
and ignoring one of the subsystems. If there is entanglement
between 1 and 2 in the original pure state |¥) of the total
system, the entropy is nonzero. On the other hand if | V)
factorizes there is no information loss if we ignore one sub-
system and the entropy vanishes.

The von Neumann entropy for pure states S(WV) is identi-
cal to the minimum relative entropy of entanglement E,(\V)
[24] with respect to all bipartite separable states o € S,:

UzEpio-il(goé’ pizos Epizl’
i i

Ey(¥) = minS(¥ || o), (5)

oeS,
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S(V 1l o) = tr(p logyp — p log,0), (6)

and p=|¥)XW|.

Calculating the von Neumann entropy of a many-particle
system is in general a very nontrivial task due to the expo-
nential growth of the relevant Hilbert space. We will show
now that the von Neumann entropy can be related to the
variance of the distribution of the Schmidt coefficients, ar-
ranged in an appropriate order, in the limit of a large number
of particles. For the symmetric spin states considered here
this variance can easily be calculated, which will be done in
the following subsection.

Let |¥) denote a pure state of a quantum system consist-
ing of two parts labeled 1 and 2. In the case of finite-
dimensional spaces, Schmidt’s theorem [25] asserts that any
state |¥) in the Hilbert space H, ® H, can be written in the
form

X
)= 2\, 00) @ [0P) %

m=1

where y<min{d,,d,},d; and d, being the dimensions of the
corresponding Hilbert spaces. {|<I)2))} and {|(I>flz)>} are sets of
orthonormal states for the subsystems 1 and 2, respectively,
and \,, are the positive Schmidt coefficients obeying the sum
rule

X
2N =1 (8)
m=1

It is easy to see that the entropy of entanglement is related to
the Schmidt coefficients via

X
S(W) == 2 N} log,\s,. )

m=1

The Schmidt rank, i.e., the number of Schmidt coefficients x,
provides a simple upper bound for the entropy of entangle-
ment S(W) <log,x. If x~min{d;,d,}, i.e., if it scales expo-
nentially with the number of particles, log,x is a polynomial
function of the number of particles in the smaller of the two
subsystems. For the symmetric coupling considered here, the
dimension of the relevant Hilbert space d increases only lin-
early in the number of particles, implying a logarithmic scal-
ing of log,x with the system size. Thus also the von Neu-
mann entropy S is expected to scale logarithmically;
however, with a yet unknown coefficient. In order to calcu-
late this coefficient it is obviously not sufficient to use log,x
as an estimate for S(W).

It is possible, however, to find a better estimate for S(\W)
in terms of the variance of the distribution of appropriately
ordered Schmidt coefficients. To show this we first note that,
as shown in [26], the following inequality holds:
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1
- f |f(x)|210g2|f(x)|2dx = 5(1 +log,me) + log,Ax,

(10)

where Ax?= [(x—x)?|f(x)|?dx is the variance of a probability
distribution f(x). This inequality becomes an equality if f(x)
is a Gaussian function.

For large values of y the sum in Eq. (9) can be written as
an integral with )\51—>)\2(m) representing a continuous,
smooth probability distribution. The functional form of this
distribution depends on the ordering of the Schmidt coeffi-
cients \,,. For symmetric states this ordering can be chosen
in such a way that \*(m) becomes to a good approximation a
Gaussian function [27]. In this case the entropy of entangle-
ment is given by

1
S(\I’)=§(1 + log,me) + log, AN, (11)

where AN is the variance of the Schmidt coefficients.

B. Clebsch-Gordan decomposition and bipartite entanglement

We will now calculate the entropy of entanglement using
Eq. (11) by finding a suitable bipartite decomposition of the
ground state (4) corresponding to two subsets of spins. The
scaling of S(W) with the system size will be studied in detail
and in particular the prefactor of the logarithm determined.
In the limit of a totally isotropic spin coupling y=0 an ex-
plicit analytic expression for the variance of the Schmidt
coefficients and the entanglement can be given. For nonzero
values of y numerical results will be presented.

As mentioned in the Introduction, we shall restrict
ourselves to the ground state with the highest spin quantum
number J=N/2. If we make such a choice and split the
system of N spins into two sets with Ny and N, spins, the
magnitude of the total spin of the two subsets is fixed as
J1=N,/2 and J,=N,/2. Let us illustrate this with the follow-
ing example. Consider the permutation-invariant |W) state

3 1
J==m===).
2 2

We split the system into two parts, one containing a single
spin and the other one two spins. The bases for the one-
particle subsystem and the two-particle one are, respectively,
{loyH|1)} and {|00),|11),]01),|10)}, which leads to

_ 2] [o1) +]10) 1
) = \E{—@ } @ [0y+ l00) @ [1).

