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Exact numerical simulations of a one-dimensional trapped Bose gas
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We analyze the ground-state and low-temperature properties of a one-dimensional Bose gas in a harmonic
trapping potential using the numerical density-matrix renormalization group. Calculations cover the whole
range from the Bogoliubov limit of weak interactions to the Tonks-Girardeau limit. Local quantities such as
density and local three-body correlations are calculated and shown to agree very well with analytic predictions
within a local-density approximation. The transition between temperature-dominated to quantum-dominated
correlation is determined. It is shown that despite the presence of the harmonic trapping potential, first-order
correlations display, over a large range, the algebraic decay of a harmonic fluid with a Luttinger parameter

determined by the density at the trap center.
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Stimulated by the recent experimental progress in gener-
ating ultracold trapped quantum gases in one dimension
[1-6] there is a growing interest in correlation dynamical
properties of these systems. The physics of one-dimensional
(ID) quantum gases is distinct from that in higher dimen-
sions as it is dominated by quantum fluctuations. In a homo-
geneous system of bosons there is no long-range order even
at T=0; correlations decay as a power law due to zero-point
phase fluctuations. At any finite 7 there is an asymptotic
exponential decay. The most peculiar property of interacting
bosons in one dimension is the transition to the fermionlike
Tonks-Girardeau gas [7,8] for small densities or large
interactions. The transition is characterized by a single
effective interaction parameter, the Tonks parameter v,
where small values correspond to the weak interaction or
Bogoliubov limit and large values to the Tonks-Girardeau
limit. The homogeneous gas is exactly solvable by
Bethe ansatz for 7=0 [9] and finite 7 [10]. Correlation
properties can, however, not easily be extracted from the
Lieb-Liniger solution [11] and require, in general, numerical
techniques such as Monte Carlo simulations [12].
Approximate analytic expressions can be obtained only for
small distances [13] or within the harmonic-fluid approach
[14,15].

In the presence of a trap potential V(x) integrability is
lost. Nevertheless, in order to calculate local properties
Bethe-ansatz solutions for the homogeneous gas are em-
ployed together with a local-density approximation (LDA)
[16]. Recently we have used stochastic simulation to
calculate the density and first-order correlations of a 1D
Bose gas in a harmonic trap [17]. The simulations were,
however, limited to temperatures larger than the trap energy
kgT=~h w and thus did not allow us to go deeper into the
quantum regime. In the present paper we develop an alterna-
tive numerical approach based on the density-matrix renor-
malization group (DMRG) [18,19], which leads to results
with much higher precision for temperatures from zero to
ho.

Consider a 1D Bose gas with delta interaction in a (har-
monic) trapping potential V(x),
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where we have used oscillator units, i.e., i=m=1. g is the
1D interaction strength proportional to the s-wave scattering
length in one spatial dimension a;p [21].

In the absence of an external trapping potential the Hamil-
tonian (1) is integrable in the thermodynamic limit, i.e., it
has an infinite number of constants of motion. The ground-
state solution for 7=0, which can be obtained by Bethe an-
satz [9], shows that the 1D Bose gas is fully characterized by
the so-called Tonks parameter y=g/p. Here p is the density
of the gas. The Bethe ansatz leads to the so-called Lieb equa-
tion for the density of quasimomenta o(k),
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where \ is an implicit function of y: A=vy[ lldko(k). All
local properties of the gas can be expressed in terms of the
(even) moments of o(k),
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For example, the equation of state reads u=u(p,g)=g>*f(7y),

= 29D, @

Integrability is no longer given when a (harmonic) trap-
ping potential V(x) is taken into account. An often-used ap-
proximation to describe the local properties in this case is the
LDA. The LDA assumes that the homogeneous solution
holds with the chemical potential u replaced by an effective,
local chemical potential pp(x)=p—V(x). As long as the
characteristic length of changes is small compared to the
healing length, the LDA is believed to work well. Within this
approximation one finds, e.g., for the density of the gas,
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p<x>=ﬁ, (3)
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where f~! is the inverse function of Eq. (2).

