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Dynamics and evaporation of defects in Mott-insulating clusters of boson pairs
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Repulsively bound pairs of particles in a lattice governed by the Bose-Hubbard model can form stable
incompressible clusters of dimers corresponding to finite-size n = 2 Mott insulators. Here we study the dynamics
of hole defects in such clusters corresponding to unpaired particles which can resonantly tunnel out of the cluster
into the lattice vacuum. Due to bosonic statistics, the unpaired particles have different effective mass inside
and outside the cluster, and “evaporation” of hole defects from the cluster boundaries is possible only when
their quasimomenta are within a certain transmission range. We show that quasithermalization of hole defects
occurs in the presence of catalyzing particle defects which thereby purify the Mott-insulating clusters. We study
the dynamics of a one-dimensional system using analytical techniques and numerically exact time-dependent
density-matix renormalization-group simulations. We derive an effective strong-interaction model that enables
simulations of the system dynamics for much longer times. We also discuss a more general case of two bosonic
species which reduces to the fermionic Hubbard model in the strong interaction limit.
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I. INTRODUCTION

Quantum particles in lattice potentials (e.g., electrons in
crystals) have been studied since the early days of quantum
theory [1,2]. With the development of artificial (optical) lattice
potentials for cold neutral atoms [3], bosonic lattice models
are recently attracting increased interest as well [4], with the
Bose-Hubbard model (BHM) [5] being an important example.
A remarkable phenomenon entailed by the BHM is that pairs of
strongly interacting bosons can form tightly bound “dimers”
both for attractive and repulsive interactions [6–9]. In free
space, or in the presence of energy dissipation, the repulsive
interaction inevitably leads to pair dissociation. In a lattice,
however, the kinetic energy of each particle is restricted to
the values in the allowed Bloch band. Consequently, two
colocalized particles in a dissipation-free lattice remain tightly
bound together as a dimer when their interaction energy U

exceeds the kinetic energy of free particles ∼J within the
Bloch band.

In a previous publication [9], we have studied the many-
body dynamics of the repulsively bound dimers of bosons.
Due to virtual transitions of the dimer constituent particles,
the dimers at the neighboring lattice sites strongly attract each
other, with the corresponding interaction energy exceeding
the dimer tunneling energy by a factor of 4. For many
dimers on the lattice, it is then energetically favorable to form
dynamically stable “droplets,” constituting incompressible
Mott-insulating (MI) clusters with the number of particles
per site of exactly n = 2. Inevitable imperfections in the
preparation process would typically cause such MI clusters to
contain hole and particle defects corresponding, respectively,
to unpaired and excess particles (monomers and trimers). An
important question is thus how to purify the system of the
defects reducing thereby the entropy. In the present paper,
we discuss a mechanism of self-purification of stable MI
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clusters of dimers surrounded by lattice vacuum. We study the
dynamics of defects in a one-dimensional system by analytical
calculations and numerical many-body simulations.

Within the cluster, hole and particle defects can propagate
via resonant single-particle hopping with enhanced amplitude,
which stems from the bosonic statistics of the surrounding
n = 2 MI environment. Outside the cluster, hole defects
correspond to free particles. Since their tunneling energy J

is much larger than the monomer-dimer interaction energy
∼J 2/U [10], hole defects are not bound to the cluster and
can “evaporate.” However, the widths of the single-particle
Bloch band is twice larger inside the cluster than outside of it,
therefore only the hole defects with energies in the center of the
band can penetrate the cluster boundaries and evaporate into
the lattice vacuum, while in the absence of quasimomentum
redistribution, low- and high-energy hole defects will remain
in the cluster. We show that the presence of particle defects
leads to efficient “thermalization” of the hole defects via
quasimomentum redistributing collisions. Hence, very few
such “catalyzing” particle defects can purify the MI cluster.

Before continuing, we note a recent relevant work [11]
dealing with fermionic dimers described by the Hubbard
model. After preparing a cold atomic gas with filling of n � 2
in the trap center, followed by turning off the trap, the hole
defects will simply tunnel out of the cluster into the vacuum.
For fermions, however, the remaining cluster is not stable,
since the effective second-order tunneling of the on-site pairs
is not restrained by the interaction between the pairs.

Figure 1 illustrates the main physics studied in this paper,
which is organized as follows. In Sec. II we outline the
properties of the pure dimer clusters [9]. We then introduce
in Sec. III an effective theory of scattering of a single particle
(hole defect) from a domain wall separating the dimer cluster
and the vacuum. The quasimomentum redistribution of a hole
defect upon collisions with a particle defect in the lattice with
periodic and open boundaries is studied in Sec. IV. In Sec. V
we present the results of many-body numerical simulations
for a realistic system with several hole and particle defects
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FIG. 1. (Color online) Physical models studies in this paper. (a)
The Bose-Hubbard model [Eq. (1)]. (b) Monomer (hole defect) effec-
tive hopping (Sec. III). (c) Single-defect effective theory (Sec. III).
(d) Trimer (particle defect) effective hopping (Sec. IV). (e) Single
hole defect in two-species Bose-Hubbard model (Sec. VI).

in a dimer cluster surrounded by empty lattice. Finally, in
Sec. VI we discuss the case of two bosonic species, which is
more flexible theoretically, but is demanding experimentally.
In the limit of infinite intraspecies interaction, it contains
the special case of the Hubbard model [11], since in one
dimension and in the absence of double occupancy, bosons and
fermions are equivalent through the Jordan-Wigner transfor-
mation. Much of the involved technical details are deferred to
Appendices A–D.

II. REPULSIVELY BOUND DIMERS

The underlying Hamiltonian for our system is that of the
BHM [5],

Ĥ = −J
∑

j

(b̂†j b̂j+1 + H.a.) + 1

2
U

∑
j

b̂
†
j b̂

†
j b̂j b̂j , (1)

where b̂ and b̂† are bosonic annihilation and creation operators,
J is the particle hopping rate between adjacent lattice sites
j,j + 1, and U is the contact interaction between the particles
on the same lattice site. Throughout this paper, we assume
that the on-site interaction is the dominant energy parameter
U � J .

