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We present a full symmetry classification of fermion matter in and out of thermal equilibrium. Our
approach starts from first principles, the ten different classes of linear and antilinear state transformations in
fermionic Fock spaces, and symmetries defined via invariance properties of the dynamical equation for the
density matrix. The object of classification is then the generators of reversible dynamics, dissipation and
fluctuations, featuring’ in the generally irreversible and interacting dynamical equations. A sharp
distinction between the symmetries of equilibrium and out-of-equilibrium dynamics, respectively, arises
from the different role played by “time” in these two cases: In unitary quantum mechanics as well as in
“microreversible” thermal equilibrium, antilinear transformations combined with an inversion of time
define time-reversal symmetry. However, out of equilibrium an inversion of time becomes meaningless,
while antilinear transformations in Fock space remain physically significant, and hence must be considered
in autonomy. The practical consequence of this dichotomy is a novel realization of antilinear symmetries
(six out of the ten fundamental classes) in nonequilibrium quantum dynamics that is fundamentally
different from the established rules of thermal equilibrium. At large times, the dynamical generators thus
symmetry classified determine the steady-state nonequilibrium distributions for arbitrary interacting
systems. To illustrate this principle, we consider the fixation of a symmetry protected topological phase in a
system of interacting lattice fermions. More generally, we consider the practically important class of mean
field interacting systems, represented by Gaussian states. This class is naturally described in the language of
non-Hermitian matrices, which allows us to compare to previous classification schemes in the literature.
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I. INTRODUCTION

The distinction between different unitary and antiunitary
symmetries [1–4] is a powerful organizing principle in the
classification of quantum matter. It has been spectacularly
successful in the description of gapped fermionic matter,
where the identification of topologically twisted ground
states on the background of ten fundamental symmetry
classes [5] culminated in the periodic table of topological
insulators and superconductors [6,7].
In this paper, we ask how the concept of symmetry

classifications can be generalized to fermion matter pushed
out of thermal equilibrium by an external environment.
This question is motivated in part by recent experimental
progress in the physics of condensed matter, atomic
condensates, and optics, which led to the realization of

novel phases of quantum matter in engineered environ-
ments [8–16]. These developments call for the classifica-
tion of symmetries and topologies of open quantum matter,
in extension of existing frameworks for closed system
quantum ground states.
Earlier work in this direction has put the emphasis on

the most apparent consequence of environmental coupling,
lossy dynamics and its description in terms of non-
Hermitian matrix operators [17–21]. We here take a more
general perspective and note that a comprehensive descrip-
tion of out-of-equilibrium symmetries must account for the
interplay of dissipation and environmental fluctuations.
Our approach to the full problem starts with the realization
of just how straightforward the description of symmetries
in the complementary case of isolated systems actually is.
There, the full information is stored in the symmetries of a
single Hermitian operator, the system Hamiltonian Ĥ. The
latter encodes the symmetries on the microscopic level via
the definition of Ĥ from Fock space operators, it describes
the symmetries of state evolution via the evolution operator
Û ¼ expð−iĤtÞ (ℏ ¼ 1), and those of long-time stationary
states through projectors onto the many-body ground state
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of Ĥ, or, slightly more generally, a thermal distribution
ρ̂ ∼ expð−Ĥ=TÞ.
Out of equilibrium, the situation becomes distinctly more

complex. What does an exhaustive set of symmetries
describing a system out of equilibrium look like? Which
elements of the theory assume the role of the Hamiltonian
in the description of these symmetries? And on the basis
of what physical principles should they be described in
mathematical terms? The formulation of concrete, and
surprisingly simple, answers to these questions is the
mission of the research reported in this paper.
To get warmed up to the subject, consider a system whose

dynamics is subject to damping, external driving, and an
intrinsic Hamiltonian. In its evolution, these influences
manifest themselves in the competition of dissipation,
fluctuations, and unitary dynamics (cf. Fig. 1). We aim to
understand in which ways these three are constrained by
symmetries. On top of the concrete challenges formulated
above, we are immediately facing a fundamental issue, the

status of time reversal. Six out of ten of the fundamental
symmetries of equilibrium quantum matter make reference
to this symmetry. However, out of equilibrium, time reversal
loses its physical meaning. Does this mean that the number
of symmetries reduces from ten to four? The answer is no. To
understand what is happening, recall that time reversal in
quantum mechanics is implemented by a combined oper-
ation inverting time, t → −t, and subjecting operators to an
antiunitary transformation. Out of equilibrium, the former
loses its meaning, but the latter does not. We are thus led to
investigate the status of antilinear operations in autonomy.
This realization, surprisingly, appears to be novel, and it

leads to unexpected structures. To mention one example,
we call a quantum Hamiltonian “chiral,” stabilizing a chiral
equilibrium phase, if it anticommutes with a Pauli matrix σ3
in some representation. However, it turns out that a
Hamiltonian participating in the stabilization of a chiral
out-of-equilibrium phase must commute with σ3. Such
constraints have practical bearings, for example, for the
engineered preparation of symmetry enriched out-of-
equilibrium phases, as we will show.
Returning to the general topic, our discussion below thus

focuses on the manifestations of symmetries in the dynami-
cal evolution of quantum states. The approach starts from
first principles with a representation of states via density
operators ρ̂ðfai; a†i gÞ in Fock spaces spanned by creation
and annihilation operators fai; a†i g. Symmetry operations
X are realized in ten families of unitary and antiunitary
transformations of these operators, nowadays mostly
labeled by the Cartan symbols, A;AIII;AI;…;CI (see
the Appendix A for a review). These symmetries are well
documented, meaning that the microscopically formulated
starting point of the theory is under control. In particular,
the tenfold classification implies the existence of a unique
symmetry label assigned to individual quantum states at
each instance of time. For example, in the case of
thermodynamic equilibrium, ρ̂eqðfai; a†i gÞ ¼ e−βĤðfai;a†i gÞ,
the state inherits the symmetries of the Hamiltonian Ĥ.
More generally, however, the classification statement
remains formal before the state is described in the context
of its dynamical evolution.
The dynamics of quantum states is described by evolu-

tion equations of the structure

∂tρ̂ðtÞ ¼ X̂ ρ̂ðtÞ: ð1Þ

This equation describes both Markovian state evolution,
where X̂ ρ̂ðtÞ ¼ X̂ðtÞρ̂ðtÞ is time local, and non-Markovian
cases, where X̂ ρ̂ðtÞ ¼

R
Rþ dsX̂ðsÞρ̂ðt − sÞ contains a

retarded convolution over time. In either case, the sym-
metries of the linear dynamical generator X̂ and their
manifestations in the solutions ρ̂ are the central topic of this
work. Our discussion will be general in that it treats
interacting and noninteracting systems on the same footing.
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FIG. 1. Building blocks entering the description of state
evolution of fermionic quantum matter. (a) The evolution of
Fock space quantum states primarily depends on whether a
system is in or out of equilibrium. In equilibrium, left, both the
dynamics and the stationary state are controlled by a Hamiltonian
Ĥ. [Thermalization at a given ambient temperature T may be
effected by fluctuation and dissipation, subject to the fluctuation-
dissipation theorem (FDT), Eq. (47).] Out of equilibrium, the
dynamics is specified in terms of three generators, Ĥ; D̂; P̂,
representing unitary evolution, dissipation, and fluctuations,
respectively. In either case, initial Fock space states evolve into
stationary states whose symmetries are determined by the
dynamical generators, but not the initial configurations. (b) In
equilibrium dynamics, fluctuation and dissipation are locked by
the fluctuation-dissipation relation, Eq. (47), reducing the “oper-
ator space” to two freedoms Ĥ and D̂ controlling the relaxation
into an equilibrium configuration. Antiunitary symmetries appear
in combination with an inversion of time. The representation of
antiunitary symmetries T depends on whether the dynamics is
unitary D̂ ¼ P̂ ¼ 0 (T in combination with time reversal,
t → −t), irreversible equilibrium D̂ ∝ P̂ (T in combination with
thermal time reversal, t → −tþ iβ), or irreversible out of equi-
librium (T in autonomy).
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We first note that Fock space symmetry transformations
X affect the operators ρ̂ðfai; a†i gÞ and X̂ðfai; a†i gÞ featur-
ing in the equation as ρ̂ → ρ̂X and X̂ → X̂X via their
representation on the creation and annihilation operators.
Importantly, the realization of a symmetry in the evolution
equation may include an additional transformation of the
dynamical parameter “time” t itself. A transformation is
called a symmetry if it leaves the evolution equation
invariant, i.e., if the equation looks the same before and
after the transformation. If this condition is met, ρ̂ and ρ̂X
solve the same equation and are therefore identical; the
symmetry of the dynamically evolving state is established,
including in the limit ρ̂ðt → ∞Þ, where it defines the
stationary phases.
The moment the dynamics includes elements of irrevers-