In order to develop, in principle, an exact numerical algo-
rithm we employ powerful real-space renormalization meth-
ods such as the DMRG [18,19]. To this end it is necessary to
map the continuous to a lattice model. As shown in Refs.
[17,22], this can be done in a consistent way by introducing
an equidistant grid x;=jAx, j € Z, which amounts to replac-
ing the field operator \f’(xj) by d;/Ax, where d; is a bosonic
annihilation operator. Ax should be chosen small compared
to the average distance of particles in order to capture the

continuous structure of \f’, ie., Ax<< p_l. On the other hand,
Ax has to be larger than the 1D scattering length a,p. Inte-
grals are replaced by sums and the second derivate in the

kinetic energy can be approximated by the difference quo-

tient %‘f’(xj)z[\f’(xj+1)+‘f’()gj_l)—2\If(xj)]/Ax2. This leads
to the discretized Hamiltonian, which is equivalent to a

Bose-Hubbard Hamiltonian
H=2|-J@d; +dd;,) +Ddld;+
J
with effective tunneling J =fx2, effective energy D;
=ALXZ+V(xj)—,u,, and effective nonlinear energy given by
U :ﬁ. Expressing the scaled hopping in terms of the Tonks
parameter at the trap center, J/U=2/yp(0)Ax~ y~!, the 1D
gas corresponds to a compressible phase of the Bose-
Hubbard model with negative effective chemical potential
approaching the line ugy/U=-2J/U. In the limit Ax<p~!
Hamiltonians (1) and (4) become equivalent.

The numerical DMRG calculations of the density profile,
shown in Fig. 1, for Tonks parameters vy ranging from 0.4 to
about 70 show excellent agreement with the Lieb-Liniger
result with LDA (3) apart from a very small region at the trap
edges and the barely visible Friedel-type oscillations, which
result from the finite number of particles [20]. One recog-
nizes the typical change of the density profile from an in-
verted parabola in the Bogoliubov regime y<<1 to the square
root of a parabola in the Tonks-Girardeau limit y>1 [21].

An important consequence of the fermionlike behavior of
bosons in the Tonks limit y>1 is a dramatic reduction of the
loss rate due to inelastic three-body collisions [3]. The rate is
proportional to the local three-particle correlation gz(x)

=(W3(x)P3(x))/ p(x)3, and determines the stability of the
Bose gas. Making use of the Hellman-Feynman theorem and

the constants of motion of the homogeneous gas
Cheianov [25] has found

3 5 366, 96
g3=—54_ﬂ+<1+g>e;-29-#+—2. (5)
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Figure 2 shows a comparison between the numerical data for
g5(0) at the trap center with Eq. (5) and the asymptotic ex-
pression in the Tonks-Girardeau limit with the vy taken at the
trap center y(0)=g/p(0). One recognizes again excellent
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FIG. 1. (Color online) Density of the 1D bosonic gas in a trap at
T=0. The solid lines are the DMRG results and the dotted lines are
the Lieb-Liniger prediction in local-density approximation. Increas-
ing values of 7y correspond to decreasing densities at the trap center.
The inset shows details at the edge of the density distribution.
Lose=VAi/mw is the oscillator length corresponding to the trap
potential.

agreement except for a small deviation for very large v,
where the numerics is, however, susceptible to errors due to
the smallness of gs.

In contrast to local quantities, such as the moments of the
number density, information about spatial correlations of the
homogeneous 1D Bose gas such as g;(x;,xy)
=(\IA’T(x1)‘IA’(x2))/ \p(x1)p(x,) cannot straightforwardly be
obtained from the Lieb-Liniger and Yang-Yang theories.
Making use of the asymptotic properties of the Lieb-Liniger
wave function for large momenta, Olshanii and Dunjko de-
rived the lowest-order terms of the Taylor expansion of g,

[13],
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FIG. 2. (Color online) Local third-order correlations as a func-
tion of the Tonks parameter at the trap center as obtained from the
DMRG calculation (red crosses) compared to the prediction from
the Lieb-Liniger theory with the local-density approximation (solid
line) and the Tonks-Girardeau limit (dashed line). Parameters of the
DMRG calculations are the same as in Fig. 5.
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FIG. 3. (Color online) First-order correlations (dashed lines)
compared to analytic short-distance expansion (solid lines) for a
homogeneous gas with vy taken at the trap center. Values of y in-
crease from the top to the bottom curve.
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with x=x;—x,. In the presence of a trapping potential the
Tonks parameter becomes space-dependent y— y(x). Short-
range correlations are expected not to depend on the pres-
ence of the confining trap. Figure 3 shows a comparison
between g; obtained from Eq. (6) and numerical results for
different Tonks parameters at the trap center. Taking into
account that a high resolution of the short-distance behavior
is numerically difficult the agreement is rather good.

