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Quantum-field-theoretical approach to phase-space techniques:
Generalizing the positive-P representation
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We present an introduction to phase-space techniques~PST! based on a quantum-field-theoretical~QFT!
approach. In addition to bridging the gap between PST and QFT, our approach results in a number of gener-
alizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck
equation~even after phase-space doubling! and hence fail to produce a stochastic differential equation~SDE!,
we show how the system in question may be approximated via stochastic difference equations (SDE). Second,
we show that introducing sources into the SDE’s~or SDE’s! generalizes them to a full quantum nonlinear
stochastic response problem~thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic
response theory!. Third, we establish general relations linking quantum response properties of the system in
question to averages of operator products ordered in a way different from time normal. This extends PST to a
much wider assemblage of operator products than are usually considered in phase-space approaches. In all
cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase
space.

DOI: 10.1103/PhysRevA.67.013812 PACS number~s!: 42.50.Lc, 42.50.Dv, 42.65.2k
n
ap
h
th
of
r
th

n

r
a

m
ly
e

a
to
iq
he
r,
in

te
f
tri
to
re

e

ator

es

d is
,
that
t is,

to-
tant
ec-
thus
h-

e
ver-
s

lves

the

ua-
n-
ot a
I. INTRODUCTION

Most of the interesting nonlinear quantum systems are
amenable to theoretical analysis without making various
proximations, which can lead to losing sight of some of t
physics involved. A numerical treatment may then be
only valid option. For equilibrium systems, a variety
methods known under the name of quantum Monte Ca
have been devised. For real-time evolution, especially in
field of quantum optics, phase-space methods have bee
veloped~for a review of phase-space techniques~PST! see,
e.g., Ref.@1#!. Stochastic simulations using stochastic diffe
ential equations~SDEs! in phase space have long been
successful computational tool in quantum stochastics@1,2#,
allowing for the numerical stochastic integration of syste
for which analytical solution would be, at best, extreme
difficult. More recently, these methods have also been
tended into the field of Bose-Einstein condensation@3–7#.

What we offer in this paper is a very simple and transp
ent way of directly linking quantum equations of motion
SDEs in phase space. Conventional phase-space techn
~PST! are based on the well-known duality between t
Fokker-Planck equations~FPE! and Langevin equations o
more generally, SDE, which goes back as far as Einste
and Langevin’s theories of Brownian motion~see Risken’s
book @8# for a detailed discussion of the FPE and rela
issues!. Our techniques do not rely on the existence o
Fokker-Planck equation for a suitable quasiprobability dis
bution and hence work for a much wider class of Hamil
nians~a version starting from a master equation will be p
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sented elsewhere!. We also show how PST may b
generalized to scattering~response! problems.

The essence of PST ismappingof quantum problems onto
c-number stochastic problems. A certain subset of oper
averages having been chosen, one finds ac-number stochas-
tic process involvingc-number fields, such that the averag
of the latter equal the corresponding quantum averages.~The
reason why only a subset of quantum averages is mappe
the noncommutivity ofq-number field operators. In PST
these chosen averages are singled out by requiring
quantum-field operators are ordered in a certain way. Tha
any quantum-classical mapping is based on anordering of
operators.! For example, in the well-known positive-P rep-
resentation@9# (1P, for brevity! one maps averages oftime-
normally orderedoperator products onto averages of a s
chastic process in a doubled phase space. An impor
feature of our techniques is that they only indicate the n
essary conditions to be imposed on such a mapping and
reveal thefreedomassociated with it. This makes our tec
niques useful in the search for generalizations of the1P
@10,11# or Wigner @12# representations in order to overcom
certain mathematical problems and achieve better con
gence~see, e.g., Ref.@13# for the discussion of problem
associated with the conventional1P).

In this and subsequent papers, we will concern ourse
with the following three questions:

~a! Are averages other than time-normal amenable to
PST?

~b! Can the PST be generalized to scattering~response!
problems?

~c! Can one devise a stochastic representation if the eq
tion for the appropriate pseudoprobability distribution co
tains higher than second-order derivatives and hence is n
©2003 The American Physical Society12-1
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genuine Fokker-Planck equation?
These three questions are deeply interlinked. For

ample, if one chooses to work with Weyl’s, or symmetr
operator ordering, the equation for the related Wign
pseudoprobability distribution, as a rule, is not a genu
FPE. We thus see an obvious link between questions~a! and
~c!. More importantly, we show that there exists a profou
connection between questions~a! and ~b!. That such a con-
nection must indeed exist is made immediately clear
closely considering Kubo’s famous formula for the line
response function@14#. Using as an example a nonline
quantum oscillator, the latter is expressed by the aver
commutator,

R~ t2t8!52 i\21u~ t2t8!^@ â~ t !,â†~ t8!#&, ~1!

where â(t),â†(t) are the oscillator annihilation and creatio
operators in the Heisenberg picture. The commutator
combination of two terms,^@ â(t),â†(t8)#&5^â(t)â†(t8)&
2^â†(t8)â(t)&, of which the first is anti-time-normally or
dered and the second is time-normally ordered. Furtherm
Eq. ~1! may be inverted@15,16# resulting in

^â~ t !â†~ t8!&5^â†~ t8!â~ t !&1 i\@R~ t2t8!2R* ~ t82t !#.

~2!

An antinormally-ordered average is thus expressed as a c
bination of the corresponding normally-ordered average
linear response functions.

This relation between the non-normally ordered avera
and response turns out to be fundamental. We show be
that Kubo’s formula for the linear response function may
generalized to an arbitrary quantum nonlinear stochastic
sponse function. Namely, any such function is expressed
finite combination of averages of double-time-ordered ope
tor products~known, e.g., from the Perel-Keldysh diagra
approach@17#!. On the other hand, any double-time-order
average can be expressed as a finite combination of resp
functions. The implications of this result for the quantu
measurement problem are yet to be understood. From
perspective, it eliminates~b! as a separate question, while a
answer to~a! proves to be unexpectedly simple: the respo
formulation of a quantum system is achieved by includ
sources into the1P equations.@This also applies to variou
generalizations of1P emerging in response to questions~a!
and ~c!.# Dropping the sources recovers the1P equations
known in PST; physically, this corresponds to consider
only radiation problems.~Note that external sources are com
monly present in quantum-optical problems as pump ter
The difference between the radiation and response form
tions is whether the pump is, respectively, fixed or arbitra
variable.!

As to ~c!, it would seem at first glance that an affirmativ
answer is prohibited by Pawula’s theorem@8,18#. This theo-
rem states, loosely speaking, that Langevin equations
only be written for those systems for which the equation
the probability distribution is a genuine Fokker-Planck eq
tion. This certainly prohibits anexactmapping of a quantum
problem on ac-number problem described by an SDE. T
01381
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necessary opening appears if we agree to have only anap-
proximatemapping and consider stochasticdifferenceequa-
tions (SDEs) in discretized time. As numerical simulation o
a discrete time grid is often the only possible exact treatm
for highly nonlinear systems, the development of SDEs, al-
though these have no continous time limit, is, for all practi
purposes, sufficient~and does not violate Pawula’s theore
as this only applies in the continuous time limit!. The ques-
tion as to whether a stochastic process in a certain gen
ized mathematical sense can be defined corresponding to
methods is a subject for futher investigation.