We can identify [J=1,m=0)=(1/\2)[|01)+|10)],|/=1,m=
—1)=[00),[J=1/2,m==1/2)=|0), and J=1/2,m=+1/2).
Thus |¢) reads

2
ey

This is actually the Clebsch-Gordan decomposition of the
state |¢)=|J=3/2,m=~1/2) into two subsystems with angu-

) = ,1—5[|01o> +001) +|100)] =
N

1
1,0y ® [1/2,— 1/2) + _E 1,- 1) ®[1/2,1/2).
\
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lar momenta J;=1 and J,=1/2, with J,+J,=J=3/2.

In general, state (4) can be decomposed using the above
method into two subsystems with angular momenta J; and J,
that respect the condition J;+J,=J:

W) = My)e™ " {m, = 0)
=NZ 2 O dh

my nyp

- l)/)|J1,m1> ® |J2,m2>.

(12)

Here /172 are the Clebsch-Gordan (Wigner) coefficients

m mzm

and m=m+m,. d
[28]

- m(,B) are the rotation matrices defined as

&, (B) = (T[T, m)

(J+ m) ! (]_ m)' (Sin[_g)m—m'(cosE)nHm’
J+m)'(J=m")! 2

X pym=mtmsmn’) (cos B), (13)

where Pfl“’ﬂ )(x) are Jacobi polynomials. Since we are consid-
ering the special decomposition for J=J,+J,, the Wigner
coefficients have the binomial distribution:

( 2J )( 2J, )
(2 Y22 Ji+m )\ +m,

mymym ( 27 )
J+m

This relation combined with Eq.(13) gives the following de-
composition for the wave function |W):

(14)

Ji Jy
|\If>= E 2 Aml,m2(7)|‘]1’ml>®|J2’m2>’ (15)

my==J; my=—J,

with
A my(Y)
=My @)
\/ (J1)X2J) ! (27,)!
@DV Uy +my) V(T =my) L (Jy+my) L (T, = my)!
X (coth%)ml+m2P§_m‘_m2’m1+m2)(cosh ). (16)

Equation (15) is separable if all coefficients Ay factorize.
This is the case in the limit y— cc, where the coth term in
Eq.(16) approaches unity and the Jacobi polynomials factor-
ize in m; and m,.

1. Isotropic spin coupling y=0

Making use of the results of Sec. II A, the summation in
Eq. (12) can be carried out explicitly for the limit of isotropic
spin coupling. In this case one sees from Eq. (16) that only
coefficients Aml,m2 with m,+m,=0 survive. Thus one has the
following decomposition:
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Iog2 J1

FIG. 1. (Color online) Entropy of entanglement for y=0 as a
function of the logarithm of the subsystem spin J; for different
values of the total spin J. Due to the symmetry of S with respect to
JyJ—-J|, the curves saturate at J;=J/2.

1
Wy= > 202 ,m) @ |7,,—m),

m=-J,

where J,=J; was assumed without loss of generality. The
Schmidt coefficients are, therefore, the Clebsch-Gordan co-
efficients. In the limit J,>J, , they have a Gaussian form
[27]

2
(e = 22
\/Jl T

where |m|<J,<J,. The Gaussian form of the coefficients
allows us to make use of the relation (11) to calculate the von
Neumann entropy for J; <<J:

1 1
S= zlogzjl+5(1+log27're), v=0. (17)

In Fig. 1 we have plotted the von Neumann entropy for y
=0 as a function of the subsystem spin J;=N,/2 for different
values of the total spin J=N/2. For J; <J a logarithmic scal-
ing with prefactor 1/2 is evident. When J; approaches J/2
the entropy saturates since S is symmetric with respect to the
replacement J;«<J—J;. It is important to note that for J;
<J the von Neumann entropy S does not depend on J.

2. Anisotropic spin coupling y#0

If the spin coupling is anisotropic, i.e., if y# 0, the double
sum in Egs. (12) and (15) remains. Thus in order to discuss
the influence of a finite y it is necessary to explicitly evaluate
the sum in Eq. (9). We have done this numerically for a total
particle number up to 200 and subsystems up to 100 par-
ticles. The results are shown in Figs. 2 and 3. As can be seen
from Fig. 2 in contrast to the isotropic case y=0, the entropy
is no longer independent of the total spin if

_, -1
Y = Verit 7 .