The long-range or low-momentum behavior of the corre-
lations can be obtained from a quantum hydrodynamic ap-
proach [14] in which long-wave properties of the 1D fluid
are described in terms of local-density fluctuations dp and

the phase ¢: W(x)= \p(x)e™#%). The equations of motion for
dp and ¢ follow from the effective Hamiltonian [23,24]

He [ EpomspaP rolag). 0
o

Here vy=(m)"'du/dp and v,=mp.

In the homogeneous case one finds that the leading-order
term in the asymptotics of first-order correlation at tempera-
ture T are given by [23]

K/LT 172K

7T|x1 —x2| | ®)
p sinh| ——
T

g1(xp,xp) =

where K=\v;/vy is the so-called Luttinger parameter and Ly
is the thermal correlation length Ly=mp/KT, with kz=1. One
recognizes that for 7=0 correlations decay asymptotically as
a power law with exponent 1/2K, while for finite 7 there is
an intermediate power-law behavior turning into an exponen-
tial decay for |x;—x,| =L;. For T=0 the exponent 1/2K is
given by
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FIG. 4. (Color online) First-order correlations in the temperature
regime between exponential and algebraic decay. (a) Semilogarith-
mic plot. (b) Double logarithmic. Solid curves are DMRG calcula-
tions in the trap; dotted lines are harmonic fluid predictions for a
homogeneous gas with vy taken at the trap center. Transition from
thermal (exponential decay) to quantum-dominated correlations (al-
gebraic decay) at T<<w is apparent. The parameters are ¥(0)

=3.95, N=12.
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In Fig. 4 we have plotted the first-order coherence
g1(x,—x) for symmetric positions with respect to the trap
center for y=3.95 and different temperatures. Since for small
but nonzero 7' a much larger number of exited states needs to
be taken into account, the number of atoms is practically
limited to a few tens. For comparison the harmonic-fluid
results for the homogeneous case, Eq. (8), are also shown
with K and p taken at the trap center and for 7=0. With the
help of the results in Ref. [10] we could determine p and K
also for 7>0. However, we find that they do not change
significantly in the temperature regime 7<w, so that the
difference of decay is mainly coming from L;. One recog-
nizes two things: First of all the transition from an exponen-
tial to a power-law decay happens around 7=0.1w for which
L;=~30L,.. Secondly the correlations are rather well de-
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FIG. 5. (Color online) Logarithmic plot of first-order correla-
tions for 7=0 and various interaction strengths (dots). The dashed
lines show power-law prediction from the harmonic-fluid approach
with a Luttinger parameter determined by the density at the trap
center. 7y increases from the top to the bottom curves.

scribed by the homogeneous solution (8). A similar observa-
tion can be made at 7=0. Figure 5 shows the DMRG results
for g,(x,—x) for different interaction strength. The solid lines
show the harmonic-fluid predictions for the homogeneous
case. Again a rather good agreement is found for x=3L,
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which on first glance is surprising since the density is space
dependent. The agreement is less surprising if one notes that
v(x) and thus the local Luttinger parameter K(x) are almost
constant within this distance range.

In summary, we have developed a numerical scheme
based on the density-matrix renormalization group that al-
lows one to calculate local properties as well as correlations
of a 1D Bose gas in a trapping potential for temperatures up
to the oscillator frequency. For T=0 particle numbers up to
100 can be simulated; for 0 <7T= w the number drops to a
few tens. For local quantities such as the density or the local
three-body correlation we found excellent agreement with
the predictions from the Lieb-Liniger and Yang-Yang theo-
ries with local-density approximation. Deviations from LDA
are found only in the immediate vicinity of the edges of the
gas or for smaller particle numbers where finite-size effects
come into play. We have shown that first-order correlations
for positions well within the gas are well described by the
homogeneous theory with parameters taken at the trap center.
The transition from a thermal-dominated regime of exponen-
tial decay to a power-law decay of correlations was shown,
with exponents as predicted by the harmonic-fluid approach
in the homogeneous case for parameters taken at the trap
center.
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