Considering first a lattice containing only zero or two
particles per site, we do not allow the dimer occupation number
in the lattice to exceed unity. Adiabatically eliminating all the
states with an odd number of particles per site, we obtain
for the dimers an effective Hamiltonian [9] that contains only

terms with characteristic energies on the scale of J 2/U � J :

Ĥ = −J̃
∑

j

(ĉ†j ĉj+1 + H.a.) + B̃
∑

j

ĉ
†
j ĉ

†
j+1ĉj+1ĉj , (2)

where J̃ = −2J 2/U is the dimer hopping rate and B̃ =
−16J 2/U is the nearest-neighbor interaction. The dimer
creation ĉ

†
j and annihilation ĉj operators satisfy the hard-core

boson commutation relations,

[ĉi ,ĉj ] = [ĉi ,ĉ
†
j ] = 0, i �= j, (3a)

{ĉj ,ĉj } = 0, {ĉj ,ĉ
†
j } = 1, i = j. (3b)

Hamiltonian (2) can be mapped onto that for the spin- 1
2 XXZ

model [12,13] with the anisotropy parameter � = B̃/2J̃ = 4.
For � > 1, we are in the ferromagnetic, Ising-like regime,
and a cluster of dimers, corresponding to a lattice domain with
maximum magnetization, is dynamically stable. To understand
this in terms of dimers, observe that, for any U (�J ), the
maximal kinetic energy 2J̃ gained by releasing a dimer from
the cluster boundary is small compared to the binding energy
B̃ of the dimer to the cluster.

The stability of the dimer cluster is an intrinsic feature
of the BHM. It is rooted in the bosonic amplification of the
intersite hopping of the particles, which in turn enhances the
effective (second-order) nearest-neighbor interaction B̃. For
the fermionic Hubbard model discussed in Ref. [11] in the
context of defect evaporation from a dimer cluster (i.e., a band
insulator), we show in Sec. VI that � = 1 (B̃ = 2J̃ ), which
means that the cluster is unstable and the dimers will diffuse
away.

III. SINGLE-DEFECT MODEL IN THE
STRONG-INTERACTION LIMIT

The dynamics of dimers is rather slow, as it is governed
by the small characteristic energies ∼J 2/U , but the dynamics
of monomers is much faster, involving large single-particle
hopping rate J . We can thus retain only the contributions
on the scale of J , which results in a very simple and
transparent effective theory for the monomers. For a monomer
in the cluster (hole defect), the bosonic statistics plays an
important role: It increases the hopping amplitude of the
monomer in the environment of dimers by a factor of 2 [see
Fig. 1(b)]. As a result, the kinetic energy of the monomer in
the dimer cluster is Ek = −4J cos(k), while in the vacuum
it is Ek = −2J cos(k), where k ∈ [−π,π ] is the monomer
quasimomentum quantified by the phase change between
neighboring lattice sites. Therefore the monomer will be
confined to the cluster if its quasimomentum is not inside
the transmission region given by

k ∈ (−2π/3,−π/3) ∪ (π/3,2π/3), (4)

up to a correction due to small interactions of the order of
J 2/U � J which we neglected.

Consider the scattering of a monomer from the domain wall
between the dimer cluster occupying sites j < 0 (region A) and
the vacuum at sites j > 0 (region B); see Fig. 1(c). The local
bare particle number is nj = 2 for j < 0 and nj = 0 for j > 0.
The particle number at j = 0 depends on the position i of the
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FIG. 2. (Color online) Transmission probability T (k) [cf.
Eq. (A9)] for various α = JB/JA.

monomer ni = 1: Inside the cluster i < 0 we have n0 = 2, at
the boundary i = 0 obviously n0 = 1, while outside the cluster
(in the vacuum) i > 0 leads to n0 = 0. Hence the position
of the wall shifts upon the monomer crossing the boundary,
which should be taken into account when considering many
defects. The hopping rate of the monomer is JA for sites j � 0
and JB for sites j > 0. The effective Hamiltonian for a single
monomer then reads

Ĥ = −JA

∑
j<0

(â†
j âj+1 + H.a.) − JB

∑
j�0

(â†
j âj+1 + H.a.), (5)

with JA = 2J and JB = J .
In Appendix A we calculate the exact transmission prob-

ability T (k) of a particle crossing a domain wall in a system
described by Hamiltonian (5). The results are illustrated in
Fig. 2 for various α = JB/JA. The values of α = 1/2 and
α = 2 correspond, respectively, to the single particle leaving
the dimer cluster and entering it from vacuum.

IV. QUASIMOMENTUM REDISTRIBUTION
OF THE DEFECTS

We have seen above that a hole defect can leave the MI
cluster only if its quasimomentum is within the transmission
range of Eq. (4), while a defect with the quasimomentum
outside the transmission range will remain in the cluster
indefinitely. Hence, to completely purify the cluster of
hole defects, their quasimomenta should be continuously
redistributed over the entire range of k ∈ [−π,π ]. In two
or more dimensions, collisions between identical particles
can redistribute the absolute values of their quasimomenta,
and we therefore expect the evaporation of all the defects
through the cluster boundaries after a few collisions. In a
one-dimensional lattice, however, collisions of two particles
interacting via any finite range potential can only exchange
their quasimomenta or leave the quasimomenta unchanged
[7,8,14,15] (for indistinguishable particles both outcomes are
equivalent), provided that the lattice is deep enough so that
the large band gap precludes interband transitions. Similarly,
collisions with the fixed boundaries can only reverse the

quasimomentum of a particle. The simplest quasimomentum
redistribution mechanism is then three-particle collisions. This
happens at a rate proportional to the defect density squared,
which is too slow for cold atom experiments.