This paper is structured as follows. Using the quant
oscillator with Kerr nonlinearity as a demonstrative examp
in Sec. II we reiterate a derivation of the Keldysh diagra
series@17#, resulting in a closed perturbative relation for th
double-time-ordered averages.~More precisely speaking, we
derive agenerating expression@19# for the Keldysh series.
However, we do not expand this generating expression
power series, which would result in an actual diagram se
@19#, nor do we introduce any diagram notation as such. T
also applies to other types of diagram series mentioned
low.! We discuss in detail causal regularization@19# of the
propagator, which is necessary in order to make our relati
unambiguous. In Sec. III, we investigate thecausal structure
of the closed perturbative relation found in Sec. II, recast
it as a generating expression for a Wyld-type series@20#,
otherwise termedcausalseries@19,21,22#. We then show that
this Wyld series is a formal solution to a full nonlinea
quantum-stochastic response problem, generalising Ku
linear reaction approach@14#. Examples of formulas for sto
chastic response functions are given in the Appendix. In S
IV, we show that generating expressions for causal se
also emerge as formal solutions toc-number stochastic prob
lems @19#. We then develop techniques based on
Hubbard-Stratonovich transformation~HST! @23# which al-
lows for a constructive mapping of quantum nonlinear
sponse problems onto classical nonlinear stochastic resp
problems. We discuss how multiple HST’s may be used
deriving SDE’s for quantum systems for which the usu
methods would result in a generalized FPE with higher-or
derivatives @24,25# thus failing to produce an SDE. Thi
yields strikingly simple and powerful techniques for obtai
ing stochastic representations of quantum problems. Per
the most important property of these techniques is that t
can be formulated using simple recipes and then used w
out any reference to the advanced methods employed in
derivation. The utility of our methods is demonstrated in S
V. We start by reformulating our results recipe style, the w
they should be applied in calculations, then illustrate them
the examples of the Kerr oscillator, optical parametric os
lator and triply degenerate four-wave mixing.

II. QUANTUM-FIELD THEORY OF THE KERR
OSCILLATOR

A. The model

The techniques we introduce in this paper are applica
to any Hamiltonians which have a polynomial form in th
2-2
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QUANTUM-FIELD-THEORETICAL APPROACH TO . . . PHYSICAL REVIEW A67, 013812 ~2003!
field operators. We also assume that the Hamiltonian can
divided into a quadratic part, called the free Hamiltonia
and the remainder, termed the interaction Hamiltonian;
allows one to introduce, in the usual manner, Schro¨dinger,
Heisenberg, and interaction-picture field operators. Howe
this requirement may always be satisfied by subtractin
suitable quadratic term from the Hamiltonian, and declar
the remainder as being the ‘‘interaction’’ part~cf. the way a
Higgs-type phase transition in an anharmonic oscillator w
treated in Ref.@21#!.

This generality notwithstanding, our techniques may
effectively demonstrated for a 1D oscillator~as is usual in
quantum-field theory!. We therefore consider a nonlinea
quantum oscillator with the Hamiltonian

H5H01Hint5vâ†â1
k

2
â†2â2, ~3!

using units such that\51. In Eq.~3!, â† and â are the pair
of creation and annihilation operators with commuta

@ â,â†#51, which play the role of Schro¨dinger-picture field
operators for this system. The field operators in the inter
tion picture are simply

â~ t !5e2 ivtâ, â†~ t !5eivtâ†, ~4!

while Heisenberg picture operators will be denoted in rom
font as â†(t) and â(t).

B. Time orderings of operators

We start by reiterating the definitions oftime-orderedop-
erator products. Time ordering of field operators sorts th
from right to left in the order ofincreasingtime arguments,
e.g. @with u(t) being the Heaviside function#,

T1â~ t8!â†~ t !5â†~ t !â~ t8!u~ t2t8!1â~ t8!â†~ t !u~ t82t !.

~5!

For equal times, we specify the time ordering as normal
dering ~which places all creation operators on the left
annihilation operators!. That is,

T1â~ t !â†~ t !5T1â†~ t !â~ t !5â†~ t !â~ t !. ~6!

We also specify reverse time orderingT2 which places op-
erators in the order ofdecreasingtime arguments. Formally
it may be defined as the conjugate ofT1 :

T2P̂5@T1~ P̂†!#†, ~7!

whereP̂ is a product of field operators. Then, e.g.,

T2â~ t8!â†~ t !5â†~ t !â~ t8!u~ t82t !1â~ t8!â†~ t !u~ t2t8!.

~8!

For equal times,T2 also becomes normal ordering. Finall
double-time ordering is the combination of theT1 and
T2-orderings,
01381
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T2P̂2T1P̂1 , ~9!

whereP̂2 and P̂1 are operator products.
To avoid the excessive use of brackets in formulas,

imply that theT1-ordering symbol applies to all operators o
its right. The same holds for theT2-ordering symbol if used
alone. However, in double-time-ordered expressionsT2 acts
on operators between itself andT1 . So, in ~9!, T1 acts on
P̂1 while T2 acts onP̂2 . In order to emphasise or explicitly
delineate the range of applicability of an ordering symb
brackets are placed around the whole ordered expressio
cluding the symbol, as in Eq.~7! above and Eqs.~20!, ~22!,
and ~23! below.

C. Closed perturbative relations for quantum-field averages

For all practical purposes, the quantities of interest
operator expectation values rather than the operators th
selves. For reasons which will become clear below, we c
sider averages of double-time-ordered operator product
characteristic functional of these is defined as

J~z2 ,z1 ,z2
† ,z1

† !5 K T2expE dt~z2â†1z2
† â!

3T1expE dt~z1â†1z1
† â!L .

~10!

The angle brackets used here define an averaging ove
Heisenbergr matrix of the quantum field~or over the field’s
initial state, which is the same thing!:

^•••&5Trr̂~••• !. ~11!

The functional ~10! depends on four arbitraryc-number
functions, z2(t),z1(t),z2

† (t),z1
† (t); for brevity, we have

omitted the time arguments on the rhs of Eq.~10!. ~Note that,
for operators, † is Hermitian conjugation, whereas for
c-number functions it is merely a notation distinguishing tw
different sets of these. This applies to all other sets of c
jugatedc-numbers introduced later in the paper.!

Our immediate goal is to formulate a closed perturbat
relation for the characteristic functional~10!. We will closely
follow the way in which Feynman diagram techniques we
derived in textbooks dating back to 1950s and 1960s@26#. In
the pre-path-integral era, a standard derivation leading
Feynman diagrams included three major steps:

~i! Introduce the interaction picture and express tim
ordered products of Heisenberg field operators via those
the interaction-picture operators.

~ii ! Use Wick’s theorem so as to reorder time-order
products normally.

~iii ! Perform the averaging over the initial-field-state a
sumed to be vacuum; since averaging of any normally
dered product over vacuum yields zero, this results in
c-number representation for the quantum averages.

The result is the closed perturbation relation that we
seeking. Expanding it in a power series would yield an act
2-3
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PLIMAK, FLEISCHHAUER, OLSEN, AND COLLETT PHYSICAL REVIEW A67, 013812 ~2003!
diagram series. However, we will leave it ‘‘intact’’ for late
use in the derivation of quantum-classical mappings.