ibility induced by the coupling to an environment, the
inversion of time t → −t in Eq. (1) is no longer physical
—movies of irreversible processes do not make sense in
reverse. The generic situation in this case is that of non-
equilibrium dynamics, which is also the focus of this paper.
With inversion of time out of the picture, the invariance
condition reads X̂X ¼ þX̂ . More specifically, the genera-
tors, X̂ ¼ X̂ðĤ; D̂; P̂Þ can generally be expressed in terms
of three subordinate operators, describing the contributions
of unitary evolution, dissipation, and fluctuations to the
dynamics. In this representation, the symmetry criterion
splits into three, individually for these operators.
The symmetry classification of the generator of dynam-

ics X̂ defines the criteria required for the stabilization of a
(stationary) state of definite symmetry. We already men-
tioned that the criteria obtained in this way differ from
those of equilibrium systems. For example, the conditions
for the Hamiltonian contribution to a dynamical evolution
assume a form opposite to those in the equilibrium case.
Given the scarcity of general principles characterizing out-
of-equilibrium quantum distributions, the specification
of symmetry criteria universally described in terms of
the generators Ĥ; D̂; P̂ is an important contribution of
this work.
At this point, we have mentioned two settings, the limit

of closed system unitary dynamics and that of nonequili-
brium irreversible dynamics. However, sandwiched
between these two, we have a third major class, that of
irreversible equilibrium dynamics, commonly associated to
the physics of thermalization. Thermalization is irrevers-
ible, and as in the nonequilibrium case, a naive inversion of
time in Eq. (1) is not physical. However, unlike in the
nonequilibrium case, there still applies a principle of
“micro-reversibility.” In essence, it states that the rates of
microscopic processes are determined by those of their
time-reversed inverse processes. Microreversibility implies
a symmetry under shift inversion Δt → −Δtþ iβ, where β
is inverse temperature and Δt the difference entering the
correlation of observables at different times. In order for

this condition to hold, fluctuations P and dissipation D
must be locked to each other via the fluctuation dissipation
theorem Eq. (47) below. From the larger perspective of
out-of-equilibrium dynamics, thermal equilibrium thus
defines a “fine-tuned” case, much as unitary dynamics
(D ¼ P ¼ 0) is an even stronger confined limit. Either limit
comes with symmetry principles specific to its constraints,
and different from the general case. The hierarchy of
different settings is illustrated in Fig. 1(b).

A. Synopsis and summary of results

We now turn to a more concrete level and summarize
the main findings of our work. Proceeding in a bottom up
manner, we first discuss the realization of symmetries in
fermionic Fock space, before turning to their representation
in different descriptions of effective dynamics. We also
compare our results to related work on symmetry classi-
fication of open quantum systems.
Symmetries.—Our starting point is the representation of

symmetries as unitary or antiunitary transformations in
Fock space through their action on fermion operators
fai; a†i g. These operators represent the system after tracing
over the environmental degrees of freedom, and no refer-
ence to a particular type of dynamics is made yet.
Following the reasoning of Refs. [5,22], all we can say
at this level is that modulo unitary equivalence ten different
classes of transformations need to be distinguished.
More specifically, the basic operations from which these

symmetries are built by composition are an antiunitary
transformation (TiT−1 ¼ −i) acting as TaiT−1 ¼ uT;ijaj,
where uT is a unitary matrix, and a unitary operation
exchanging annihilators and creators CajC−1 ¼ uC;ija

†
j

[see Eq. (4) for a more detailed representation]. For
bookkeeping purposes, we also define the combination
S ¼ T ∘ C as an antilinear (SiS−1 ¼ −i) operation exchang-
ing annihilation and creation operators, SajS−1 ¼
uS;ija

†
j .

Invariance of evolution equations.–Consider Eq. (1), for
the case where ρ̂ ¼ ρ̂ðfai; a†i gÞ is the reduced density
operator describing the state of an open quantum system,
and X̂ ¼ X̂ðfai; a†i gÞ the dynamical generator governing
its out-of-equilibrium evolution. The transformations
X ¼ C, T, S affecting the fermion operators as ai →
XaiX−1 ≡ ðaiÞX define induced operations X̂ → X̂X and
ρ̂ → ρ̂X. We understand an operation X as a physical
symmetry if the transformed evolution equation ∂tρ̂XðtÞ ¼
X̂Xρ̂XðtÞ remains invariant in the sense that

X̂X ¼ X̂ :

In this case, the equation looks the same before and after
the transformation, which implies ρ̂XðtÞ ¼ ρ̂ðtÞ for the
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solutions: the density operator does not change under the
transformation and inherits the symmetry.
Antiunitary symmetry: Equilibrium versus nonequili-

brium.—Let us now discuss in more specific terms how
the antiunitary transformation T is represented in the
evolution equation. Specifically, we will distinguish
between the three different settings mentioned previously,
unitary state evolution, equilibrium evolution, and general
out-of equilibrium evolution.

In the first (textbook) case, X̂ ¼unitary−i½Ĥ; :& generates
unitary time evolution of the von Neumann equation,
∂tρ̂ðtÞ ¼ X̂ ρ̂ðtÞ. The combined application of T and an
express inversion of physical time, t → −t describes
physical time reversal. The invariance of the equation
requires

X̂T ¼unitary − X̂ ;

or ĤT ¼ Ĥ, where the T-symmetric Hamiltonian describes
equivalent evolution in both time directions—the cel-
ebrated metaphor of a movie played forward and backward
in time.
The generalization to the case of thermal equilibrium is

complicated somewhat by the fact that non-Markovianity
becomes essential for fermion systems. Referring to Sec. V
for a detailed discussion, the reason is that the frequency-
dependent Fermi-Dirac distribution coupling dissipation
and fluctuation generators via Eq. (47) introduces retarda-
tion in the time evolution. Within this setting, the pre-
viously mentioned microreversibility principle manifests
itself via the Kubo-Martin-Schwinger (KMS) relation
[23,24] stating invariance of expectation values of any
two-time correlators (with time difference Δt) under an
operation Δt → −Δt − i=T, where T is temperature. This
invariance motivates the definition of a generalized time-
reversal operation acting on functions of time as

EβfðtÞ≡ fð−t − iβÞ: ð2Þ

Note that like conventional time reversal, E2
β ¼ 1 is an

involutory operation. Combined with the Fock space
symmetry T, it defines the extension of quantum mechani-
cal time reversal to irreversible systems at thermal equi-
librium. The ensuing thermal time reversal operation,

Tβ ≡ T ∘ Eβ; ð3Þ

is compatible with the presence of a global time arrow in
irreversible equilibrium dynamics.
However, out-of-equilibrium dynamics excludes changes

of the time variable. T now acts in autonomy as an
antilinear symmetry realized in Fock space. We are thus
led to the conclusion that the watershed distinguishing
between antilinear symmetries with and without time

inversion is the boundary between unitary or equilibrium
dynamics on the one side and nonequilibrium dynamics on
the other.
What are the consequences of this finding? We first

note that both in and out of equilibrium the stationary
states, ρ̂≡ ρ̂ðt → ∞Þ satisfy identical symmetries: ρ̂ ¼ ρ̂X
is uniquely fixed by the action of symmetries in Fock space
(we formulate the ensuing symmetry classes in more
concreteness later in the text). This implies a high level
of universality for a system’s state, extending the tenfold
classification of equilibrium phases to the full realm of
nonequilibrium stationary states. However, both the
dynamical generators and the dynamical processes leading
to stationarity satisfy opposite symmetry principles. For
example, a Hamiltonian contribution Ĥ to a nonequilibrium
generator must satisfy ĤT ¼ −Ĥ to stabilize a T-symmetric
stationary state, opposite to the equilibrium case. These
differences are crucially important to the realization of
stationary states by dissipative protocols, a point we will
illustrate on the example of a topological phase in a chiral
symmetry class. An equally important consequence is that
in either case the language in which the respective
symmetry criteria are articulated involves no more than
the ten fundamental Fock space symmetries.
Below, we discuss the above invariance principle for

different realizations of dynamical evolution, including
“interacting” X̂ ’s of quartic order and non-Markovian
generators required to include the case of thermal equilib-
rium. In either case, the dynamical generators contain three
operators, Ĥ; D̂; P̂, describing the effect of unitary state
evolution, dissipation, and quantum fluctuations, respec-
tively. These operators are to the nonequilibrium system
what the Hamiltonian is to an isolated quantum system.
As we discuss in detail, an immediate consequence of
this statement is that individual (non-Hermitian) operators
cannot define a phase; it takes the more structured
information contained in the three operators Ĥ; D̂; P̂ to
do that.
We note that the representation of the antilinear sym-

metry T as a pure Fock space symmetry (out of equilib-
rium), or in connection with time reversal as Tβ