In the dimer cluster, in addition to the hole defects
(monomers), we may have particle defects (trimers) with
different effective mass. The hopping rates of a monomer and
a trimer in the cluster are Ja = 2J and Jt = 3J , respectively
[Fig. 1(d)]. Before collision, their quasimomenta are ka and
kt , while conservations of quasimomentum, ka + kt = k′

a + k′
t ,

and energy, Ja cos(ka) + Jt cos(kt ) = Ja cos(k′
a) + Jt cos(k′

t ),
during the collision determine the new quasimomenta k′

a and
k′
t via

Ja cos(ka) + Jt cos(kt ) = Ja cos(k′
a) + Jt cos(ka + kt − k′

a).

(6)

If there is a collision with the wall, or a third defect of either
kind, before this process is reversed, all energetically allowed
combinations of ka,kt can be assumed, as will be verified below
by exact numerical simulations.

A. Two classical particles

The time scale for quasimomentum redistribution can be
calculated from purely classical considerations. A monomer
or a trimer moving in the MI cluster has a kinetic energy of
Ekμ

= −2Jμ cos(kμ) and the corresponding group velocity of
vμ = 2Jμ sin(kμ) [μ = a,t].

Consider first two wave packets in a periodic lattice of
length L. After a collision (the defects cannot penetrate each
other), their velocities are assumed to be va = 2Ja sin(ka) <

vt = 2Jt sin(kt ). The next collision happens after time,

tc

2
= L − 1

2

1

Jt sin(kt ) − Ja sin(ka)
, (7)

and the new quasimomenta are determined by Eq. (6). It
follows that the time interval between all subsequent collisions
is the same tc/2, since Eq. (6) and

L − 1

2

1

Jt sin(kt ) − Ja sin(ka)

= L − 1

2

1

−Jt sin(ka + kt − k′
a) + Ja sin(k′

a)

always have a common solution.
In the presence of a wall, or a third defect, the quasimomenta

can take any values energetically allowed. A revival is not
expected, but now t−1

c is an effective rate of quasimomentum
redistribution. It is essentially given by J over the mean
free path (i.e., it is proportional to J times the average
defect density), which is indeed much faster than the rate of
three-particle collisions.

B. Two quantum particles: Numerical simulations

We simulate the quantum dynamics of the hole and particle
defects in a dimer cluster using the two-particle Hamiltonian
in quasimomentum space (see Appendix B). Each defect is
initially prepared in a quasimomentum eigenstate, with the
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FIG. 3. (Color online) Dynamics of the quasimomentum distri-
bution for the monomer (left column) and trimer (right column) in
a lattice of L = 64 sites. The initial quasimomenta are ka = 13

16 π

and kt = − 9
16 π . Upper panels correspond to periodic boundary

conditions, where the markers on the right indicate multiples of
the revival time tc ≈ 46.63/Jt . Lower panels are obtained for open
boundary conditions. Dashed vertical lines mark the transmission
regions for monomer quasimomenta as per Eq. (4).

combined state given by

|ka,kt 〉 = 1

L

L∑
ja,jt=1

eikaja eikt jt â
†
ja

t̂
†
jt
|vac〉, (8)

where â
†
j creates a monomer and t̂

†
j a trimer at site j of a finite

lattice filled with dimers, playing here the role of an effective
vacuum |vac〉.

Figure 3 shows the results of our numerical simulations.
In the case of periodic boundary conditions, the dynamics
is mainly classical; only two values of quasimomentum k

are assumed by each particle, and after the classical revival
time tc, the quasimomentum distribution is restored to the
initial. For open boundary conditions, however, we observe fast
redistribution of quasimomenta, and already the first revival is
hardly noticeable. We may therefore conclude that a single
trimer can catalyze the redistribution of quasimomenta of
monomers, making the evaporation of almost all hole defects
possible, provided that their average kinetic energy is initially
close to the center of the band. This will be verified by the
following many-body calculations.

V. MANY-BODY NUMERICAL SIMULATIONS

To study the dynamics of several defects under experi-
mentally realistic conditions, we use a sufficiently long lattice
that can accommodate dimer clusters spanning a few dozen
sites. The complete Hilbert space for such a system is too
large to be amenable to exact diagonalization treatments.
We therefore resort to time-dependent density matrix renor-
malization group (t-DMRG) methods [16,17], specifically,
the time-evolving block decimation (TEBD) algorithm [18]
using the matrix product state (MPS) formalism. Even then,
however, simulating the full BHM is a difficult task. This
is due to sizable quantum fluctuations present even in the
pure dimer cluster for any finite interaction strengths U/J .

These fluctuations contribute to the many-body entanglement
and consume much of the computational resources required to
simulate the dynamics of the defects. We therefore introduce
an effective model for the defects only.

A. Many-defect effective theory in the strong-interaction limit

Since the states with different number of particles per site
have energies separated by multiples of U (�J ), the numbers
of monomers, dimers, and trimers in a lattice are, to a good
approximation, conserved separately. This allows us to treat
the monomers, dimers, and trimers as distinguishable species,
each represented by hard-core bosons [Eq. (3)]. Furthermore,
as discussed in Sec. II, dimers forming stable clusters do
not contribute to the dynamics of the system. For our initial
conditions, typically containing a single cluster, we can thus
reformulate the problem as one of the hole and particle defects
moving on the background of dimers or vacuum, with the
spatial configuration of the dimer cluster entering the effective
Hamiltonian for the defects only as a parameter.