An example of such a derivation starting fromT1 ordered
averages may be found in Ref.@27#. Its success howeve
depends on the field being initially in a vacuum state. Phy
cally, this is too strong a restriction, so we have to genera
the techniques developed in Ref.@27# so as to cover nonva
cuum initial states. When working with such states, it is co
venient to characterize the initial state of the oscillator by
correspondingP distribution,

P~a!5
1

p2E d2h^eh(â†2a* )2h* (â2a)2uhu2/2&,

r̂5E d2aP~a!ua&^au, ~12!

where ua& is the well-known coherent state. For any no
mally ordered operator expression we then have

^:X~ â†~ t !,â~ t !!:&5E d2aP~a!^au:X~ â†~ t !,â~ t !!:ua&

5E d2aP~a!X„a* ~ t !,a~ t !…, ~13!

where a(t)5ae2 ivt is the coherent amplitude of th
interaction-picture field operator,â(t)ua&5a(t)ua&. The lat-
ter relation allows one to perform the averaging as requ
by step~iii ! of the aforementioned schedule.

Step~ii ! of this schedule also needs an amendment. I
easy to see that, given nonvacuum initial field states, clo
formulas for time-ordered averages can no longer be deri
The minimal set of operator averages for which closed p
turbation relations exist is that of double-time-ordered av
ages. We thus need a modification of Wick’s theorem so a
include double-time ordering. This modification is in fa
well known, leading to the Perel-Keldysh diagram tec
niques @17#. We shall discuss it in some detail, taking th
opportunity to introduce quantities and formulas which w
be used later.

Wick’s theorem states that ‘‘a time-ordered product
interaction-picture field operators equals the sum of all p
sible normally ordered operator products, obtained by rep
ing pairs of operators in the initial product by correspond
contractions~including the term without contractions!.’’ For
the oscillator we have only one nonzero contraction, nam

T1â~ t8!â†~ t !2:â†~ t !â~ t8!:

5^0uT1â†~ t !â~ t8!u0&

5u~ t82t !e2 iv(t82t)[ iG~ t82t !, ~14!
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whereG(t) is a retarded Green’s function of the free Schr¨-
dinger equation,

S i
]

]t
2v DG~ t !5d~ t !. ~15!

It may be verified that the proof of Wick’s theorem@26# is
based only on the linear ordering of the time axis; con
quently Wick’s theorem may be generalized to operators
fined formally on any linearly ordered set. This clearly a
plies to the double-time ordering, Eq.~9!, which may
alternatively be introduced as an ordering on the so-calleC
contour@17#. The C contour~see Fig. 1! first travels fromt
52` to t51` ~direct branch! and then back tot52`
~reverse branch!. Assigning an operator aC-contour index
‘‘ 1 ’’ or ‘‘ 2 ’’ is equivalent to placing it, respectively, unde
the T1 or T2 ordering in Eq.~9!. For theTC ordering, op-
erator contraction becomes a matrix with respect to
C-contour indices (a,b51,2),

iGab~ t82t !5^0uTCâa~ t8!âb
†~ t !u0&. ~16!

The three nonzero components ofGab ~also shown sche-
matically in Fig. 1! are conveniently expressed in terms
G(t) introduced in Eq.~14!:

G11~ t !5G~ t !,

G22~ t !52G* ~2t !,

G21~ t !5G~ t !2G* ~2t !. ~17!

For our purposes, it is convenient to use a closed fu
tional form of Wick’s theorem. As was first noticed by Ho
@28#, the pattern of products with contractions required
Wick’s theorem is exactly that produced by a certain fun
tional differential operator; this also remains the case a
Wick’s theorem is generalized to the double time order
@29#. The functional~Hori’s! form of Wick’s theorem as ap-
plied to the double time ordering is

FIG. 1. The Schwinger-Perel-KeldyshC contour~thin lines! and
the three contractions contributing toDC ~thick lines!, cf. Eq. ~19!.
The arrows on contractions are from creation to annihilation, cf.
~16!. For G11 and G22 , the time order of ends corresponds
these being nonzero.
T2P̂2T1P̂15:@eDC~ P̂2u â→a2 ;â†→a
2
† P̂1u â→a1 ;â†→a

1
† !#ua2 ,a1→â;a

2
† ,a

1
† →â†:. ~18!
2-4
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Here, P̂2 and P̂1 are arbitrary operator products
a6(t),a6

† (t) are four independentc-number functions, and
DC is a quadratic form of functional derivatives:

DC5E dtdt8F iG11~ t82t !
d2

da1~ t8!da1
† ~ t !

1 iG22~ t82t !

3
d2

da2~ t8!da2
† ~ t !

1 iG21~ t82t !
d2

da2~ t8!da1
† ~ t !

G .

~19!

Note that Eqs.~18! and ~19! have been formulated so as
eliminate the concept of theC contour from any further con
siderations.

Consider now step~i! of the aforementioned derivatio
schedule. As is shown in many textbooks on quantum-fi
theory~QFT! ~see, e.g., Ref.@26#!, a time-ordered product o
Heisenberg operators,A(t), . . . , B(t8), may be expressed
as

T1A~ t !•••B~ t8!5S †@T1SA~ t !•••B~ t8!#, ~20!

whereA(t), . . . , B(t8), are the same operators in the inte
action picture andS is the S matrix. In our demonstrative
model,

S5T1expE dtF2
ik

2
â†2~ t !â2~ t !G , ~21!

so that@cf. Eq. ~10!#

T1expE dt~zâ†1z†â!

5S †FT1expE dtS zâ†1z†â2
ik

2
â†2â2D G .

~22!

This formula was used in Ref.@27#. Amending it to the case
of double-time ordering is straightforward. Conjugating~22!,

T2expE dt~zâ†1z†â!

5FT2expE dtS zâ†1z†â1
ik

2
â†2â2D GS,

~23!

then multiplying Eqs.~22! and ~23!, we find

T2expE dt~z2â†1z2
† â!T1expE dt~z1â†1z1

† â!

5T2expE dtS z2â†1z2
† â1

ik

2
â†2â2D

3T1expE dtS z1â†1z1
† â2

ik

2
â†2â2D . ~24!
01381
ld

Importantly, the factorsS andS † outside the orderings hav
canceled each other, resulting in a genuine double-tim
ordered structure on the rhs of Eq.~24!.

Finally, combining Eqs.~24! and ~18! and then applying
relation ~13! yields

J~z2 ,z1 ,z2
† ,z1

† !

5E d2aP~a!H exp~DC!expE dtFz2a2
† 1z2

† a2

1z1a1
† 1z1

† a11
ik

2
~a2

†2a2
2 2a1

†2a1
2 !GU

a→a
J ,

~25!

where a→a is a short hand for the substitution,a1(t)
5a2(t)5a(t),a1

† (t)5a2
† (t)5a* (t). A more pedagogical

approach may be found in our e-print Ref.@29# ~see, also
Refs.@15,21#!.

D. Causal regularization

Wick’s theorem requires that no contractions should oc
between operators with equal time arguments.~This is sim-
ply because the time ordering was specified for equal tim
as normal ordering.! A convenient way of enforcing this ca
veat is acausal regularizationof G(t). To this end, we shall
assume thatG(t) is smoothed while still preserving it
causal nature:G(t)50 for t,0. For example, one can re
place,G(t)→(12e2Gt)G(t), whereG is a large constant~a
reader versed in QFT would immediately recognize this a
nonrelativistic single-mode version of the Pauli-Villars reg
larization @26#!. This makesG(t) a continuous function, for
which G(0)50 holds unambiguously, so that a contracti
between any pair of operators with equal time argument
always zero.