(equilibrium), has consequences for the combined chiral
transformation S ¼ T ∘ C as well. It does not affect,
however, the charge conjugation transformation, which is
unrelated to time altogether.
Gaussian dynamics.—While our approach works for

general interacting systems, in the second part of the paper,
we specialize to Gaussian evolutions, the irreversible
generalization of free-fermion systems. This setting allows
us to present the general framework in more concrete terms,
and it defines the nonequilibrium counterpart of the free-
fermion ground state classification [5]. The operator X̂ is
now quadratic in ai; a

†
i , and we may turn to a first quantized

representation in terms of matrices. The deterministic
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generator K̂ is represented by a non-Hermitian matrix,
K ¼ H − iD, with Hermitian contribution H and semi-
positive Hermitian damping matrix D, and the fluctuation
generator P̂ by an anti-Hermitian matrix P; see Sec. III B
for the precise relation between second and first quantized
representation. (Throughout, we use carets to label all
operators in second quantized representation other than
ai; a

†
i , while first quantized operators come without.) The

symmetry criteria discussed previously now assume the
form of matrix symmetries under transposition or complex
conjugation, and give rise to a table with 40 entries; see
Table II: 10 symmetry conditions for Hamiltonians in
equilibrium, and 3 × 10 for the Hamiltonian, dissipation,
and fluctuation generators out of equilibrium, where the
number 10 refers to the universal Cartan labels. Coming
from a Hamiltonian perspective, the symmetry relations
assume an unfamiliar form, which, again, has its origin in
the absence of time inversion in the present setting.
For a given initial state, the generator of dynamics

determines the system’s state via a Gaussian density
operator. Specifically, we represent the stationary long-
time limit (prior to normalization) as ρ≡ expð−ΘÞ, where
the Hermitian matrix Θ defines the effective Hamiltonian.
In equilibrium, Θ ¼ βH is determined by the Hamiltonian,
implying that state and Hamiltonian transform identically
under symmetry operations. Out of equilibrium, Θ ¼
ΘðH;D;PÞ is a function of the dynamical generator.
However, the realization of symmetries on Θ is determined
by the underlying Fock space operations and does not
depend on whether the dynamical evolution was in or out
of equilibrium (see the last column in Table I.) For
example, the state of a free-fermion topological insulator
with “chiral symmetry” is described by a state anticom-
mutative with an involutory matrix such as the Pauli matrix,
σ3, i.e., σ3Θσ3 ¼ −Θ. In equilibrium Θ ¼ βH and the
Hamiltonian H obeys the same rule. However, if Θ defines
an out-of-equilibrium distribution defined by a protocol
with Hamiltonian participation, the latter must be commu-
tative, σ3Hσ3 ¼ þH. The origin of this perhaps counter-
intuitive result can be traced back to Eq. (1): the presence or
absence of an explicit time inversion in the realization of
S ¼ T ∘ C in the equation accounts for the relative sign.

Irrespective of the different realizations of individual
symmetries for the generator of Gaussian dynamics, a main
conclusion for the Gaussian state classification is then that
it leads to the definition of ten matrix symmetry classes,
and that these classes are in one-to-one relation to the
Cartan classes A;AI;AII;…;D defining the “tenfold way,”
cf. Appendix A for an overview. This correspondence
becomes of key importance when we proceed to the
classification of state topologies.
Topology.—The objects entering the topological classi-

fication are macroscopic Slater determinants defined by the
single particle eigenstates jγi of Gaussian density operators
(or, equivalently, their effective Hamiltonians Θ), where γ
indicates the dependence on parameters such as a lattice
momentum or spin degrees of freedom. We consider
partially filled systems and assume the existence of a
subset of states occupied with high probability, pγ > 1

2.
These states assume a role analogous to that of quantum
ground states, and deviations off pγ ¼ 1 describe the
residual effects of heating in a system with large excitation
gap. Whether or not the parametric dependence of the states
jγi admits the definition of a topological invariant depends
on the symmetries of ρ̂, and on the dimensionality of the
parameter space γ. A corollary of the Cartan classification
of symmetries is that this information can be lifted from the
periodic table of topological insulators and superconduc-
tors [6,7]. For example, a Θ operator chiral in the above
sense, σ3Θσ3 ¼ −Θ, admits the definition of a state top-
ology in odd but not in even parameter dimension.
Note that the effective Hamiltonian plays a double role in

this context. It defines topological structures via the para-
metric dependence of its ground states and controls the
occupancy of these states via the probabilities pγ ¼ fðϵγÞ,
where Θjγi ¼ ϵγjγi and fðϵÞ ¼ 1=ðeϵ þ 1Þ. The stable
occupancy of the ground state of Θ requires the presence
of a global purity gap Δp [25–27] defined in Eq. (22),
avoiding totally mixed modes with occupation probabil-
ity pγ ¼ 1=2.
As a second condition, we require that the stationary state

ρ̂ ¼ expð−Θ̂Þ is attained with a finite rate, and that excita-
tions out of it relax back in finite time. This permits slow
variations of system parameters in time without leaving the
instantaneous stationary state. The dynamical approach
toward Θ is controlled by the deterministic generator,
K ¼ H − iD, and the minimal rate set by the spectral
gap Δs, which will be defined in Eq. (21). In passing, we
note that the complex eigenvalue spectra of dissipation
generators are interesting objects in their own right (see
Refs. [20,28] for review). Their singularities in the complex
plane, dubbed “exceptional points,” can be classified in
terms of topological principles and leave signatures in
specific dynamical response functions. However, the sta-
tionary density matrix implies a long-time limit or integral
over frequencies effectively averaging over these structures.

TABLE I. Principal types of dissipative dynamics and their
theoretical formulations. The inclusion of non-Markovian proc-
esses (required, e.g., to describe the relaxation toward a quantum
thermal distribution) is beyond the scope of the Lindbladian
description but can be addressed within the Keldysh path integral
framework.

Lindbladian Keldysh

Markovian Linear ✗ ✗
Markovian Nonlinear ✗ ✗
Non-Markovian Linear ✗
Non-Markovian Nonlinear ✗

SYMMETRY CLASSES OF OPEN FERMIONIC QUANTUM MATTER PHYS. REV. X 11, 021037 (2021)

021037-5



We also address the formation of edge states at the
boundaries between bulk topological phases. By definition,
an edge is defined by the change in a topological invariant
which in turn requires the closure of the purity gap [26]
(unless the invariant is destroyed by violation of a symmetry
condition). Ultimately, one would like to apply such edges as
resources for the realization and manipulation of topologi-
cally protected edge states. In this regard, the closure of the
purity gap appears to be bad news. By definition, a closing
purity gap implies fully mixed configurations, e.g., Majorana
edge qubits forced into an equal probability configuration of
up and down states. However, as we discuss, a way out of
this dilemma is a simultaneous closure of purity and spectral
gap at the edge. We will see how this happens, for example,
in systems with Lindbladian state evolution where the
topological state is the “dark state” of the dynamics, and
how this defines manipulable edge spaces.
Finally, we remark that topological classification gen-

erally requires more structural input than symmetry
classification. For example, for a given fermion
Hamiltonian—classifiable according to the tenfold sym-
metry scheme—the objects of topological classification can
be zero temperature ground states [29] (as in the physics of
topological insulators), unitary time evolution operators
[30,31] (as relevant for the topology of Floquet systems),
or group cohomology structures [32] (as relevant for the
classification of interacting symmetry protected topological
phases). The exploration of the full scope of topological
classifications based on the nonequilibrium symmetry
classification discussed here is a subject transcending the
scope of this work.
Relation to other work in the field.—We already men-

tioned that previous work on symmetry classifications
emphasized the non-Hermiticity of noninteracting
dissipatively damped dynamics in first quantized matrix
representations (encoded in Ĥ and D̂, but discarding
fluctuations P̂). Building on symmetry classifications of
such non-Hermitian matrices [17], it has been reasoned that
the Hermitian adjoint η∶X → X† becomes a symmetry
operation in addition to the standard unitary and antiunitary
symmetries of quantum mechanics [18–20]. The inclusion
of this operation defined as an extended classification,
now containing 38 rather than the 10 classes governing the
Hermitian generators of unitary time evolution [18,19].
However, causality arguments led Ref. [33] to the con-
clusion that only ten of these—defined as combinations of
η, time reversal T, and charge conjugation C—are physical
in dissipative evolution.
Our analysis of symmetries is different from these works

in that (i) it starts from a representation of symmetries in
Fock space (as we will see, the passage from second
quantized operators to matrices is not an innocent one), and
(ii) system dynamics is fundamental to the symmetry
classification. The latter requires consideration of all three
generators Ĥ, D̂, and P̂ on equal footing, and on all levels

of the description. For example, P̂ contains the system’s
distribution function. If this information is not kept track of,
the system may appear to be in different classes, depending
on whether parts of it are integrated out or not. Erasure of
this information may thus spoil the unambiguous assign-
ment of systems to classes. (The sensitivity of time reversal
to the realization of system partitions has also been noted
in Ref. [34].)
It is important to point out that the symmetry classes of