We define the reference system in which the pure dimer
cluster occupies certain lattice sites while all the defects are
placed at the beginning (left side) of the lattice. As the defects
move in the lattice, the effective hopping rates depend on
whether they are inside or outside the MI cluster. In turn, the
position of the cluster depends on the positions of the defects,
since each defect crossing the system from the left to the right
shifts the position of the dimers, and the cluster as a whole, by
one site to the left. The effective Hamiltonian for the defects
can then be cast as

Ĥ =
L−1∑
j=1

N∑
nr=0

Ĥ
[�(j+nr)]
j ⊗ P̂

nr
[j+2,L] ≡

L−1∑
j=1

H̃j , (9)

where P̂
nr
[j+2,L] is the projector onto the subspace containing

exactly nr hole and particle defects on sites j + 2 to L, while
each local operator Ĥ

[�]
j acts on sites j and j + 1 as

Ĥ
[�]
j = −J [�]

a (â†
j âj+1 + H.a.)t̂j t̂j+1 t̂

†
j+1 t̂

†
j

− J
[�]
t (t̂†j t̂j+1 + H.a.)âj âj+1â

†
j+1â

†
j . (10)

Here â
†
j and âj (t̂†j and t̂j ) are the hard-core bosonic creation

and annihilation operators for the monomers (trimers). The
function �(j ) is initialized for all j with respect to the
reference system, and it can take two values: �(j ) = 1 for
site j + 1 being empty (vacuum) and �(j ) = 2 for site j + 1
containing a dimer. Then the hopping rates for the monomers
are J [1]

a = J and J [2]
a = 2J , and for the trimers are J

[1]
t = 0

(they cannot move on an empty lattice in first order in J ) and
J

[2]
t = 3J .

Note that since the effective Hamiltonian (10) contains two
species of particles with hardcore interactions, it cannot be
mapped onto a model of free fermions via the Jordan-Wigner
transformation (which is possible for identical hardcore
bosons). The dynamics is therefore nontrivial and actual
calculations again require numerical many-body (TEBD)
techniques. The practical advantage of the effective model—
besides the largely reduced number of particles—is that the
fast time scale U−1 is eliminated from the system’s dynamics
and in our numerical simulations we can choose Trotter steps
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on the time scale �J−1. Further discussion on the effective
defect model is given in Appendix C.

B. Initial states

In our numerical calculations, we use several typical
configurations of the defects in the lattice, each configuration
described by a pure quantum state. Various coherent and inco-
herent superpositions of such configurations would represent
mixed initial states.

We consider piecewise product states. An MI segment of
length l contains fixed number of particles n at every site
(n = 2 inside the dimer cluster and n = 0 in the vacuum),

|·〉nl =
l⊗

j=1

(â†
j )n√
n!

|vac〉, (11)

with |vac〉 denoting the true vacuum. Each segment can contain
an additional defect. For a defect localized as site j , we use
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FIG. 4. (Color online) Density of monomers (left column) and
trimers (right column) in the n = 2 MI cluster of 24 sites surrounded
by empty lattice, |·〉0

32, on both sides. In the top panels, the initial state
of the cluster |−π/2〉2−

8 |·〉2
8|π/2〉2−

8 corresponds to two monomers at
the center of the band moving to the left and right. In the central
panel, the initial state |π〉2−

8 |·〉2
8|0〉2−

8 corresponds to two monomers
at the upper and lower band edges. In the bottom panel, the initial
state |π〉2−

8 |π/2〉2+
8 |0〉2−

8 is the same as in the central panels plus
a particle defect at the center of the band, moving to the right.
The interaction strength is U = 100J . The density of monomers
(trimers) corresponds to the probability of finding exactly one (three)
particles at a given site. A TEBD [18] algorithm with bond dimension
χ = 200 is used for the time evolution with a fourth-order Trotter
decomposition and time-step size 1/50J , with particle number
conservation explicitly included in the MPS [19].

the notation,

|j+〉nl = â
†
j√

n + 1
|·〉nl , (12a)

|j−〉nl = âj√
n
|·〉nl (n � 1), (12b)

with ± corresponding, respectively, to a particle and a hole
defect. Similarly, we denote a defect with quasimomentum k,
which must be a multiple of 2π/l, as

|k〉n+
l = 1√

l

l∑
j=1

eikj |j+〉nl , (13a)

|k〉n−
l = 1√

l

l∑
j=1

eikj |j−〉nl (n � 1). (13b)

We prepare the cluster by joining MI segments with and
without defects. Since we are only interested in low defect
densities, we do not construct segments containing multiple
defects. In order to perform TEBD simulations, the initial
states have to be represented in the MPS form, which is
discussed in Appendix D.

C. Numerical results

Figures 4 and 5 show the time evolution of defects in a
n = 2 MI cluster surrounded by vacuum, obtained from the
full BHM. Hole defects with quasimomenta at the center of
the band can easily leave the cluster after just a few scattering
events (Fig. 4). Hole defects prepared at the edges of the
band remain trapped in the cluster. An additional particle
defect, which itself cannot leave the cluster, induces fast
quasimomentum redistribution of the hole defects, a large
fraction of which can now leave the cluster.

The same effect is observed with localized defects (Fig. 5).
For hole defects alone, about one-third of their population
leaves the cluster (note that the localized initial state of
each defect has uniform distribution of quasimomentum k ∈
[−π,π ], and not energy Ek ∈ [−4J,4J ]), while an additional
localized particle defect increases this fraction significantly.
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FIG. 6. (Color online) Total population (integrated density,∑31
j=1〈â†

j âj 〉 + ∑88
j=58〈â†

j âj 〉) of monomers outside the dimer cluster.
(a) Initial states of the cluster are as follows: in the upper black
branch, |−π/2〉2−

8 |·〉2
8|π/2〉2−

8 (solid line), |−π/2〉2−
8 |4+〉2

8|π/2〉2−
8

(dashed line), and |−π/2〉2−
8 |π/2〉2+

8 |π/2〉2−
8 (dot-dashed line); in

the lower blue branch, |π〉2−
8 |·〉2

8|0〉2−
8 (solid line), |π〉2−

8 |4+〉2
8|0〉2−

8

(dashed line), and |π〉2−
8 |π/2〉2+

8 |0〉2−
8 (dot-dashed line). (b) Initial

states of the cluster are as follows: |4−〉2
8|·〉2

8|4−〉2
8 (solid line),

|4−〉2
8|4+〉2

8|4−〉2
8 (dashed line), and |4−〉2

8|π/2〉2+
8 |4−〉2

8 (dot-dashed
line). The interaction strength is U = 100J . Numerical parameters
are the same as in Figs. 4 and 5, and the curves terminate when the
accumulated cutoff error equals 10−2. The gray lines are obtained
from the equivalent effective model, with the time step increased to
1/10J .