For the double-time ordering, a regularized matrix of co
tractions is defined as per Eq.~17!. The T2 ordering also
being specified for equal time as normal ordering, the ‘‘
contractions between same-time operators’’ caveat of Wic
theorem applies equally to operators under theT2 ordering.
It is then enforced through the equation relatingG22(t) to
G(t) and the causal regularization ofG(t). At the same time,
through the equation relatingG21(t) to G(t), the regular-
ization also modifiesG21(t), unnecessarily ‘‘burning a
hole’’ in it in the vicinity of t50. We have to make sure tha
this modification ofG21(t) does not lead to incorrect re
sults. The fact that weird results may indeed follow is de
onstrated by, e.g., a ‘‘proof’’ thatâ and â† commute. With
regularization,G21(0)50, and we ‘‘obtain,’’

ââ†5TCâ2~ t !â1
† ~ t !5â†~ t !â~ t !1 iG21~0!5â†â.

~26!

The flaw in this ‘‘proof’’ is that all quantities we deal with
should be regarded as generalized functions~distributions!
and not pointwise functions. This is especially true und
regularization. ‘‘Holes’’ in continuous functions which
emerge due to regularization should be simply igno
2-5
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~smeared out!. We would only expect problems associat
with the ‘‘holes’’ if they were overlapping with sufficiently
strong singularities,d functions or worse, whereas the wor
type of singularity that we may expect to occur is a s
function. The ‘‘hole’’ in G21(t) is thus of no material con
sequence.

III. SIGNAL PROPAGATION BY MEANS
OF INTERACTING BOSONIC FIELDS

Our next goal is to investigate thecausal structureof Eqs.
~25!. The concept of causality is introduced via the contr
tion iG(t), which, according to Eq.~15!, is, up to a phase
exactly the retarded Green’s function of the free Schro¨dinger
equation. Following this, we are able to define theinput and
outputof a quantum system. We then show that, physica
the input and output thus introduced correspond to a ge
alization of Kubo’s linear reaction approach@14# to a full
nonlinear quantum-stochastic response problem.

A. Causal variables

Consider in more detail the differential quadratic form
Eq. ~25!. Making use of relations~17!, and utilizing the no-
tation

d

da
G

d

da†
5E dtdt8G~ t82t !

d2

da~ t8!da†~ t !
, ~27!

we find

DC5 i S d

da1
1

d

da2
DG

d

da1
†

2 i S d

da1
†

1
d

da2
† D G*

d

da2
.

~28!

We now change the functional variables,a6(t),a6
† (t)

→a(t),a†(t),j(t),j†(t), in order to obtain

DC5
d

da
G

d

dj†
1

d

da†
G*

d

dj
. ~29!

That is,

d

dj†~ t !
5 i

d

da1
† ~ t !

,

d

dj~ t !
52 i

d

da2~ t !
,

d

da†~ t !
5

d

da1
† ~ t !

1
d

da2
† ~ t !

,

d

da~ t !
5

d

da1~ t !
1

d

da2~ t !
. ~30!

These relations determine the new variables up to arbit
functions which we chose to be zero:
01381
p
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,
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a1~ t !5a~ t !, a1
† ~ t !5a†~ t !1 i j†~ t !,

a2~ t !5a~ t !2 i j~ t !, a2
† ~ t !5a†~ t !. ~31!

Consider now the integrand in the second exponent in
~25!: ~again omitting time arguments for brevity!

z2a2
† 1z2

† a21z1a1
† 1z1

† a15~z21z1!a†1~z2
† 1z1

† !a

2 i jz2
† 1 i j†z1 . ~32!

This clearly suggests another substitution, this time in
functionalJ itself,

J~z2 ,z1 ,z2
† ,z1

† ![F~z,z†,s,s†!, ~33!

where

z~ t !5z2~ t !1z1~ t !, z†~ t !5z2
† ~ t !1z1

† ~ t !,

s~ t !51 i z1~ t !, s†~ t !52 i z2
† ~ t !, ~34!

so that

z1~ t !52 is~ t !, z1
† ~ t !5z†~ t !2 is†~ t !,

z2~ t !5z~ t !1 is~ t !, z2
† ~ t !5 is†~ t !. ~35!

In the causal variables@37# thus introduced, Eq.~25! be-
comes

F~z,z†,s,s†!5E d2aP~a!

3H FexpS d

da
G

d

dj†
1

d

da†
G*

d

dj D
3expE dt@za†1z†a1js†1j†s

1Sint~j,j†,a,a†!#GU
a5a,a†5a* ,j5j†50

J ,

~36!

where

Sint~j,j†,a,a†!5k~ja†2a1j†a2a†!1
ik

2
~j†2a22j2a†2!.

~37!

~Unlike in Ref. @29#, Sint here is a pointwise function, not
functional.!

It should be stressed that Eq.~36! is universal, while all
details of the problem enter throughSint . In generalSint is
found as

Sint~j,j†,a,a†!5 ih~a†,a2 i j!2 ih~a†1 i j†,a!, ~38!

whereh is the normally ordered representation of the int
action Hamiltonian

Hint5:h~ â†,â!:. ~39!
2-6
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Generalization of Eq.~36! to multimode problems~see Sec.
V! is also straightforward.

B. Quantum nonlinear reaction problem

To gain more insight into the causal variables, we n
introduce a variable pump term into the interaction Ham
tonian, which then reads~in the interaction picture!

H̃ int~ t !5H int~ t !1s~ t !â†~ t !1s* ~ t !â~ t !. ~40!

The external source s(t) is a givenc-number function. Note
that we mark all quantities defined in the presence of
source with a tilde~the interaction picture operators are n
changed and so bear no tilde!. With the source,

S̃int5Sint1js* 1j†s. ~41!

Moving js* 1j†s to the second exponent in Eq.~36! results
in the identity

F̃~z,z†,s,s†!5F~z,z†,s1s,s†1s* !. ~42!

In this way, the physical information contained in the d
pendence ofF(z,z†,s,s†) on thes ’s is the system’s reac
tion to an external perturbation.~Physically, this means tha
quantum statistical averages contain much more informa
than classical statistical averages, covering also scatte
experiments performed with the quantum system in qu
tion.! The variabless,s† define an input to the system, whil
z,z† define an output. A natural question then is if we c
assign some physical meaning to these concepts. To
with, consider the formal meaning of the output. Assum
the source to be arbitrary, the full physical information abo
the system is obtainable from

F̃~z,z†,0,0!5F~z,z†,s,s* !. ~43!

In turn, making use of Eq.~10! we get

F̃~z,z†,0,0!5^T2exp~z†ẫ!T1exp~z ẫ†!&. ~44!

This is nothing but a characteristic functional of Glaube
renowned time-normal averages of the Heisenberg field
erator in the presence of the source@30#. The source terms in
the Hamiltonian are also quite recognizable; they appea
Kubo’s linear reaction theory@14#. Introducing causal vari-
ables is thus equivalent to anonlinear-reactionreformulation
of a quantum system. In the Appendix, we show how s
chastic nonlinear response functions of a quantum sys
may be formulated generalizing Kubo’s linear reaction a
proach. All these functions exhibit natural causality prop
ties, justifying the termcausal variables@37#.