stationary states depend on the symmetries of the above
generators but not on those of initial states, unless multiple
stationary states exist. For example, the initial state of a
quantum system prepared with definite center-of-mass
momentum breaks T. One may consider fine-tuned protocols
for which this breaking is preserved including under the
evolution by T invariant generators. However, this situation
is not generic. Rather, generic long-time evolution will
eventually eradicate the memory of the initial state and
stabilize a T-symmetric phase. The disclaimer that we are
focusing on universal symmetry classes is important inas-
much as nonequilibrium dynamics starting from specific
initial states leaves ample room for dynamical or transient
manifestations of symmetries and/or topology not captured
by our analysis. As examples, we mention work on the
classification of quantum quenches in closed systems
governed by topologically nontrivial Hamiltonians [35–37],
and on the structure of the complex spectra of dissipative
generators, and topological signatures caused by the pres-
ence of singular “exceptional points” in open system’s state
evolution [38–50]; see Ref. [28] for review. Such structures
show in observables probing the approach to stationarity,
but not in the stationary phases themselves.
Plan of the paper.—The focus in this paper is on general

structures. However, for illustrative purposes we have
included the discussion of one exemplary case study,
namely the physics of an interacting model in class BDI
(possessing a symmetry under both T and C), reducing to a
variant of a Majorana chain in the Gaussian limit. This
example is deliberately chosen to illustrate all concepts
introduced below in the simplest possible scenario.
We start in Sec. II with a discussion of symmetries in

Fock space. In Sec. III we discuss the interplay of
symmetries and topology in Markovian dynamics. This
will introduce the material required to discuss the afore-
mentioned case study in Sec. IV. Section V goes beyond the
Markovian limit and lifts the discussion of symmetries to
the framework of the Keldysh path integral. This extension
is required, e.g., to include the important limit of thermal
equilibrium states. We conclude in Sec. VI. Technical
details are largely relegated to several Appendixes.

II. SYMMETRIES IN DRIVEN OPEN
QUANTUM DYNAMICS

In this section, we start out from a precise definition of
all symmetry operations X relevant to our discussion in
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fermionic Fock space. This part of the discussion makes no
reference to the concrete realization of X̂ . In the remaining
parts of the paper, we then explore the manifestations of
invariance for the different settings listed in Table I.

A. Symmetry operations in Fock space

The symmetry operations relevant to our discussion are
defined by U, T, C, S (for a review, see Refs. [29,51]),
where

U∶ UaiU−1 ≡ uijaj; UiU−1 ¼ þi;

T∶ TaiT−1 ≡ uTijaj; TiT−1 ¼ −i;

C∶ CaiC−1 ≡ uCija
†
j ; CiC−1 ¼ þi;

S∶ SaiS−1 ≡ uSija
†
j ; SiS−1 ¼ −i: ð4Þ

The action of the symmetry operations on the creation
operators is obtained by taking the adjoint of the above,
e.g., Ta†iT

−1 ≡ ūTija
†
j , where here and throughout the

overbar denotes complex conjugation.
Equation (4) exhausts the list of unitary (U, C) and

antiunitary (T, S) transformations of the operator algebra
exchanging (C, S) or not (U, T) creators and annihilators.
The transformations are defined to include an optional
purely unitary operation, uX, where here and in the
following X ¼ T, C, S unless refined otherwise. Defined
as it is, the list contains redundancy. For example, the
combination of T and C is a transformation of type
S ¼ T ∘ C, two different T, T0 combine to U ¼ T ∘ T0,
etc. However, due to the distinct physical meaning of the
transformations, it pays to consider them separately.
Specifically, T is in the class of antiunitary operations

required to describe time reversal in unitarily evolving
systems. Although the direct meaning of a “time-reversing”
operation gets lost in irreversible dynamics as anticipated
above, antiunitary transformations continue to play an
important role.
The “charge conjugation” transformation C exchanges

the role of particle and holes via a unitary operation in Fock
space, CiC−1 ¼ þi [52]. As mentioned above, the defi-
nition of S ¼ T ∘ C is technically redundant, but consid-
ered here for its role in the description of particle-hole
exchange, and the ensuing chiral symmetries.
The group U includes the familiar unitary symmetries

such as number conservation, U ¼ expðiαN̂Þ, N̂¼
P

i a
†
i ai,

α ∈ uð1Þ, or spin rotation Us ¼ expðia†σuσσ0aσ0Þ, u ∈
suð2Þ (σ; σ0 ¼ ↑;↓ are spin indices), etc. In the definition
of symmetry classes, the complementary set of operations
T, C, S must be considered in relation to the unitaries U.
More precisely, these operations define meaningful sym-
metry classes only if they commute with the unitary
symmetries of a system, and in consequence act within
the irreducible Fock subspaces defined by them—sectors of
conserved angular momentum, particle number, lattice

symmetry, etc. For a more detailed discussion we refer
to Refs. [22,29,51], and to Appendix B, where we discuss
this point on a few illustrative examples.
Finally, we note that all operations introduced above are

compatible with operator products in that XðÔÔ0ÞX−1 ¼
ðÔÔ0ÞX ¼ ÔXÔ

0
X. This feature will become important

when applying transformations to evolution equations
such as

∂tρ̂ ¼ X̂ ρ̂ → Xð∂tρ̂ÞX−1 ¼ XðX̂ ρ̂ÞX−1

⇔ ∂tρ̂X ¼ X̂Xρ̂X: ð5Þ

First quantized representation.—To efficiently describe
the above transformations in the language of matrices, we
define the Nambu operators Ai ≡ ðai; a†i ÞT . The operations
as defined in Eq. (4) act on these operators as Ai →

T
UTijAj

and Ai →
X
UXijA

†
j (here, X ¼ C, S), where the block

diagonal matrix structure UX ¼ bdiagðuX; ūXÞ is defined
in Nambu block space. For later reference, we note the
relations

UX ¼ σxŪXσx;

A† ¼ σxA; ð6Þ

where here and in the following the Pauli matrices σi act in
Nambu space. A general bilinear free fermion operator Ô
has the Nambu representation

Ô≡ 1

2
A†TOA≡ 1

2
A†
i OijAj; ð7Þ

defined in terms of a first quantized matrix operator
O ¼ fOijg. Subjecting Ô to the above transformations as

Ô→
X
ÔX ≡ 1

2
ðXA†TX−1ÞðXOX−1ÞðXAX−1Þ

≡ 1

2
A†ðOXÞA ð8Þ

[where only ðTOijT−1Þ ¼ Ōij acts nontrivially on matrix
elements], we obtain the first quantized version of the
symmetry operations [for the relation in the third row, see
also Appendix B, Eq. (B1)]:

U∶ O → OU ≡ UOU†;

T∶ O → OT ≡UTŌU†
T;

C∶ O → OC ≡ −UT
CO

TŪC;

S∶ O → OS ≡ −UT
SO

†ŪS: ð9Þ

We say that an operator Ô has X symmetry if ÔX ¼ Ô or
OX ¼ O in first quantization. The operations defined by
Eq. (9) will be the basis for the definition of matrix
symmetry classes.
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Symmetry tabulation.—Referring to Refs. [5,22] for a
more comprehensive discussion, we now briefly identify
the symmetry classes defined by application of T, C, and
S ¼ C ∘ T within the sectors of definite unitary symmetry:
twofold application of either X ¼ C, T to an X-symmetric
operator leads to O ¼ VXOV†

X, where VT ¼ UTŪT and
VC ¼ ŪCUC. The commutativity of VX with all operators
O in the representation space [53] requires VX ¼ '1N , and
these two options define the symmetry classes X ¼ '1.
The absence of X symmetry is called X ¼ 0. Similarly, the
presence or absence of symmetry under S is defined as
S ¼ 0 or S ¼ 1 [54]. Counting all options, we obtain the
list of ten symmetry classes tabulated in Appendix A for the
convenience of the reader.
Already at this stage it is evident that, irrespective of the

specific type of the irreversible dynamics (Markovian
or non-Markovian and equilibrium or nonequilibrium)
we have a maximum number of ten symmetry classes.
However, as we demonstrate below that the conditions
under which a given class emerges depend on whether
equilibrium or nonequilibrium dynamics is considered.

III. SYMMETRIES IN MARKOVIAN DYNAMICS

In this section, we discuss how the symmetry principles
introduced above materialize in the case of Markovian
dynamics, i.e., that of systems coupled to a bath with
vanishingly short memory. We start out from a representa-
tion of Markovian state evolution in the form of a general
Lindblad equation, then specialize to Gaussian state evo-
lution, and finally discuss topological structures.