In Figs. 6(a) and 6(b) we show the time evolution of the total
population of monomers outside the dimer cluster pertaining
to the cases illustrated in Figs. 4 and 5, respectively. Again,
hole defects with quasimomenta in the center of the band
easily escape the cluster even without the assistance of a
particle defect [Fig. 6(a)]. Conversely, for the hole defects with
quasimomenta at the edges of the Bloch band in the cluster,
very little population is found outside the cluster in the long
time limit (the small fraction of monomer population in the
vacuum is due to the finite binding energy U of the dimers).
Adding a particle defect in the cluster significantly increases
the fraction of monomers outside the cluster; we find that the
increase is always larger for a particle defect in the center of
the band than for a localized one.

For the initially localized hole defects [Fig. 6(b)], and
without assistance of a particle defect, we find that, as
expected, about a third of their total population occupying
the center of the Bloch band leaves the cluster in the long-time
limit. A particle defect can further increase the portion of

escaping population of the hole defects by redistributing their
quasimomenta over the entire band.

Note that the results of numerical simulations for the system
with a particle defect are reliable for shorter times as compared
to the simulations with the hole defects only, which is due to
the larger entanglement created dynamically upon the trimer-
monomer collisions.

So far we have been restricted to the treatment of only
two monomers and one trimer and for relatively short times,
because in the full BHM the fast growing entanglement in the
system limits the numerical method. With the effective model
containing only the hole and particles defects, we can simulate
the dynamics for much longer times with the same numerical
accuracy, as can be seen in Fig. 6. The perfect agreement
between the full and effective models allows us to employ the
effective model for simulating larger systems and for longer
times.

Figure 7 shows numerical results for a system containing
initially up to four defects. As expected, the evaporation works
for the larger systems as well. Most importantly, in the presence
of a particle defect, the number of hole defects left in the cluster
in the long-time limit falls well below unity (extrapolating
the curves to somewhat larger times than shown in Fig. 7, if
necessary).

VI. TWO-SPECIES BOSE-HUBBARD MODEL

We have seen in the previous sections that, in the single-
species BHM, the hopping amplitudes of a monomer inside
an n = 2 MI cluster and on an empty lattice differ by a fixed
factor of 2. More flexibility is offered by the two species BHM,
which we now briefly discuss. The Hamiltonian for the system
is

Ĥ = −Ja

∑
j

(â†
j âj+1 + H.a.) − Jb

∑
j

(b̂†j b̂j+1 + H.a.)

+ Ua

2

∑
j

â
†
j â

†
j âj âj + Ub

2

∑
j

b̂
†
j b̂

†
j b̂j b̂j

+Uab

∑
â
†
j âj b̂

†
j b̂j , (14)

where âj (b̂j ) are the bosonic operators for the particles of
type a (b) hopping between adjacent sites with the rate Ja (Jb),
while Ua,Ub, and Uab are the intra- and interspecies on-site
interactions.

Assuming the conditions Ua,Ub,Uab,|Ua + Ub − 2Uab| �
Ja,Jb, we first consider the situation where each lattice site is
either empty or contains a single a-b dimer, that is, a pair of
strongly interacting (via Uab) particles a and b localized on the
same site. Upon adiabatic elimination of the nonresonant states
containing unpaired particles on neighboring sites [12], we
obtain an effective Hamiltonian of the form of Eq. (2), where
now the dimer hopping and nearest-neighbor interaction are
given by

J̃ = −2JaJb

Uab
, B̃ = −2

(
2J 2

a

Ua
+ 2J 2

b

Ub
+ J 2

a + J 2
b

Uab

)
. (15)

With all the interactions repulsive, the anisotropy parameter,

� = B̃/2J̃ = Ja

Jb

(
1

2
+ Uab

Ua

)
+ Jb

Ja

(
1

2
+ Uab

Ub

)
, (16)
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FIG. 7. (Color online) Total population (
∑63

j=1〈â†
j âj 〉 +∑160

j=98〈â†
j âj 〉) of monomers outside the dimer cluster of

32 sites surrounded by empty lattice, |·〉0
64, on both sides.

(a) Initial states of the cluster are as follows: in the
upper black branch, |−π/2〉2−

8 |·〉2
8|π/2〉2−

8 |−π/2〉2−
8 (solid

line), |−π/2〉2−
8 |4+〉2

8|π/2〉2−
8 |−π/2〉2−

8 (dashed line), and
|−π/2〉2−

8 |π/2〉2+
8 |π/2〉2−

8 |−π/2〉2−
8 (dot-dashed line); in

the lower blue branch, |π〉2−
8 |·〉2

8|0〉2−
8 |π〉2−

8 (solid line),
|π〉2−

8 |4+〉2
8|0〉2−

8 |π〉2−
8 (dashed line), and |π〉2−

8 |π/2〉2+
8 |0〉2−

8 |π〉2−
8

(dot-dashed line). (b) Initial states of the cluster are as follows:
|4−〉2

8|·〉2
8|4−〉2

8|4−〉2
8 (solid line), |4−〉2

8|4+〉2
8|4−〉2

8|4−〉2
8 (dashed line),

and |4−〉2
8|π/2〉2+

8 |4−〉2
8|4−〉2

8 (dot-dashed line). (c) Initial states
of the cluster are as follows: |π〉2−

8 |·〉2
8|0〉2−

8 |4−〉2
8 (solid line),

|π〉2−
8 |4+〉2

8|0〉2−
8 |4−〉2

8 (dashed line), and |π〉2−
8 |π/2〉2+

8 |4−〉2
8|4−〉2

8

(dot-dashed line). Simulations were performed with the effective
model. Bond dimensions χ = 300 are used, and the time-step size
is 1/10J . The curves terminate when the accumulated cutoff error
equals 10−1.

is larger than 1 for any finite Ua/Uab or Ub/Uab, and the MI
cluster of a-b dimers is stable. But for Ua/Uab,Ub/Uab → ∞,
corresponding to the band insulator for two fermionic species,
� = 1 and the dimer cluster is unstable.