It should be stressed that, unlike the linear reaction the
the nonlinear reaction theory depends explicitly on wh
quantities are to be ‘‘measured.’’ Causal variables as in
duced by Eqs.~35! and the response theory outlined in t
Appendix correspond to ‘‘measuring’’ time-normal averag
of the field operators. Were the ‘‘measured’’ quantitities to
defined differently, the quantum reaction theory would ha
01381
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been reformulated accordingly. ‘‘Measuring’’ symmetric a
erages will be considered in a later paper.

Returning to the question of whether the formal react
formulation corresponds to any physics, we see that both
input and output are associated with the concept of quan
back-action evasion.~That absence of detector back actio
on the source is a prerequisite for the measuring of tim
normal field averages is shown, e.g., in Refs.@15,31#.! Thus,
under macroscopic conditions, the input-output formulat
corresponds to alight-scatteringexperiment performed with
the quantum system in question. Under microscopic con
tions, the input and output remain formal concepts.

IV. QUANTUM EXPECTATION VALUES AS CLASSICAL
STOCHASTIC AVERAGES

A. Classical stochastic response problem

Relation~36! gives a formal solution to the quantum re
sponse problem formulated in terms of time-normal av
ages. It is instructive to compare this relation with a soluti
to a classical stochastic response problem. To this end,
sider ac-number stochastic fielda(t), which obeys an inte-
gral equation

a~ t !5a~ t !1E dt8G~ t2t8!s tot~ t8!, ~45!

wherea(t) is the in field ands tot(t) is the field source. For
the purposes of this paragraph, the kernelG(t) is assumed to
be regular and retarded,G(t)50,t<0, and otherwise arbi-
trary. We assume that the in fielda(t) is also arbitrary.@This
allows one to regularizeG(t) without changinga(t).# The
full field sources tot(t) consists of two parts,

s tot~ t !5s~ t !1s8~ t !. ~46!

The external sources(t) is regarded as given, while th
random sources8(t) depends on the field. That is, the ra
dom source describes the field’s effective self-action~which
originates physically, e.g., from interaction with a medium!.
As a random quantitys8(t) is fully characterized by a
probability distribution, conditional on the field at th
same timet:

P„s8~ t !ua~ t !…. ~47!

Formally resolving the self-action problem results in a pro
ability distribution over the random sources8(t) conditional
on the in-fielda(t) and the external sources(t). This is
found by substituting Eq.~45! for a(t),

P„s8ua1G~s1s8!…, ~48!

where we have introduced a short-hand notationa1G(s
1s8) for the rhs of~45!, and once more omitted time argu
ments. Most importantly, Eq.~48! does not contain a vicious
cycle because of the assumed regular-and-retarded natu
G(t): s8(t) depends ons8(t8) only for t8,t.

Consider now the statistical properties of the field. W
the self-action resolved, these are also conditional on
2-7
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in-field a(t) and the external sources(t). For the character-
istic functional of multitime stochastic field averages we fi
@with z(t) being an arbitrary function#

S~zua,s!5expS E dtz~ t !a~ t ! D
5expE dtz@a1G~s1s8!#

5H)
t
E d2s8P~s8ua1G~s1s8!!J

3expE dtz@a1G~s1s8!#

5E D`s8P`
„s8ua1G~s1s8!…

3expE dtz@a1G~s1s8!#. ~49!

The upper bar here denotes an averaging over the statisti
s8, which is afterwards explicitly rewritten as a trajectori
~functional! integral; thefunctional probability distribution
P` is a product of distributions~48! over all times. Then,
first, we pull G(s1s8) out of P`(s8ua1G@s1s8#) by
applying a functional shift operator

P`
„s8ua1G~s1s8!…5e(d/da)G(s1s8)P`~s8ua!.

~50!

We use here a condensed notation similar to Eq.~27!. Sec-
ond, we pull all factors exceptP` out of the functional in-
tegral, resulting in@with j(t) being another arbitrary func
tion#

S~zua,s!5E D`s8expE dtza

3expS z1
d

da DG~s1s8!P`~s8ua!

5expE dtza expS z1
d

da DGS s1
d

dj D
3E D`s8expE dtjs8P`~s8ua!uj50

5expE dtzaexpS z1
d

da DGS s1
d

dj D
3expE dtS~jua!uj50 . ~51!

We have introduced a characteristic function ofcumulantsof
the random source at timet conditional on the full field,

S„j~ t !ua~ t !…5 lnE d2s8~ t !ej(t)s8(t)P„s8~ t !ua~ t !….

~52!
01381
of

After further algebra, which is made easier by use of
following form of the rule of product differentiation,

FS d

dw DF1~w!F2~w!

5FS d

dw1
1

d

dw2
DF1~w1!F2~w2!uw1 ,w25w ,

~53!

wherew(t),w1(t),w2(t) arec-number functions andF(w),
F1(w),F2(w) are functionals of such functions, we arrive

S~zua,s!5H expS d

da
G

d

dj D
3expE dt@za1js1S~jua!#J U

j50,a5a

.

~54!

B. Hubbard-Stratonovich transformations: Introducing noise
sources constructively

1. Second-order noises: Stochastic differential equations

Disregarding the averaging over the pseudodistributi
Eq. ~36! looks very much like a generalization of Eq.~54! to
a pair of random fields. It is then only natural to use th
similarity in order to construct a classical stochastic proble
of which the averages would equal the quantum avera
This leads us to consider the following problem: assume
functionS(jua) is known. Can we explicitly construct a sto
chastic differential equation~SDE! to which it corresponds?

An unconditionally affirmative answer to this question e
ists only if S has the form

S~jua!5js reg~a!1j2w2~a!, ~55!

wheres reg(a) and w2(a) are some functions. Ifw2(a)50,
S(jua)5js reg(a) is equivalent to P(s8ua)5d„s8
2s reg(a)…. In turn, this means that the sources tot in Eq.
~45! is nonstochastic,

s tot~ t !5s~ t !1s reg„a~ t !…. ~56!

Thus the linear~in j) part ofS(jua) corresponds to a regula
evolution;s reg(a) is nothing but a drift term. The quadrati
part ofSmay be dealt with by using a Hubbard-Stratonovi
transformation@23#. For our purposes, however, it is conv
nient always to regard time as discretized;t is then a discrete
variable enumerating the time slices, each of sizedt ~with
the values oft corresponding to the beginnings of the incr
ments!. Consider a standardized discretized real Kroneck
correlated Gaussian noise,x(t),

x~ t !50, x~ t !x~ t8!5d tt8 , ~57!

whered tt8 is the Kronecker symbol (d tt851 if t5t8 and zero
otherwise!. We then ‘‘stochastically linearize’’S(jua), inde-
pendently in each time slice:
2-8
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exp$dt@js reg~a!1j2w2~a!#%

5expH dtjFs reg~a!1
x

Adt
A2w2~a!G J , ~58!

where the upper bar means averaging over the statistic
thex ’s. Assuming that the averaging may be commuted w
the differential operation in Eq.~54!, we recover a~dis-
cretized! stochastic integral equation~45! with

s tot~ t !5s~ t !1s reg„a~ t !…1
x~ t !

Adt
A2w2„a~ t !…. ~59!

In the continuous limit,dt→0, x(t)/Adt becomes the de
rivative of a Wiener process@32#, and we find ourselves
within the conventional theory of SDEs. On removing t
regularization of the kernelG, we obtain an Itoˆ SDE for the
field, a(t), @cf. Eq. ~15!#

ida~ t !5@v1s reg„a~ t !…#dt1A2w2„a~ t !…dW~ t !. ~60!