In the thermodynamic limit the critical point is y=0.
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FIG. 2. (Color online) Entropy of entanglement for J=100 (full
line) and 200 (dashed line) as a function of logarithm of subsystem
spin J; for different values of y. One recognizes that in contrast to
the isotropic case the entropy now depends on the total spin J.

As can be seen from Fig. 3, for any y=J"! the entropy
becomes a function of the logarithm of the fraction of par-
ticles J;/J=N;/N.

Our numerical calculations suggest for J,<<J and
y>J! a functional dependence of the form

S~ f( ')/)IOgZ(JI/J), Y= Verit-
The reduction of entanglement with increasing 7y is ex-
pected. The state N(y)e ?<m,=0) is maximally entangled

for y=0 and the prefactor ¢~*: corresponds to a local non-
unitary operation which always decreases the amount of en-
tanglement. For large values of 7y the state becomes eventu-
ally separable.

The most peculiar feature of the von Neumann entropy is
the change of the scaling behavior with J; from S~log,J/,
for y<vy.: to S~log,J,/J for y=1y.; The role of

5 g g ; . ; ,

Entropy

log, J,J

FIG. 3. (Color online) Entropy of entanglement for different
values of 7y as a function of log,(J;/J) for J=100 (solid line) and
200 (dashed line). For yJ/=1 the curves become virtually
indistinguishable.
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-60 | . | . | . .

FIG. 4. (Color online) Ordered distribution of normalized
Schmidt numbers for different values of yJ.

Yerit=J~' and the change of the scaling behavior is also re-
flected in the distribution of ordered Schmidt numbers. As
can be seen from Fig. 4, the falloff of the Schmidt numbers
\,, becomes exponential when vyJ exceeds unity.

There is no obvious distinction of the point y=J"! in the
properties of the system. The system does not undergo a
phase transition at this point. Due to the SUSY, the qualita-
tive structure of the spectrum is the same for all values of y
and there is always an energy gap between the ground and
first excited states. Thus the question remains whether there
are any physical signatures for the change of the scaling
behavior of the entanglement at y=y_;.

IV. GEOMETRIC ESTIMATE FOR GLOBAL
ENTANGLEMENT

In the previous section we have discussed the bipartite
entanglement of two partitions of the N spin-1/2 system. We
have seen (see Fig. 3) that for y= 1, the von Neumann
entropy has a maximum value independent of J. In this sec-
tion we will quantitatively analyze this maximum by deter-
mining the N-partite or global entanglement Ey of the SUSY
ground state (4), which is an upper bound to the bipartite
entanglement E,. Although it is not possible to obtain an
analytic expression for Ey, we can determine a very good
estimate for it given by the geometric measure of entangle-
ment.

A. Relative entropy and geometric measure of entanglement

A many-particle state is called N-partite separable if it can
be written as a product of states of all N subsystems. Obvi-
ously a bipartite entangled state is always N-partite en-
tangled, but not vice versa. A quantitative measure of many-
particle or global entanglement of a state p is the minimum
relative entropy that determines the minimum distance be-
tween p and the set Sy of N-partite product states o [24]:

Ey=minS(pll o), (18)

oeSy

where

022326-5



UNANYAN, IONESCU, AND FLEISCHHAUER

S(pll o) = tr(p logop — plog,0), (19)
o € Sy being an N-partite separable state:
N
o= pipi @ py® o @ p (20)

i=1

with p;>0 and X;p,=1. For the bipartite case Ej is equiva-
lent to the entanglement of formation [24], which in the case
of pure states is identical to the von Neumann entropy.

Since the set Sy is smaller than S, for any partitioning,
SyCS,, it follows immediately that

EN(V) = Ey (W),

i.e., the global entanglement represents an upper bound to
the bipartite entanglement.

In order to compute Ey for any state p, one has to find its
closest product state o. This is in general a quite difficult
task and can be done only in very special cases. There is,
however, a lower bound to Ey which gives a good estimate
for the behavior of the global entanglement. This lower
bound is the geometric entanglement E;(\WV) [22,23]

EG(\I’) =-2 IOgZAmax(\I’)’ (21)
where

is the maximum overlap of |¥) with an N-partite separable
state |). E5(W) is not an entanglement monotone and thus,
in the strict sense, not a valid measure of entanglement. It
does give, however, a close lower bound to E, which for
some states such as the Dicke states is a tight bound, i.e.,
Eg=Ey [22]. The geometric entanglement can easily be cal-
culated for states that are permutation invariant, which is the
case for the SUSY ground state (4).