Inside the n = na + nb = 2 (na = nb = 1) MI cluster, a
hole defect of type a (unpaired particle b) is created by âj

[see Fig. 1(e)]. The defect hops in the cluster with the rate
Ja while outside the cluster its hopping rate is Jb. It must be
stable and not resonantly converted into a pair of particles b
and a single b hole (unpaired particle a), which requires that
Ub − Uab � Ja,Jb. Neglecting the second-order corrections of
the order of J 2

a,b/Ua,b,ab, we have the effective single-particle
Hamiltonian (5) with JA = Ja and JB = Jb. Using the results
of Appendix A, we calculate the transmission probability T (k)
of the particle through the domain wall separating the regions
A and B for various Jb/Ja, which is shown in Fig. 2. At Ja = Jb

(α = 1) we find an almost perfect transmission for all k, up to
a small correction due to finite interactions. The above results
equally apply to a hole defect of type b (unpaired particle a)
with the replacement a ↔ b.

We have performed numerical simulations of the dynamics
of several defects in a dimer cluster surrounded by vacuum
using the full model of Eq. (14). For computational reasons,
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FIG. 8. (Color online) Density of unpaired particles b, or a holes,
in the cluster (left column), and particles a (right column), in the
lattice with an MI cluster of a-b dimers spanning 24 sites surrounded
by empty lattice, |·〉0

32, on both sides. The initial state of the cluster
|−π/2〉2−a

8 |·〉2
8|π/4〉2−a

8 corresponds to two a-hole defects moving
to the left with velocity 2Ja, and to the right with velocity

√
2Ja,

respectively, while all particles a are dimerized with particles b (no
b-hole defects). The parameters are Ua = Ub = 60Jb, Uab = 40Jb,
and Ja = Jb (top panel), Ja = 2Jb (central panel), and Ja = 1

2 Jb

(bottom panel). A TEBD algorithm with bond dimension χ = 100 is
used for the time evolution with a fourth-order Trotter decomposition
and time-step size 1/50Jb, with the particle number conservation for
each species explicitly included in the MPS.
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FIG. 9. (Color online) Dynamics of an initially localized unpaired
particle b, or a hole, in the cluster (left column), and an unpaired
particle a, b hole, in the cluster (right column), for the initial cluster
state |4−a〉2

8|·〉2
8|4−b〉2

8. All parameters are as in Fig. 8, and the bond
dimension of the TEBD is χ = 200.

we truncate the local Hilbert space to three bosons of each
species per site, which is justified by the facts that, due to the
strong interactions, the occupation of a single site by more
particles can safely be neglected.

In Fig. 8 we show the behavior of two unpaired particles b,
or a holes, moving in the cluster with different initial velocities.
In the case of Ja = Jb (top panel), both defects almost
completely leave the cluster upon the first encounter with its
walls. For Ja �= Jb, only partial transmission of each defect is
recorded, which depends on its initial quasimomentum, as per
Fig. 2. As an example, at Ja = 2Jb (central panel) the unpaired
particle b with k = π/2 can leave the cluster, while that with
k = π/4 cannot, as its quasimomentum is close to the lower
band edge.

Figure 9 illustrates the results for a pair of initially localized
defects of a different type. Again, for Ja = Jb, both defects
easily leave the cluster through its walls, but when Ja �= Jb,
only a fraction of the population of each defect leaves the
cluster after the first collision with its wall. Note, however,
that since the two types of hole defects have different effective
mass, their collisions with each other and the walls of the
cluster can effectively redistribute their quasimomenta, and no
trimer defects are required to purify the MI cluster.

VII. SUMMARY

To conclude, in one-dimensional MI clusters of repulsively
bound dimers of bosons [9], hole defects (unpaired particles,
or monomers) can evaporate through the cluster boundaries,
taking away the entropy of the system. In the case of dimers
of identical bosons, only part of the monomer population can
leave the cluster unassisted. Complete evaporation of the hole

defects is possible in the presence of catalyzing particle defects
(trimers), which efficiently thermalize the hole defects via the
quasimomentum redistributing collisions. The particle defects
themselves cannot leave the cluster, due to the large energy
mismatch 2U between a single excess particle on top of the
n = 2 MI cluster and on an empty lattice.

In the case of dimers composed of two different bosonic
species, the defect evaporation proceeds by itself, without the
need of any catalyzing species.

The system studied in this paper is amenable to exper-
imental investigations with cold atoms in optical lattices
[3]. To prepare the cluster of dimers surrounded by lattice
vacuum, one starts with an optical lattice superimposed by
a shallow confining potential populated by the MI phases
with occupation numbers of n = 0,1,2 in successive spatial
shells [20,21], followed by removal of all the atoms outside
the central n = 2 MI region [22]. The homogeneous lattice
potential is then achieved by turning off the shallow confining
potential, while the spatial distribution of the defects and
their dynamics inside and outside the dimer cluster can be re-
solved using nondestructive single-site addressing techniques
[23–25].
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APPENDIX A: TRANSMISSION OF A PARTICLE
THROUGH A DOMAIN WALL

Here we calculate the probability of transmission of a
particle with quasimomentum k through a domain wall, as
per Eq. (5). For the particle incident from the left, we solve the
stationary Schrödinger equation using the standard scattering
ansatz for the wave function,

ψj =
{

eikj + ρe−ikj , j � 0

τeik′j , j � 0.
(A1)

where ρ and τ are the complex reflection and transmis-
sion amplitudes. The energy eigenvalue is Ek = E

(A)
k =

−2JA cos(k) = −2JB cos(k′) = E
(B)
k′ , and therefore the refrac-

tion is given by

k′ = cos−1

(
cos(k)

α

)
. (A2)

Thus the transmission vanishes if cos(k) � α, where α =
JB/JA. (In this paper we are primarily concerned with the
case of α = 1/2, except for Sec. VI.)