The fact that Itoˆ calculus should be chosen is due to t
causal regularization ofG(t), which makes sources at timet
independent of fields at the same time, which is exactly
characteristic property of Itoˆ calculus.

2. Higher-order noises: Stochastic difference equations

We now assume thatS(jua) also contains a cubic term,

S3~jua!5j3w3~a!. ~61!

With time discretized, it is very easy to ‘‘stochastically lin
earize’’ this expression by employing a combination of re
and complex Hubbard-Stratonovich transformations.
h(t) be a standardized discretized complex Kroneck
correlated Gaussian noise:

h~ t !50, h~ t !h~ t8!50, h* ~ t !h~ t8!5d tt8 . ~62!

Such a noise may be constructed as a combination of
independent real noises,h(t)5@x8(t)1 ix9(t)#/A2. The
real noise is useful for ‘‘halving powers’’ (x being any quan-
tity uncorrelated withx),

exp~x2!5exp~xxA2!, ~63!

whereas the complex noise allows one to factorize arbitr
products,~with x,y any quantities uncorrelated withh)

exp~xy!5exp~xh1yh* !. ~64!

The cubic contribution is then ‘‘stochastically linearized’’
two steps~with x andh independent!:

exp@dtj3w3~a!#5exp@dt~jhp1j2h* q!#

5exp@dtj~hp1xA2qh* /dt!#, ~65!

wherep,q are uncorrelated withh,x and obey the condition
01381
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pq5
w3~a!

dt
. ~66!

This yields the following contribution tos8:

s385hp1xA2qh* /dt, ~67!

where p,q are subject to Eq.~66! and otherwise may be
chosen arbitrarily. It is easy to see that we cannot make
contribution scale as 1/Adt, which is a prerequisite for a
continuous limit. Indeed, letp scale as 1/dts, wheres is some
number. The second term in Eq.~67! then scales as
1/dt12s/2. The least singular scaling ofs38 is achieved when
both terms scale equally, as 1/dt2/3.

This way, if S(jua) is a polynomial of a higher than sec
ond order inj, it does not correspond to any continuous tim
process~this is the content of Pawula’s theorem@18#!. In this
case, Eq.~54! can only beapproximatedas a characteristic
functional of averages of a process in discretized time,

ida~ t !5~va1s reg1s381••• !dt. ~68!

Unlike in Eq. ~60!, hereda(t) stands for a finite difference
da(t)5a(t1dt)2a(t), and the ellipsis denotes other st
chastic contributions.

C. Mathematical subtleties

We will now discuss briefly some of the formal math
ematical details which were not investigated in depth in
above considerations. First, Eq.~36! was derived by pertur-
bative means. It is not immediately clear if it makes sense
a nonperturbative relation. The same applies to the for
solution of the classical stochastic response problem,
~54!. Our approach, which is based on the formal ident
between~36! and ~54!, is thus, strictly speaking, no mor
than a conjecture. It is justified in practice by the agreem
we observe with the known results of the convention
phase-space approaches, which are based on a more
mathematical foundation. Outside this scope, a more rig
ous derivation of our results remains subject to further wo
It should however be noted that, due to time discretizat
and the causal regularization of the retarded Green’s fu
tion, perturbative expansions of both Eq.~36! and Eq.~54!
contain only a finite number of terms and are thus guarant
to be convergent.~This implies a finite time interval ove
which these expansions are written and does not gener
to an arbitrary polynomial interaction Hamiltonian; nor do
it directly generalize to relativistic problems.! Although not
serving as a formal mathematical proof, this certainly ma
our results more plausible.

Second, our derivation of Eq.~60! implied commutivity
of the averaging and the differential operation in Eq.~54!.
This assumption corresponds to that of vanishing bound
terms in the standard derivation via the Fokker-Planck eq
tion @1#. A full discussion of this problem is far outside th
scope of the present paper, so we will content ourselves w
one observation. In Ref.@21#, an imaginary-time version o
these techniques was applied to the Kerr oscillator descr
by Hamiltonian of Eq.~3!. The corresponding imaginary
2-9
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time SDE was found to be linear, allowing for an exact s
lution for the stochastic measure. The latter was found to
a genuine convergent measure only fork,2v. It was
shown, however, that the results may be extended into
region k.2v ~including v,0) by properly redefining the
measure~which in turn may be shown to correspond to
analytical extension of the results overv @33#!. This example
demonstrates how the problem of boundary terms may m
fest itself in our approach, and how it can be tackled.

Third, the discretized process we find for the case
higher-order noises does not have a continuous time li
Our assumption is that this limit exists for physical averag
i.e., those corresponding to quantum-field averages. S
arguments in favor of this follow from the aforemention
observation that the perturbation expansion of Eq.~54! con-
tains only a finite number of terms, in other words, it
simply a polynomial. Considering, for instance, the exam
of Eq. ~61!, it means that any average of the fielda(t) @cf.
Eq. ~68!# is expressed as a polynomial containing only m
tiple sums of the products of the functionw3„a(t)…. This
results in a closed Bogoliubov-Born-Green type chain
equations for the averages ofa(t), whereas ‘‘nonphysical’’
averages@i.e., those mixinga(t) with a* (t)] never occur. A
more careful analysis shows that the multiple sums alre
have a continuous time limit as integrals, resulting in a ge
ine Bogoliubov-Born-Green chain. It does not prove, ho
ever, that a solution to this chain exists~which is another
way in which the problem of boundary terms can manif
itself!.

It should be noted that, for systems with higher-ord
noises decribed by SDEs, the sampling noise grows as th
time-grid spacing decreases. This is in contrast to the p
erties of the Wiener process, where sampling noise is in
pendent of the grid spacing for a given sample size. In pr
tice, however, this distinction between Wiener and high
order noises is quantitative rather than qualitative. W
matters for numerics is not errors for a given sample size,
for a given computational time. From this point of view
differences between Eqs.~60! and~68! ~say! are anything but
dramatic. Numerics always require time discretization,
that Eq.~60! always has to be approximated as a SDE. Fur-
thermore, with the computational time fixed, sampling no
for the Wiener process also diverges in the limitdt→0. The
sampling noise for higher-order noises diverges faster, bu
already noted, this difference is quantitative rather th
qualitative.

To conclude this discussion we note that numerical s
chastic integration is essentially a type of computational
periment. One needscriteria of convergence rather than
proof of it. In the cases where we were able to compare
results found using SDEs with those found using other meth
ods,~see, e.g., Ref.@34#, where a ‘‘1W’’ SDE corresponding
to the full Wigner representation was simulated! we always
encountered the following dilemma. Either the integrati
converged to a verifiable result, or the failure of the meth
due to sampling errors and~or! numerical instabilities was
obvious. Thus mere convergence of the method appears
an indication of its reliability. This is consistent with th
strategy normally used in1P simulations~and also with the
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dilemma of the convergent vs divergent measure observe
Ref. @21#, discussed three paragraphs above!.

V. SUMMARY AND EXAMPLES

A. Technical summary

Although the derivation of our techniques is rather i
volved, from the practical viewpoint they boil down to
fairly small collection of simple recipes. We will now formu
late the results generalized to ann-mode case. For ann-mode
system, Schro¨dinger-picture annihilation and creation oper
tors are vectors with respect to the mode index,

â5$âk%, â†5$âk
†%, k51, . . . ,n, ~69!

as are the interaction-picture field operators,

â~ t !5$âk~ t !%, â†~ t !5$âk
†~ t !%, k51, . . . ,n. ~70!