A. Symmetries in Lindbladian dynamics

To study general Fock space transformations introduced
above in the case of Markovian dynamics, we consider a
quantum master equation of Lindblad form [55–59]:

∂tρ̂ ¼ −i½Ĥ; ρ̂& þ
X

α

ð2L̂αρ̂L̂†
α − fL̂†

αL̂α; ρ̂gÞ≡ L̂ ρ̂ : ð10Þ

Here, L̂α are the “jump operators” coupling the system to a
bath, and the sum extends over distinct types of coupling.
Typical realizations include jump operators L̂α ∼ ai linear
in fermion operators, or number conserving couplings
L̂α ∼ a†i aj. Number-conserving system-bath couplings
imply quartic (or even higher-order) Lindblad operators,
L̂†
αL̂α ¼ Oða4Þ, and this is why we need to include non-

linearities even if the focus will ultimately be on Gaussian
states.
We now apply the strategy Eq. (5) to the Lindblad

equation, with ρ̂ → ρ̂X and ðiĤÞ → ðiĤÞX, L̂α → ðL̂αÞX, or
L̂ → L̂X for brevity. The problem is X invariant if L̂ ¼ L̂X.
Under these conditions ρ̂ and ρ̂X satisfy the same irrevers-
ible evolution equation and are thus identical, ρ̂ ¼ ρ̂X.
(In cases where the stationary state depends on the initial

state, symmetry of the latter becomes an additional con-
dition [60].) At this level, the analysis includes interacting
settings. For illustration, see the case study of Sec. IV,
where we consider an interacting one-dimensional chain
with BDI symmetry, (T;C; SÞ ¼ ðþ1;þ1; 1Þ.

B. Symmetries of Gaussian states

While nonlinear Lindbladian equations are as complex
as their reversible (von Neumann) cousins, one often has
situations where the Hamiltonian is quadratic, i.e.,
Ĥ ¼ 1

2A
†THA, and Hartree-Fock mean field approxima-

tions may be applied to nonlinear operators L̂†
αL̂α to define

quadratic approximations (cf. Refs. [25,26,61]). Under this
condition [62–64], we have a reduction [65],

X

α

L̂†
αL̂α ≡ M̂ ≡ 1

2
A†TMA; ð11Þ

with a semipositive and Hermitian matrixM and Hermitian
H. These conditions reflect the complete positivity of the
Lindblad generator [55,56] and the dynamical conservation
of Hermiticity of ρ̂. The Lindblad equation then assumes
the form

∂tρ̂ ¼ −i½Ĥ; ρ& − fM̂; ρ̂gþ 2AT 1

2
M̄ ρ̂A† ð12Þ

[similarly to Eq. (7), ATM̄ ρ̂A† ≡ AiM̄ijρ̂A
†
j ]. Because

of fermion exchange symmetry, the kernel O defining
any bilinear form Ô ¼ 1

2A
†TOA satisfies OT ¼ −σxOσx

[cf. Eq. (B1)]. We here have assumed without loss of
generality that O is traceless. This feature suggests a
decomposition,

M ¼ D − iP;

D≡ 1

2
ðM þ σxMTσxÞ; P≡ i

2
ðM − σxMTσxÞ; ð13Þ

into contributions symmetric and antisymmetric under
Fermi exchange, where the symmetric contribution,
D ≥ 0, inherits the semipositivity of M [62–64] (this
follows from hψ jMjψi ≥ 0 and hψσxjMjσxψi ≥ 0 for
any state jψi). With these definitions we have

H ¼ −σxHTσx; D ¼ σxDTσx; P ¼ −σxPTσx: ð14Þ

In addition, the conservation of Hermiticity of the density
matrix ρ̂ by the Lindblad generator in each time step
implies

H† ¼ H; D† ¼ D; P† ¼ −P: ð15Þ

These three building blocks fully describe the dynamical
generator, and they all have individual physical meaning:
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H describes the reversible contribution, D the dissipative
damping generator, and P generates fluctuations.
Equation (B1) applied to the bilinear forms Eq. (11)

implies a reduction M̂ ¼ −iP̂ in the anticommutator term
of the Lindblad equation. However, due to the presence of ρ̂
the full content of M remains in the jump term:

∂tρ̂ ¼ −iðĤ − P̂Þρ̂þ iρ̂ðĤ þ P̂Þ

þ 2AT 1

2
ðD̄þ iP̄Þρ̂A† − cρ̂; ð16Þ

with the positive and real constant c¼ 1
2 trðMÞ¼ 1

2 trðDÞ≥0.
Proceeding as before, we subject Eq. (16) to the

operations in Eq. (4), and deduce the symmetry relations
the generator compoundsH,D, Pmust obey to obtain form
invariance of the evolution equation, and symmetry ρ̂ ¼ ρ̂X
of the density operator. Referring to Appendix C for the
details of the straightforward calculation, this leads to the
transformation criteria summarized in Table I.
Note the similarities and differences to the symmetry

classification in unitary dynamics. Similarly to that case,
the ten different combinations are applied to operators
which are individually Hermitian (H, D), or i-times
Hermitian (P). However, unlike with unitary state evolution
ρ̂ → e−iĤtρ̂eiĤt, where just one Hermitian operator deter-
mines the symmetry of the classification object, we here
have a situation where the three operators, H, D, P, are
essential to the description of ρ̂, or better to say of the
Hermitian effective Hamiltonian Θ governing the Gaussian
states ρ̂ ¼ expð− 1

2A
†TΘAÞ. In view of the fact that the

focus in the literature (cf. Refs. [8–16,33,66]) often is on
the dissipative damping operator K ≡H − iD, it is worth
pointing out that the symmetry of all three H, D, P is
essential to the invariance of the state ρ̂.
Second, we note that due to the lack of the extraneous

time inversion t → −t implied in the definition of unitary
time-reversal symmetry, the symmetries T and T ∘ C ¼ S
are realized differently than in Hamiltonian (or equilibrium)
dynamics. For example, T symmetry of the density operator
requires H ¼ −UTH̄U†

T, sign different from the standard
time-reversal condition of quantum mechanics. Similarly,
the chiral symmetry S requires commutativity
H ¼ þUT

SHŪS, again with opposite sign. In Sec. V B,
we compare this symmetry requirement to that in the case
of unitary evolution.
Finally, note the absence of a Hermitian adjoint

η∶O → O† applied to non-Hermitian operators in the
present framework. To see why, notice that our first
quantized T acts as T∶O → OT ≡UTŌU†

T [Eq. (9)]. By
contrast, Ref. [33] suggested T0∶O → OT0 ≡UT0OTU†

T0 .
The two transformations differ by a relative application of
η, T0 ¼ Tη (up to unitaries). The T0 transformation was
motivated by a criterion of causality—namely, to avoid a
sign change in the imaginary contribution to the damping

generator K ¼ H − iD—and by requiring a smooth con-
nection of the irreversible dynamics to purely unitary
evolution.
In our approach, the causality or sign issue does not arise

since the transformation t → −t is avoided. This is seen by
noting that K couples to the dynamics (symbolically) as
expð−iKtÞ ¼ exp½ð−iH −DÞt&. The absence of the t → −t
operation in our understanding of symmetries in irrevers-
ible nonequilibrium dynamics makes η never appear in any
symmetry operation.

C. Topology of Gaussian states

Turning to topology, the effective Hamiltonian gov-
erning ρ̂ ¼ expð− 1

2A
†TΘAÞ becomes center stage [26,27,

67–74] (see Ref. [75] for an alternative approach to mixed
state topology). The topological states defined by ρ̂ are the
ground states of Θ, i.e., Slater determinants formed from
the set of all eigenstates fψ−

γ g with negative eigenvalues ϵγ .
Before discussing the topological structure of these states,
let us investigate how the symmetries introduced above
extend to those of Θ.
Rather than probing Θ directly, we here consider the

stationary covariance matrix, Γ ¼ limt→∞ Γ̃ðtÞ [62–64],
which carries the same information but is more directly
accessible. The covariance matrix is a 2N × 2N Hermitian
matrix defined as

Γ̃abðtÞ≡ trðρ̂½Aa; A
†
b&Þ; ð17Þ

where a is a composite index comprising the Hilbert space
index i and the two-component Nambu index. Inspection of
Γ in the eigenbasis shows that

Γ ¼ tanhðΘ=2Þ; ð18Þ

i.e., the covariance matrix and the effective Hamiltonian
carry identical information, and in particular share the same
ground state. Substitution of Eq. (17) into Eq. (10) shows
that Γ is obtained as the stationary solution of the equation