Continuity at j = 0 implies 1 + ρ = τ , which together with
the Schrödinger equation at j = 0,

(Ĥψ)0 = −JAψ−1 − JBψ1 = Ekψ0, (A3)

yields

ρ = JBeik′ + JAe−ik − 2JA cos(k)

−JBeik′ − JAeik + 2JA cos(k)
. (A4)
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The current density in the two parts of the system is given
by

fj =
{

f
(A)
j = −iJA(ψ∗

j ψj+1 − ψjψ
∗
j+1), j < 0

f
(B)
j = −iJB(ψ∗

j ψj+1 − ψjψ
∗
j+1), j � 0.

(A5)

One can readily verify that

d

dt
ψ∗

j ψj = (−iĤψ)∗jψj + ψ∗
j (−iĤψ)j = −(fj − fj−1).

(A6)
For the state of Eq. (A1), we have

fin = 2JA sin(k), (A7a)

fref = −2JA sin(k)ρ∗ρ, (A7b)

ftrans = 2JB sin(k′)τ ∗τ, (A7c)

so that the reflection and transmission probabilities are

R =
∣∣∣∣fref

fin

∣∣∣∣ = ρ∗ρ, (A8)

T =
∣∣∣∣ftrans

fin

∣∣∣∣ = α
sin(k′)
sin(k)

τ ∗τ. (A9)

On can verify that T + R = 1 as it should.

APPENDIX B: TWO-PARTICLE HAMILTONIAN IN
QUASIMOMENTUM SPACE

We consider a pair of distinguishable, locally interacting
particles on a lattice described by Hamiltonian,

Ĥ = −Ja

⎛
⎝L−1∑

j=1

â
†
j âj+1 + γ â

†
Lâ1 + H.a.

⎞
⎠

− Jt

⎛
⎝L−1∑

j=1

t̂
†
j t̂j+1 + γ t̂

†
Lt̂1 + H.a.

⎞
⎠ + U

L∑
j=1

â
†
j âj t̂

†
j t̂j ,

(B1)

where the periodic and open boundary conditions correspond,
respectively, to γ = 1 and γ = 0. The operators â

†
j and t̂

†
j

create soft-core particles interacting via U , which is convenient
for the exact numerical simulations presented in Sec. IV B.

In quasimomentum representation, k = 2πν/L (ν =
�−L

2 + 1� · · · �L
2 �), we have â

†
k = 1√

L

∑L
j=1 eikj â

†
j and t̂

†
k =

1√
L

∑L
j=1 eikj t̂

†
j and two such particles have a probability L−1

to be on the same real lattice site. The Hamiltonian then reads

Ĥ = −2Ja

∑
k

cos(k)â†
kâk + (1 − γ )Ja

L

∑
k,k′

â
†
kâk′(eik + e−ik′

)

− 2Jt

∑
k

cos(k)t̂†k t̂k + (1 − γ )Jt

L

∑
k,k′

t̂
†
k t̂k′(eik + e−ik′

)

+ U

L

∑
k,k′,k′′

â
†
kâk′ t̂

†
k′′ t̂(k+k′′−k′). (B2)

APPENDIX C: EFFECTIVE THEORY FOR MONOMERS
AND TRIMERS

The nonlocality of the effective theory presented in Sec. V A
might seem surprising at first sight. From the point of view of
quantum information theory, however, the Hamiltonian (9) is
still local, in the sense that the commutator [H̃j ,H̃j ′ ] vanishes
except for j ′ = j ± 1, despite the fact that the support of any
two H̃j ,H̃j ′ has a large overlap. This property should always
be conserved in any effective theory, since it guarantees that
correlations in the model system travel with the same maximal
velocity as in the full system [26,27]. This property also
permits the application of the TEBD numerical method, in
conjunction with the conservation of the total particle number,
to the effective model. For then all the basis states used in
the TEBD (eigenstates of the reduced density matrices for all
bipartitions of the lattice) are, by construction, the eigenstates
of the total particle number in the corresponding subsystem.
Since the total particle number is the only observable that
enters Hamiltonian (9) via P̂

nr
j , this type of nonlocality does

not introduce additional difficulties in the use of the TEBD
method.

The effective model can also be extended to higher orders
in perturbation theory. In second order, this introduces nearest-
neighbor interactions, local potentials, and effective exchange
between monomers and trimers. All these terms are of the
order of J 2/U and depend on �, which can now assume four
different values depending on the type of bond between sites j

and j + 1. Another term of the same order describes the hole
defect hopping to the next-nearest-neighbor site in the cluster.
As this is spanning three sites, it also depends on the state of
the central site and requites more values of �. The presence
of such a longer-range term would necessitate a more general
numerical simulation algorithm than TEBD. We have verified,
however, that the effective Hamiltonian (10) containing only
the terms first order in J already captures all the essential
physics discussed in this paper.

In Fig. 10 we compare the dynamics of hole defects
obtained from the full and effective models, which agree
very well for large interaction strength U � J . Observe,
however, that a local theory neglecting the motion of the
cluster boundaries [Fig. 10(d)], and therefore violating the
conservation of the total number of dimers and bare particles,
does not describe the dynamics quantitatively correctly.

APPENDIX D: MPS REPRESENTATION
OF THE INITIAL STATE

Here we show how to construct an exact MPS representation
for a lattice containing fixed number of bosons each in a
certain single-particle eigenstate. The resulting MPS will
be in the canonical representation [28] and symmetric [29]
(i.e., it will be an eigenstate of the total particle number by
construction). The construction is analogous to that of matrix
product operators for a fixed total particle number [30].