The system Hamiltonian consists, as usual, of the free
interaction Hamiltonians~implying the interaction picture!

H~ t !5H0~ t !1Hint~ t !. ~71!

The free Hamiltonian is

H0~ t !5â†~ t !Hâ~ t !, ~72!

whereH5$Hkk8%, k,k851, . . . ,n, is a Hermitian matrix in
the mode indices. The free Schro¨dinger equation thus reads

i
dâ~ t !

dt
5Hâ~ t !. ~73!

The interaction Hamiltonian is defined in normally order
form,

Ĥint~ t !5:h„â~ t !,â†~ t !…:1s* ~ t !â~ t !1s~ t !â†~ t !, ~74!

wheres(t)5$sk(t)%, k51, . . . ,n, is the vector ofc-number
external sources. The sources are only important if one
interested in a nonlinear-reaction formulation of a quant
system and~or! averages which are other than time-norma
ordered.

For simplicity, we only list here the results pertaining
time-normally ordered averages in the presence of
sources; the full assemblage of double-time-ordered aver
is accessible via Eqs.~10!, ~33!, ~42!, and ~43!. The phase-
space description of the quantum system is based on
generic system of 23n equations,

i
da~ t !

dt
5Ha~ t !1s~ t !1s8~ t !,

2 i
da†~ t !

dt
5Ha†~ t !1s* ~ t !1s8†~ t !, ~75!

for 23n c-number random fields,
2-10
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a~ t !5$ak~ t !%, a†~ t !5$ak
†~ t !%, k51, . . . ,n. ~76!

The quantum-classical mapping rules are as in the positivP

representation: replace operators by thec numbers, aˆ→a,
â†→a†, and the quantum averaging by the statistical aver
ing associated with the statistics of the random sourcess8,
s8†, e.g.,

^T2â1
†~ t1!â2

†~ t2!T1â3~ t3!â4
†~ t4!&

5a1
†~ t1!a2

†~ t2!a3~ t3!a4
†~ t4!, ~77!

etc.
All relations listed so far are universal. The physi

which, in the quantum problem is in the interaction Ham
tonian, in the phase-space representation enters via the
dom sources,s8(t),s8†(t). The nontrivial part of the map
ping rules concerns how the latter are found from the form
It reads: first, calculateSint as

Sint~j,j†,a,a†!5 ih~a†,a2 i j!2 ih~a†1 i j†,a!

5 ih~a†,a2 i j!1~conjugate!, ~78!

where conjugation acts as a formal Hermitian transforma
@i.e., it interchanges quantities with and without dagg
a(t)↔a†(t), j(t)↔j†(t), and complex conjugates otherc
numbers#. Second, ‘‘stochastically linearize’’Sint using a
suitable set of Hubbard-Stratonovich transformations,

exp@dtSint~j,j†,a,a†!#5exp@dt~js8†1j†s8!#. ~79!

~Note that terms withoutj ’s in Sint always cancel.! Thes8’s
thus obtained are exactly those to be substituted in Eqs.~75!.
This completes their derivation. IfSint is at most quadratic in
j ’s, Eqs.~75! are a system of genuine Itoˆ stochastic differ-
ential equations. Otherwise they can only be interpreted
difference equations over a finite time stepdt.

We complete this section by introducing a shorthand
tation for the real, Eq.~63!, and complex, Eq.~64!, Hubbard-
Stratonovich transformations, respectively,

x2→
x

xxA2, xy⇒
h

xh1yh* . ~80!

These relations imply the definition of the correspond
noises as standardized Gaussian Kronecker-correlated n
~respectively, real and complex ones!, cf. Eqs.~57! and~62!.
They allow one to directly processSint into the s8’s while
avoiding most of the bookkeeping.
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B. Quantum reaction of the Kerr oscillator

We now return to our demonstration system. Using
short-hand notation, Eq.~80!, Sint given by Eq.~37! is pro-
cessed as

dtSint~j,j†,a,a†!5dtkja†2a1dt
ik

2
j†2a2

1~conjugate!

→
x,x†

dtj†~ka2a†1Aik/dtxa!

1~conjugate!, ~81!

where we have introduced two real Gaussian noises,x(t)
andx†(t) ~the latter being found in the conjugate term!. This
completes the derivation of the Itoˆ SDEs for the classica
fields which read

i
da~ t !

dt
5s~ t !1ka2~ t8!a†~ t8!1Aik/dtx~ t8!a~ t8!,

2 i
da†~ t !

dt
5s* ~ t !1ka†2~ t8!a~ t8!1A2 ik/dtx†~ t8!a†~ t8!.

~82!

As was explained above, the fact that Itoˆ calculus should be
chosen is due to the causal regularization ofG(t), which
makes the fields independent of the sources at the same
moment.

Without the external sources~i.e., with s50), equations
such as Eq.~82! are well known in quantum optics under th
name of the positive-P representation. In that form, they a
low one to calculate time-normal averages of the field ope
tors, describingradiation properties of the system. With th
sources included, they cover the full quantum-stocha
nonlinearreactionproblem. They also become applicable
a much wider assemblage of operator averages, cf. Eqs.~10!,
~33!, ~42!, and~43!.

C. Degenerate OPO

We shall now illustrate the simplicity of the general reci
in a multimode case by deriving the positive-P equations for
a degenerate optical parametric oscillator~OPO!. The degen-
erate OPO consists of two coupled oscillators described
the Hamiltonian

H5vâ1â1
†12vâ2â2

†1
ik

2
@ â1

†2â22â1
2â2

†#. ~83!

Then,
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Sint~j,j†,a,a†!5 i
ik

2
@a1

†2~a22 i j2!2~a12 i j1!2a2
†#

1~conjugate!

52 ikj1a1a2
†1 i

k

2
j2a1

†22
k

2
j1

2a2
†

1~conjugate!

→
x,x†

1 i j1
†~ka1

†a21xAka2!

2 i j2
†k

2
a1

22 i j1~ka1a2
†1x†Aka2

†!

1 i j2

k

2
a1

†2, ~84!

wherex(t),x†(t) are a pair of independent reald-correlated
Gaussian noises. The positive-P representation equations fo
the OPO, generalized to the response problem, then rea

da1~ t !

dt
52 is1~ t !1ka1

†~ t !a2~ t !1x~ t !Aka2~ t !,

da1
†~ t !

dt
51 is1

†~ t !1ka1~ t !a2
†~ t !1x†~ t !Aka2

†~ t !, ~85!

da2~ t !

dt
52 is2~ t !2

k

2
a1

2~ t !,

da2
†~ t !

dt
51 is2

†~ t !2
k

2
a1

†2~ t !.

This derivation is strikingly simple and straightforward, a
compares very favorably to the common derivation based
phase-space techniques@2# @not to mention that Eqs.~85!
allow for a much deeper insight#.

D. Triply degenerate four-wave mixing: Stochastic difference
equations

As an illustrative example of a multimode system whi
requires the stochastic difference treatment, we will cons
here the system of triply degenerate four-wave mixing in
nonlinear medium, where three of the waves have freque
v and the fourth has frequency 3v @24#. In our derivation we
will make the approximation that only two modes are imp
tant, so as to demonstrate our method in the most simple
possible. These processes can then be described by the
action Hamiltonian

H~z!5
i\k

3
@ â†3b̂2â3b̂†#, ~86!
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where â(z) and b̂(z) are the annihilation operators fo
quanta at frequenciesv and 3v, respectively, at positionz
inside the nonlinear medium, andk represents the effective
couping between the modes. Note that we are assumin
trivial relationship between propagation time and positi
here.