∂tΓ̃ðtÞ ¼ −iKΓ̃ðtÞ þ iΓ̃ðtÞK† − 2iP; ð19Þ

where K ≡H − iD. The long-time limit of the solution is
obtained as

Γ ¼ −2i
Z

∞

−∞

dω
2π

1

ω − K
P

1

ω − K†

¼ −2i
Z

∞

0
dte−iKtPeþiK†t: ð20Þ

Equation (20) reveals much of the physics of the covariance
matrix, and the dynamical processes stabilizing it.
Specifically, the equation shows that the stationary state
is obtained by retarded or advanced propagation of the
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fluctuation matrix P, as described by the retarded and
advanced Green functions ðω − KÞ−1 and ðω − K†Þ−1.
The non-negative matrix D contained in K ¼ H − iD
defines the relaxation rate at which the stationary state is
attained. We require a finite minimal rate, as defined by the
spectral gap:

Δs ¼ −minfIm½eigenvalðKÞ&g > 0: ð21Þ

This requirement permits slow (adiabatic) changes of
system parameters in time such that the system stays at
all times in the instantaneous steady state. Note that only
the imaginary part of the eigenvalues, i.e., the lifetime of
the slowest decay rate in the system, enters the damping
gap; thus the Hamiltonian alone may be zero, or have zero
modes without corrupting an open damping gap.
Finally, it is straightforward to check by inspection either

of the representation Eq. (20) or of the evolution equation
Eq. (17) that the symmetries of K, H, P listed in Table II
extrapolate to symmetries of Γ andΘ as indicated in the last
column.
On this basis, we now discuss the topological structures

defined by Θ. This operator plays a role analogous to the
gapped single particle Hamiltonians describing topological
insulators or superconductors. The dissipative analog of
the single particle gap in these systems is the purity gap
[26,27], which can be defined via the eigenvalues of
Γ ¼ tanhðΘ=2Þ as

Δp ¼ minfjeigenvalðΓÞjg > 0: ð22Þ

The purity gap sets a lower bound for the negative part of
Θ’s spectrum relative to 0. In terms of Θ, a vanishing purity
gap is similar to a “metal,” where a chemical potential
intersecting a band invalidates the definition of a topologi-
cal ground state. The occupation probability of an Θ

eigenstate ψγ is given by the Fermi function pγ ¼ fðϵγÞ ¼
1=ð1þ eϵγ Þ. This occupation balance demonstrates that
negative eigenvalues of finite minimal modulus are
required to stabilize a fully occupied ground state in the
thermodynamic limit containing a macroscopically large
number of states. In contrast, a state with vanishing purity
gap features at least one mode with ϵγ( ¼ 0, representing a
totally mixed fermion state with occupation probability
pγ( ¼ 1=2.
For systems with finite spectral and purity gap, the

ground state fψγg of Θ defined by the Slater determinant
of all negative eigenvalue Θ eigenstates becomes the
subject of topological classification. Since the symmetries
of Θ are realized identically to those describing Hermitian
Hamiltonians, the classification of dissipative topological
phases becomes equivalent to that described by the periodic
table of topological insulators (cf. Table III in Appendix A).
The same goes for physical information obtained via
topological principles from the periodic table. For example,
a two-dimensional dissipative Chern insulator in class A
[ðT;C; SÞ ¼ ð0; 0; 0Þ] [61,76–78] supports circulating chi-
ral edge states, or a dissipative quantum wire in class BDI
[ðT;C; SÞ ¼ ðþ1;þ1; 1Þ] has Majorana end states [25], etc.

D. Edge state formation

While the classification of bulk topological phases
requires the presence of a purity gap, at the boundary this
gap closes. In fact, one may take the closing of the purity
gap as a definition of the phase boundary. This interpre-
tation follows from the identification of the covariance
matrix with a band “Hamiltonian,” and its ground state as
the carrier of a topological index. Changes in the ground
state require the closure of a gap, presently the purity gap in
the spectrum of Γ. Edge states are the low-lying eigenstates
of Γ spatially confined to that boundary region.
While the existence of edge states is a robust feature

granted by topology, the accessibility and manipulability of
these states—a feature required by, e.g., quantum informa-
tion applications—is another matter. In fact, we here run
into the seemingly paradoxical situation, where the closure
of the gap around zero eigenvalue in Γ, i.e., the definition of
the edge, appears to contradict the accessibility of these
states. To see how, consider the density matrix ρ̂ ¼
expð− 1

2A
†TΘAÞ projected to the edge state subspace.

Assuming Θ to be diagonalized, Θ ¼ diagðfϵγgÞ individual
states jγi≡ a†γ j0i are occupied with probability fðϵγÞ. For
ϵγ ≃ 0, the Fermi function approaches the value 1=2, which
means that the state of the edge is given by a mixed state
defined by equally occupied and empty edge states, for
example, a Majorana wire whose two-Majorana edge space
would be in an equal weight mixture of its two states, and
hence useless for “qubit” applications.
However, there is a loophole in the argument. It presumes

that the spectral gap remains open at the boundary. To see

TABLE II. Transformation of the (individually Hermitian or
anti-Hermitian) matrix operators O ¼ H;D;P;Γ;Θ entering the
evolution of the covariance matrix under the fundamental
symmetries, T, C, S. The sign factors indicate whether O ¼
'OX under the transformation. Out of equilibrium, they are
chosen to leave the Lindblad equation invariant. In equilibrium
[cf. Sec. V, including for the transformation laws of the
equilibrium analogs of D, P, Eqs. (46) and (48)], the indicated
transformation of the Hamiltonian leaves the equilibrium Kel-
dysh action invariant. In either case, the Gaussian stationary states
transform as indicated in the last column.

Transformations Nonequilibrium Equilibrium Steady state

X OX H D P H Θ=Γ
T UTŌU†

T
− þ − þ þ

C −UT
CO

TŪC þ − þ þ þ
S −UT

SO
†ŪS − − − þ þ
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why this matters, consider the solution of the differential
equation (19) governing the evolution of the covariance
matrix,

Γ̃ðtÞ ¼ Γ0ðtÞ − 2i
Z

t

0
dsPðt − sÞ; ð23Þ

with OðtÞ≡ e−iKtOeiK
†t, and initial state Γ0. If the spectral

gap, defined as in Eq. (21), is finite, the stationary state Γ of
Eq. (20) is approached exponentially fast. However, now
consider the different situation, where the approach of the
boundary goes along with a simultaneous vanishing of
all three generators of the dynamics H, D, P within the
subspace in which the purity gap closes. In this case, the
solution of the evolution equation projected to that space will
retain information on the initial state, and we have an edge
capable of storing information. The condition of simulta-
neous vanishing of all generators is not quite as stringent as it
may seem. For example, it is realized in dissipative systems
possessing a dark state or multiple of these forming a dark
space. A dark state is a state ρ ¼ jΨihΨj stationary under the
full generator of the Lindbladian dynamics Eq. (12). This
condition requires the simultaneous vanishing of all partial
generators within the dark space. For an example and the
discussion of the ensuing edge space, see Sec. IVD.

IV. CASE STUDY

In this section, we consider a one-dimensional lattice
model in the nonequilibrium symmetry class BDI
ðT;C; SÞ ¼ ðþ1;þ1; 1Þ for H, D, and P to illustrate the
general concepts introduced above, and connect to various
other concepts currently discussed in the literature. The
model is defined by a chain of L sites i containing two
orbitals 1,2 indicated by red dots in Fig. 2. For the moment,
we assume periodic boundary conditions; a system with
edges will be considered below. The irreversible dynamics
is governed by number-conserving jump operators, so that
the Lindbladian is quartic in fermion operators. We con-
sider a half filled system in which a Hartree-Fock style
linearization of the evolution around a macroscopically
filled state is possible, following the construction principles
of Refs. [25,61]. The ensuing mean field dynamics is
controlled by a parameter ϑ such that for ϑ ¼ 0 the
stationary state is a product state of decoupled equal weight
superposition (spin-x) states defined along the solid links in

the figure. In the opposite extreme, ϑ ¼ π=2, it is a spin-x
state defined via the dashed lines. For generic values, the
eigenstates of the effective Hamiltonian Θ are spatially
extended, and the full ground state is characterized by a
winding number which changes in a topological phase
transition at ϑ ¼ π=4. In the following, we discuss both
purely dissipative protocols stabilizing this state and
generalizations including an added Hamiltonian.