The single-particle state is given by a normalized wave
function φj . In the examples of Sec. V B, we have φj =

1√
L
eikj with fixed quasimomentum k. The corresponding state
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FIG. 10. (Color online) Comparison of the full Bose-Hubbard
dynamics [Eq. (1)] with U = 100J (a) and (b), and with the effective
model [Eq. (9)] (c). The initial state contains an MI cluster of dimers
on sites j � 1 and localized monomers at sites j = −1 and j = 2.
The density of dimers is shown in (a), and the density of monomers
in (b)–(d). Note that the cluster boundary is shifted upon particle
crossing, which manifests in (a) as a smoothing of step in the dimer
density. The effective Hamiltonian without moving boundaries, Ĥ =∑L−1

j=1 Ĥ
[�(j )]
j , yields the dynamics of (d).

|1〉 = ∑L
j=1 φj â

†
j |0〉 can be written as

|1〉 = (
√

qmâ
†
A +

√
1 − qmâ

†
B)|0〉A ⊗ |0〉B, (D1)

where sublattice A spans sites 1 to m and sublattice B is
from m + 1 to L, while qm = ∑m

j=1 φ∗
j φj is the single-particle

probability of being in A. The bosonic creation operators â
†
A

and â
†
B are defined by

â
†
A = 1√

qm

m∑
j=1

φj â
†
j , â

†
B = 1√

1 − qm

L∑
j=m+1

φj â
†
j . (D2)

The state of the lattice with N particles in the same single-
particle state can then be expressed as

|N 〉 = 1√
N !

(
√

qmâ
†
A +

√
1 − qmâ

†
B)N |0〉A ⊗ |0〉B

= 1√
N !

N∑
l=0

(
N

l

)
(
√

qmâ
†
A)l

× (
√

1 − qmâ
†
B)N−l|0〉A ⊗ |0〉B, (D3)

and the density matrix of the system is

|N 〉〈N |

= 1

N !

N∑
l,l′=0

(
N

l

)
N

l′
(
√

qmâ
†
A)l|0〉A〈0|A(

√
qmâA)l

′

⊗(
√

1 − qmâ
†
B)N−l|0〉B〈0|B(

√
1 − qmâB)N−l′ .

(D4)

The density matrix of subsystem A is

ρA = TrB[|N 〉〈N |]

= 1

N !

N∑
l=0

(
N

l

)2

(N − l)! (1 − qm)N−l

× (
√

qmâ
†
A)l|0〉A〈0|A(

√
qmâA)l . (D5)

Note that ρA has at most χ = N + 1 nonzero eigenvalues, one
for each possible distribution of the N particles between A
and B. With P̂

[A]
l the projector onto the l particle sector of

subsystem A, the probability of finding l particles in A is

TrA
[
ρAP̂

[A]
l

] = 1

N !

N∑
l=0

(
N

l

)2

(N − l)! l! (1 − qm)N−l(qm)l

=
N∑

l=0

(
N

l

)
(1 − qm)N−l(qm)l

= Bqm
(l|N ), (D6)

which is a binomial distribution.
We can now construct |N 〉 as a matrix product state in

the canonical [28] form. Given a bipartition of the lattice, its
Schmidt decomposition is

|N 〉 =
N∑

l=0

λ
[m]
l |l〉A ⊗ |N−l〉B, (D7)

with |l〉A = 1√
l!

(â†
A)l|0〉A and |N−l〉B =

1√
(N−l)!

(â†
B)(N−l)|0〉B. The MPS will have a bond dimension

of χ = N + 1. The probability of finding l particles to the left
of bond m is (

λ
[m]
l

)2 = Bqm
(l|N ). (D8)

We then continue with the Schmidt decomposition at the
following bond. The remaining task is to determine the
coefficients of

|N 〉 =
N∑

l=0

N∑
r=l

λ
[m]
l �

[m+1]
lr λ[m+1]

r

×|l〉A ⊗ |r−l〉m+1 ⊗ |N−r〉B′ . (D9)

The λ tensors are already known from Eq. (D8). The subchain
B′ comprises sites m + 2 to L. Thus (λ[m]

l )2|�[m+1]
lr |2(λ[m+1]

r )2

is the probability of finding N − r particles on the right of
bond m + 1 and l particles on the left of bond m, resulting in

∣∣�[m+1]
lr

∣∣2 =
B qm

qm+1
(l|r)

Bqm
(l|N )

= r! (N − l)!

(r − l)! N !
q−r

m+1(qm+1 − qm)r−l(1 − qm)l−N .

(D10)

For the phase to be correct, we obviously have to set

arg
(
�

[m+1]
lr

) = (r − l) arg(φm+1). (D11)

Equations (D8), (D10), and (D11) completely determine
the tensors � and λ. Note that in this particular case, the
value of the bond index of λ[m] has a physical meaning
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of the number of particles to the left of bond m. The
resulting MPS is an eigenstate of the total particle number,
which can be used in TEBD implementations that take
advantage of particle number conservation explicitly, as in this
paper.

The construction is more complicated when one intends
to prepare Nα particles in different single-particle states
α = 1,2, . . . ,M . From simple combinatorial considerations,
we deduce that the Schmidt rank will be χ = ∏

α(1 + Nα)

(i.e., exponentially large in the number M of different single-
particle states). (This implies that, as a starting point for
dynamical simulations, one can construct an exact MPS
for the ground state of noninteracting bosons, as done in
Ref. [31], but not for noninteracting fermions.) The exact
expression in terms of the qm,α will contain overlaps between
the different single-particle states, which in general are finite in
any subsystem even if the single-particle states are orthogonal
on the entire lattice.
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Mech. (2004) P04005.

[17] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[18] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[19] A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller, Phys. Rev. A

72, 043618 (2005).
[20] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt,

L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Science 313,
649 (2006).
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S. Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[25] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Nature (London) 467, 68 (2010).

[26] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett. 97,
050401 (2006).

[27] J. Eisert and T. J. Osborne, Phys. Rev. Lett. 97, 150404 (2006).
[28] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,

Quantum Inf. Comput. 7, 401 (2007).
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