Assuming thatz is a discrete variable changing in finit
steps ofdz, we write

dzSint5dzFj1
†ka†2b1j1

†2ka†b1j1
†3k

3
b1j2

†S 2
k

3
a3D G

1~conjugate!, ~87!

where thec-number variables (a,a†b,b†) are equivalent in
the 1P sense to the operators (â,â†,b̂,b̂†). This completes
the first step of the derivation. The deterministic terms in
resulting equations of motion are immediately obvious, b
ing those to first order in thej ’s in Eq. ~87!. The noise terms
are readily found using real and complex Hubba
Stratonovich transformations, respectively. In the short-h
of Eq. ~80!, applying a real HST to the quadratic term in E
~87! yields

dzj1
†2ka†b→

x1

j1
†x1A2ka†bdz. ~88!

The cubic term inSint , dzj1
†3kb/3, is also simply taken care

of, by applying a complex HST followed by a real one,

dzj1
†3 kb

3
⇒
h

dzj1
†2 p

2
h1j1

†qh* →
x2

j1
†~x2Aphdz1qh* !.

~89!

After formal conjugation, we obtain the set of coupled SDEs,

da5ka†2bdz1x1A2ka†bdz1x2Aphdz1qh* ,

da†5ka2b†dz1x1
†A2kab†dz1x2

†Ap†h†dz1q†h†* ,

~90!

db52
k

3
a3dz,

db†52
k

3
a†3dz,

with the p’s andq’s constrained by the conditions

pq5
2kb

3
, p†q†5

2kb†

3
~91!
2-12



is

ica
bu
se
n

ste
io
fo

e
d

tio
o
m
a

po
uin
ti
e
tim
n
u

to

st
pa
n

to
-

i
ro
o
o

E
tw
vi
t

he
can

ec-
for
ass
nal

the
ion

un-

les,

ar
ear

QUANTUM-FIELD-THEORETICAL APPROACH TO . . . PHYSICAL REVIEW A67, 013812 ~2003!
due to our choice of complex transformations, but otherw
arbitrary. Equations~90! contain four real (x1 ,x2 ,x1

† ,x2
†)

and two complex (h,h†) Gaussian noises, which are alldzz8
~Kronecker! correlated. We note here that Eq.~90! without
the third-order noises has a natural continuous limit ident
to positive-P equations obtained via the usual methods,
that the derivation is much shorter. For situations with noi
of less than third order, this method of finding the equatio
is almost trivial as compared to proceeding via the ma
and Fokker-Planck equations. We note here that equat
with third-order noises have previously been introduced
intracavity third harmonic generation@35,36#, but without
full details of the derivation and without stating that th
equations could not be understood as genuine stochastic
ferential equations.

VI. CONCLUSION

Over recent years the technique of stochastic integra
has proven to be a very powerful tool for the computation
operator expectation values in dynamical quantum syste
especially in the field of quantum optics. Its exact applic
tion, however, has necessarily been limited to systems
sessing Hamiltonians which can be mapped onto gen
Fokker-Planck equations. Even in these cases, the deriva
of the appropriate stochastic differential equations can b
time consuming process. For processes which result in a
evolution equation with derivatives of higher than seco
order, there is no mapping onto stochastic differential eq
tions.

We have used the techniques of quantum-field theory
develop a powerful method for the mapping of opera
Hamiltonians onto stochastic equations in a positive-P rep-
resentation, which can include the full nonlinear stocha
response problem. Instead of taking the usual phase-s
route from operator Hamiltonian via a master equation a
an FPE toc-number equations@1,2#, we show how stochastic
representations may be derived by directly linking opera
Heisenberg equations of motion toc-number Langevin equa
tions. For Hamiltonians which are no more than quadratic
either annihilation or creation operators, we find the app
priate positive-P stochastic differential equations after n
more than a few lines of algebra. For systems of higher
der, we find SDEs in a discretized version of Itoˆ calculus,
which although we cannot define a continuous limit as SD
we can simulate numerically. Our approach thus has
main advantages. First, the use of real Hubbard-Stratono
transformations provides a quick and effective method
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find stochastic differential equations, while inherent in t
method is a freedom in the choice of noise terms which
be used to dramatically decrease the sampling errors@10#
which are often a problem with stochastic integration. S
ond, the use of real and complex transformations allows
the extension of stochastic simulation to a much wider cl
of problems than can be considered using the conventio
approach.
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APPENDIX: QUANTUM NONLINEAR STOCHASTIC
RESPONSE THEORY

In terms of quantum averages, Eq.~43! reads

^T2exp~z†ẫ!T1exp~z ẫ†!&

5 K T2expE dt@~z1 is!â†1 is* â#

3T1expE dt@~z†2 is* !â2 isâ†# L , ~A1!

where we have used the definition of the causal variab
Eqs. ~35!, for the special cases(t)5s†* (t)5s(t). From
~A1!, we immediately find

^T2 ẫ†~ t18!••• ẫ†~ tn8!T1 ẫ~ t1!••• ẫ~ tm!&

5 K T2â†~ t18!•••â†~ tn8!

3expF i E dt~sâ†1s* â!GT1â~ t1!•••â~ tm!

3expF2 i E dt~sâ†1s* â!G L . ~A2!

This relation allows one to find various quantum nonline
stochastic response functions of the system. So, for the lin
response, we recover Kubo’s relation
d^ ẫ~ t !&

ds~ t8!
U

s50

5

d K T2expF i E dt9~sâ†1s* â!GT1â~ t !expF2 i E dt9~sâ†1s* â!G L
ds~ t8!

U
s50

5 i ^â†~ t8!â~ t !&2 i ^T1â†~ t8!â~ t !&

52 iu~ t2t8!^@ â~ t !,â†~ t8!#&. ~A3!
2-13
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For the anomalous linear response

d^ ẫ†~ t !&

ds~ t8!
U

s50

5 i ^T2â†~ t !â†~ t8!&2 i ^â†~ t !â†~ t8!&

52 iu~ t2t8!^@ â†~ t !,â†~ t8!#&, ~A4!

again as expected.~This is certainly zero for the Hamiltonia
~3!, but can be nonzero for systems like the OPO. Imp
tantly, relation~A2! does not depend on the nonlinear inte
action.! Nonlinear response functions are found by multip
differentiations. A simple example of a stochastic respo
function is ~average field intensity vs source amplitude!
.

. A

s.

s,

01381
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d^ ẫ†~ t ! ẫ~ t8!&

ds~ t9!
U

s50

5 i ^@T2â†~ t !â†~ t9!#â~ t8!&

2 i ^â†~ t !@T1â†~ t9!â~ t8!#&

5 iu~ t2t9!^â†~ t9!â†~ t !â~ t8!&

2 iu~ t82t9!^â†~ t !â~ t8!â†~ t9!&

1 i @u~ t92t !2u~ t92t8!#

3^â†~ t !â†~ t9!â~ t8!&, ~A5!

and so on.
Note that the final expression in Eq.~A5! is explicitly

causal, as certainly are Eqs.~A3! and~A4!. A formal proof of
causality in the representation of causal variables may
found in Ref.@15#.
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