B. Geometric measure of entanglement for the SUSY state

To calculate the geometric entanglement E; or equiva-
lently the maximum overlap A, of the SUSY ground state
(4) with N-partite separable states it is sufficient to construct
the most general N-partite separable state which is invariant
under permutation of spins [22]. This state is given by rota-
tions of the state |[m,=—J):

|p) = e e"Plye 12 m_ = — J).

Calculating the overlap of |¢) with Eq. (4) and maximizing it
with respect to the real parameters «, 8 and ¢ leads to

|¢> = |mz:_J>'
The corresponding entanglement eigenvalue reads
B V(2I)! e

Amax( ) - f .
T VP,(cosh 21)

(23)

1. Isotropic spin coupling y=0
In the isotropic case Eq. (23) reduces to [22]
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log,J

FIG. 5. Geometric measure of entanglement as a function of
log,J for different values of the anisotropy parameter y. One rec-
ognizes a saturation at J= y;rlit.

J—
V(2J)!

Amax(?’:O): 2]‘]' (24)

and thus the geometric entanglement is given by

EG(\P)=%10g2J. Since the SUSY state for y=0 is the Dicke
state |J,m,=0) the geometric entanglement is a tight lower
bound to the relative entropy and thus

1
EN(W) =Eg(V) = SlogyJ. (25)

2. Anisotropic spin coupling y#0

It is obvious that the largest entanglement is obtained for
v=0, where the maximum overlap A, with separable states
is the smallest. On the other hand, for y— o, the state be-
comes identical to the separable state [m.=-J). The same
conclusion can of course be obtained from Eq. (23), employ-
ing the asymptotic expansion of the Legendre polynomials.

In Fig. 5 we have plotted the geometric entanglement as a
function of J for different values of 7. For sufficiently small
values of J, one recognizes a logarithmic growth which satu-
rates when J exceeds the value y~!. One can easily obtain an
analytic expression for the saturation value of E;. Making
use of the asymptotics of the Legendre polynomials for large
J and y#0,

1 /-1
P,(cosh2y) — eV
J( Y)Iarge JNT = ety 271

)

one arrives at the simple expression

Amax(’y) = (1 - e—4y)1/4’
leading to

Egnd) — ~log(1-e™).
large J 2

Comparing the numerical values for E, obtained in the pre-

vious section, one finds that E;<E,. This shows that in the

case of nonisotropic coupling y# 0 the geometric entangle-

ment is not a tight lower bound to the global entanglement,
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i.e., here E;<E)y. Thus E; can only be used as a qualitative
measure for the global entanglement Ej.

V. CONCLUSIONS

In the present paper we have studied the bipartite en-
tanglement between blocks of spins in the antiferromagnetic
Lipkin-Meshkov-Glick model under conditions of supersym-
metry. The supersymmetry of the model allows for an ex-
plicit construction of the ground state which undergoes a
smooth transition from a separable to a maximally entangled
state when changing the anisotropy of the collective spin
coupling. Making use of the Clebsch-Gordan decomposition
of angular momenta, the von Neumann entropy, which quan-
tifies the bipartite entanglement, can be calculated analyti-
cally in the isotropic case or numerically in the case of an-
isotropic coupling. Although the structure of the spectrum
stays always the same, with one nondegenerate ground state
and pair-wise degenerate excited states, and no level crossing
or merging occurs, the entanglement shows a discontinuous
behavior at the isotropy point. When the anisotropy param-
eter y vanishes exactly, the von Neumann entropy grows
logarithmically with the number of particles in the sub-
system. For any nonvanishing value of 7y (in the thermody-
namic limit) the entropy saturates at a finite value determined

PHYSICAL REVIEW A 72, 022326 (2005)

by . The maximum bipartite entanglement can be estimated
by the geometric measure of global entanglement, which has
been determined analytically. Furthermore in this case the
entropy becomes a function of the ratio of particle number in
the subsystem to the total particle number rather than a func-
tion of the subsystem size alone. For finite systems the tran-
sition between the two cases happens at a small but finite
value of y corresponding to the inverse of the total number
of spins.

The discontinuous scaling behavior of entanglement, as
observed here, is usually attributed to the disappearance of
an energy gap, i.e., a quantum phase transition. Only very
recently it was realized in [20] that also gapped quantum
spin chains can show a behavior reminiscent of a quantum
phase transition, where the characteristic length of spin-spin
entanglement diverges, while the correlation length remains
finite. This shows that the analysis of entanglement can re-
veal very interesting properties of interacting many-particle
systems, which cannot be seen in simple correlations.
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