A. Interacting model

Let a1;i and a2;i be annihilation operators for orbitals 1
and 2 at site i, and define the two-component operator
ai ¼ ða1;i; a2;iÞT . Now consider the set of transformed two-
component operators defined as

l̂i ¼
1ffiffiffi
2

p
"

a1;iþ1 þ a2;i
−a1;iþ1 þ a2;i

#
;

r̂i ¼
1ffiffiffi
2

p
"

a1;i þ a2;iþ1

−a1;i þ a2;iþ1

#
; ð24Þ

acting on neighboring lattice sites. l̂i and r̂i are related to
the original operators by unitary transformations l̂i ¼ VLai
and r̂i ¼ VRai, with VL ¼ eiðπ=4ÞΣyðE11τ̂ þ E22Þ and
VR ¼ eiðπ=4ÞΣyðE11 þ E22τ̂Þ, such that fl̂a;ig and likewise
fr̂a;ig (a ¼ 1, 2 denoting the orbital index) generate a
fermion algebra as well. Here ðEijÞkl ¼ δikδ

j
l are matrices in

orbital space, Σi are Pauli matrices in the same orbital
space, and τ̂ is a lattice translation operator τ̂ai ¼ aiþ1.
To get some intuition for the operators l̂, consider the N

particle configuration defined by occupation of all l̂2 states:
jLi≡Q

i l̂
†
2;ij0i. Since we have 2N sites in total, this is a

half filled state. With l̂†2;i ¼ 1ffiffi
2

p ð−a†1;iþ1 þ a†2;iÞ we observe
that it is a product state defined by an equal weight
superposition (or spin-x state) defined along the solid
bonds in the Fig. 2. Conversely, jRi≡Q

i r̂
†
2;ij0i is a

product state of spin-x hybridizations along the dashed
bonds. Second, the states jLi; jRi afford an interpretation of
free-fermion ground states of distinct topological order. To
see how, consider the operators ĤL ≡P

i l̂
†T
i Σzl̂i. The state

jLi is the gapped ground state of this Hamiltonian at half
filling. On the other hand, substitution of the definition (24)

shows that ĤL ¼
P

q a
†T
q ð w†

w
Þaq, with w ¼ eiq in

momentum space. This comparison identifies jLi as the
ground state of a gapped chiral parent Hamiltonian,
where the winding of the phase z ¼ expðiqÞ as a function
of q ∈ ½0; 2πÞ defines a topological invariant W ¼
ð1=2πiÞ

R
dqz−1∂qz ¼ 1. Likewise, the state jRi is the

ground state of a Hamiltonian ĤR with winding W ¼ −1.
In the following, we construct dissipative protocols

driving into the states jLi; jRi, or more generally a

FIG. 2. Class BDI one-dimensional lattice model containing
two competing hybridization processes indicated via solid and
dashed lines. The model has a topological stationary state, whose
winding number changes in a topological phase transition at the
degeneracy point of equal hybridization strength.
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competition between them. Depending on the balance at
which these reference states enter, we expect different
topological phases, with a transition between them.
Specifically, it will be instructive to consider two different
Lindblad protocols (c ¼ cosϑ; s ¼ sin ϑ),

L̂inc ≡ cL̂l þ sL̂r;

L̂coh ≡ L̂clþsr; ð25Þ

where L̂x is the Lindblad operator defined relative to the
fermion operator choice x̂ (i.e., l̂, r̂, or cl̂þ sr̂, respec-
tively). The L̂x are bilinears in jump operators L̂ as in
Eq. (10). Suppressing the site index we define the latter as

L̂l1 ¼
ffiffiffi
κ

p
a†lx̂1; L̂l2 ¼

ffiffiffi
κ

p
alx̂

†
2; ð26Þ

where l ¼ 1, 2, x̂ ¼ l̂; r̂, or x̂ ¼ cl̂þ sr̂ for the second
protocol, and κ setting the coupling strength. Note that
these operators are number conserving and act locally in
real space. Specifically, the jump operator L̂a1 depletes the
upper x band and L̂a2 fills the lower, so that the joint action
of the two fills the ground state associated to the x̂
operators. The jump operators L̂an, a, n ¼ 1, 2, define a
Lindblad equation Eq. (10) with Ĥ ¼ 0 and the sum
extending over the four configurations and lattice
sites, α≡ ða; n; iÞ.
The “incoherent” operator L̂inc puts the two operators

cooling into jLi and jRi, respectively, into competition,
while the operator L̂coh cools into the ground or dark state
defined by a coherent superposition of l̂ and r̂. Either way,
we expect a phase transition at ϑ ¼ π=4, where c ¼ s ¼ 1ffiffi

2
p

and the left and the right operator algebra couple at equal
strength.

B. Symmetries

Turning to symmetries, we first note that the Lindblad
operators in the L̂x model are T ¼ 1 symmetric with
auxiliary unitary UT ¼ 1 in the sense of our earlier
discussion. The reason is that V̄L;R ¼ VL;R are real, and
hence, TL̂anT−1 ¼ L̂an for real κ, c, s.
Second, we have a S ¼ 1 symmetry under the chiral

symmetry operation,

SaiS−1 ≡ Σza
†
i ;

with auxiliary matrix US ¼ Σz. Noting that the matrices
VL;R in Eq. (24) satisfy the symmetry,

ΣzVΣz ¼ ð−iΣyÞV; ð27Þ

it is straightforward to verify that

SL̂anS−1 ¼ ð−1Þaþ1L̂an̄; ð28Þ

where n̄ ¼ 2, 1 for n ¼ 1, 2. Since the L̂’s appear pairwise
and are summed over, the sign factor drops out, and Lx has
a chiral symmetry.
Finally, the composition T ∘ S induces a C ¼ þ1 sym-

metry under the unitary map CaiC−1 ≡ Σza
†
i , with

UC ¼ Σz. We thus have a model with BDI symmetry
ðT;C; SÞ ¼ ðþ1;þ1; 1Þ on the second quantized level.

C. Linearized model

L̂x is quartic in fermion operators and hence defines a
nonlinear problem. However, this nonlinearity can be
Hartree-Fock decoupled, thanks to the macroscopically
large number of particles in the problem. To see how,
consider the bilinears (no sum convention here) L̂†

a1L̂a1 ¼
κðx̂†E1aaTÞða†TEa1x̂Þ ¼ κx̂†1aaa

†
ax̂1 → κx̂†1haaa

†
aix̂1 ¼

ðκ=2Þx̂†1x̂1 at half filling haaia†aii ¼ 1=2, used in the final
step. Likewise, L̂†

a2L̂a2 → ðκ=2Þx̂2x̂†2. With x̂ ¼ Va, and V
the linear transformation defining the site operators x̂ via a
[e.g., V ¼ VR in Eq. (24) for x̂ ¼ r̂], we thus find

X

α

L̂†
αL̂α ≡ M̂ →

κ
2
A†T

"
V†E11V

VTE22V̄

#
A; ð29Þ

where A ¼ ða; a†ÞT as before. Comparison with Eq. (13)
shows that the principal building blocks of the dynamical
generator are given by

D ¼ κ

"
V†V

VTV̄

#
; P ¼ iκ

"
V†ΣzV

−VTΣzV̄

#
;

ð30Þ

where we rescaled κ → 4κ for notational simplicity. Since
there are no terms coupling the particle and hole sector in
Nambu space, we focus on the particle blocks throughout,
and redefine D → κV†V and P → iκV†ΣzV for simplicity.
Using Eq. (27), we note that in this first quantized
representation, the chiral symmetry acts as D → DS ¼
−ΣzDΣz ¼ −D and P → PS ¼ þΣzPΣz ¼ −P. This is in
accordance with Table II and implies that D and P are
diagonal and off diagonal in orbital space, respectively.
Time reversal manifests itself in the reality of the matrices
D and iP.
In passing, we note that this reality can be used to

represent the system in the Majorana representation of the
BDI chain [79]. For example, with η ¼ 1ffiffi

2
p ða† þ aÞ, ν ¼

ð1=i
ffiffiffi
2

p
Þða† − aÞ, it is straightforward to verify that

a†TDa ¼ −iηTDν. However, the representation change
will not play an essential role throughout.
We now have everything together to explore the sta-

tionary states stabilized by this dynamics. As a warm-up
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exercise, consider the case x̂ ¼ l̂. The corresponding
matrices VL are unitary, and a quick calculation using
Eq. (24) yields the momentum representation,

D ¼ κ1; P ¼ iκðE12e−iq þ H:c:Þ; ð31Þ

with matrix structure in orbital space. Substitution of these
expressions into Eq. (20) defines the momentum represen-
tation of the covariance matrix:

ΓL ≡ z̄LE12 þ zLE21; zL ¼ eiq: ð32Þ

We thus conclude that the system cools at uniform rate
ðD ¼ const1Þ into the jLi state with its winding number
W ¼ 1. The covariance matrix (and, equivalently, the
effective Hamiltonian Θ) are chiral in the sense of
Table II, such that we have a dissipatively realized class
BDI system with stable topological phase.
Next consider the incoherent driving protocol. Since the

Lindblad generators are linear in the matrices P and D,
we now have a linear superposition, D ¼ κðcþ sÞ1 and
P ¼ iκ½E12ðct† þ stÞ þ H:c:&. Substitution of these expres-
sions into Eq. (20) gives

Γinc ≡ z̄incE12 þ zincE21; zinc ¼
ceiq þ se−iq

cþ s
: ð33Þ

The straightforward computation of the winding number
shows that W ¼ sgnðc − 1ffiffi

2
p Þ. At the phase transition,

c ¼ s ¼ 1ffiffi
2

p , the purity gap closes at two linearly dispersive
points q ¼ 'π=2. (The presence of two Dirac points in a
two-band model corresponds to the change of the winding
number by 2 at the phase transition.) However, the damping
gap, i.e., the smallest eigenvalue of D, remains open
everywhere.
Now, compare this to the drive L̂x defined by the linear

superposition x̂ ¼ cl̂þ sr̂. Up to a normalization factor, the
algebra of x̂ operators satisfies canonical commutation
relations, fx̂a;q; x̂†a0;q0 g ¼ δaa0δqq0ð1þ 2sc cos qÞ, implying
that we cool into a pure state. Proceeding as above,
we define a matrix V ¼ cVL þ sVR, which is “almost”
unitary, V†V ¼ ½1þ scðtþ t†Þ&1, reflecting the
scaled commutation relations. Using Eq. (30), we findD ¼
κð1þ 2sc cos qÞ and P ¼ iκ½E12ðce−iq þ sÞ2eiq þ H:c:&,
which gives

Γcoh ≡ z̄cohE12 þ zcohE21;

zcoh ¼
c2eiq þ s2e−iq þ 2sc

1þ 2sc cos q
: ð34Þ

Again, we have a topological phase transition at
c ¼ s ¼ 1ffiffi

2
p . However, its critical signatures are markedly

different from those of the incoherent case. The covariance

matrix now has unit-norm eigenvalues, jzcoh;qj ¼ 1,
reflecting the purity of the stationary state. Interpreted
as a topological band insulator Hamiltonian, it thus
resembles a Hamiltonian with “flattened” nondispersive
spectrum. The corresponding purity gap equals unity,
except at the phase transition point, where the absence of a
well-defined limit in zcoh;q as q → 'π reflects the singu-
larity required to have a unit-norm curve zcoh;q change its
winding number around the origin. However, the damping
gap, generally open in the incoherent case, now does close
at criticality.

D. Edge states

Both in the coherent and the incoherent protocol, an edge
is defined by the closure of the purity gap. In the incoherent
protocol, the spectral gap remains open, and in light of the
discussion of Sec. III D this implies a nonmanipulable edge
in the sense that the edge covariance matrix will approach
Γ ¼ 0 exponentially fast, reflecting a fully mixed state.
However, in the coherent protocol the situation is more
interesting. Here, too, a (now singular) vanishing of the
purity gap defines the edge. However, this singularity goes
along with a vanishing of both D and P.
The situation can be described both in a continuum

representation via a smooth variation of the parameters
ðc; sÞ through the critical point or directly on the lattice. We
here choose the latter option, and identify a simultaneous
null space of the operators D and iP in real space, for a
system cut open as indicated in Fig. 2. To this end, we first
identify a vector jΨ0i annihilated by V. With V ¼ cVL þ
sVR and VL;R given by Eq. (24), VjΨ0i ¼ 0 is equivalent to
the two conditions cψ1

iþ1 þ sψ1
i ¼ 0 and sψ2

iþ1 þ cψ2
i ¼ 0.

For c > s this recursion relation has an exponentially
decaying solution ψ1

i ¼ ψ1
1½−ðs=cÞ&i−1, ψ2

i ¼ 0 centered
on the upper orbital of the left edge, and a partner solution
ψ2
i ¼ ψ2

L½−ðs=cÞ&L−i at the lower orbital of the right edge;
see the arrows in the figure. (For c < s, the role of upper
and lower orbital are reversed.) The decoupling of these
states from the system is obvious in the case c ¼ 1, where
the eigenstates are local hybridizations indicated by the
solid bonds, excluding the states ðn ¼ 1; i ¼ 1Þ and
ðn ¼ 2; i ¼ LÞ. The definition (30) implies that jΨ0i is a
simultaneous eigenstate of P and D.
For unitary systems whose Hamiltonian has the same

topology as Γcoh, these states are the Majorana edge states of
the BDI chain (the limit c ¼ 1 corresponding to its “sweet
spot,” where the decoupling of an edge Majorana is manifest
in the lattice representation). Presently, the same topological
setting manifests in a dark space, spanned by jΨ0ihΨ0j,
jΨ1ihΨ1j, where the many-body states jΨ0;1i differ in the
occupation of the complex fermion corresponding to the two
Majoranas centered at the left and right edge, respectively.
The decoupling of jΨ0i from the dynamics implies that
arbitrary mixed states ρ̂ ¼

P
i¼0;1 pijΨiihΨij, p0 þ p1 ¼ 1
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are solutions of the dynamical equations and we have a
freely manipulable edge space.

E. Adding a reversible contribution

While our discussion so far has focused on purely
dissipative dynamics, it is straightforward to include a
Hamiltonian contribution Hq ¼ hĥq · Σ⃗, where the unit
vector ĥq describes the action of the Hamiltonian in orbital
space, and h is its strength (here assumed uniform for
simplicity.) For definiteness, we study the influence of this
Hamiltonian on a purely left winding dissipative back-
ground, x̂ ¼ l̂. Parametrizing the dissipative generators (31)
associated to the Lindblad operators in Eq. (24) in the same
way, Dq ¼ κ1 and Pq ¼ iκp̂q · Σ⃗, where p̂q ¼ ðcos q;
sin q; 0ÞT , it is straightforward to verify that the stationary
covariance matrix assumes the form

Γq ¼ p̂q · Σ⃗ −
h

κ2 þ h2
ðκ þ hĥq×Þðp̂q × ĥqÞ · Σ⃗: ð35Þ

This solution demonstrates the influence of the
Hamiltonian on the stationary state. In general, only
Hamiltonians obeying the symmetry condition of
Table II, H ¼ þΣzHΣz or ĥx ¼ ĥy ¼ 0, define a Γ-matrix
chiral in the sense ΣzΓΣz ¼ −Γ. In other words, it takes a
Hamiltonian diagonal in the orbital space to preserve the
off diagonality of Γ. (One may trace the origin of this
perhaps unexpected finding back to the fact that the
antiunitary irreversible chiral symmetry operation S ¼ T ∘
C does not involve a sign change of physical time.) If in
contrast H would obey the equilibrium relation
H ¼ −ΣzHΣz, chiral symmetry of the steady state would
in general be lost. We also note that a symmetry preserving
H does not commute with P (the Pauli matrix structure
again) and hence degrades the purity of the state: for
nonvanishing coupling h, the eigenvalues of Γ no longer
have unit modulus. While the purity gap gets affected, the
spectral gap κ remains untouched, as long as ½D;H& ¼ 0,
which the setup above assumes.
Finally, there is one interesting exception to the general

rule above: in cases where the dynamics stabilizes a dark
state, the symmetry condition on H gets lifted. A dark state
is a zero eigenstate of the full Lindblad generator.
Translated to the language of the matrices H, P, D, this
requires commutativity of all three of them, and P2 ¼ D2.
While the latter has been a feature built into our model from
the outset, the commutativity ½H;P& ¼ 0 implies
ĥq × p̂q ¼ 0, and hence the vanishing of the second term
in Eq. (35). In this way, the Hamiltonian decouples, and we
are left with the pure and chiral configuration described by
the first term, i.e., the projector onto the dark state.

F. Non-Hermitian Su-Schrieffer-Heeger model and
exceptional points

Against this background, let us address a few general-
izations of Hermitian one-dimensional systems with chiral
symmetry [80], which have been discussed in the recent
literature. Specifically, the non-Hermitian Su-Schrieffer-
Heeger (SSH) [80]model [39,42,49] is defined by thematrix

HNH ¼
"

0 zþt†

z−t 0

#

¼
"

0 ze−iq

z̄eiq 0

#
þ
"

0 Δze−iq

−Δzeiq 0

#

≡H1 þ iH2; ð36Þ

where z' ¼ z' Δz are arbitrary complex numbers. Can
this model Hamiltonian act as a generator of dissipative
dynamics, be associated to a symmetry class, or define a
fermionic topological state?
Turning to the first part of the question, we need to

understand howHNH relates to the general triptychH,D, P
of unitary, dissipation and fluctuation generators, respec-
tively. Since the imaginary parts of the eigenvalues λ' ¼
' ffiffiffiffiffiffiffiffiffiffi

zþz−
p

have indefinite sign, the direct identification

HNH¼
? H − iD does not define a legitimate dissipation

generator. As a cure, one could add an overall unit
matrix −iκ01, with κ0 ≥ jImλ'j, to make it sign definite;
such a case is considered below. Here, we discuss the
alternative interpretationHNH ¼ H1 þ iH2 ¼ H þ P as the
sum of a Hermitian part H1 ≡H and a fluctuation gen-
erator H2 ≡ −iP. Choosing Δz≡ iκ for definiteness, a
quick calculation shows that the fluctuation generator
iH2 ¼ P becomes identical to the matrix P of the winding
protocol Eq. (31). However, the definition of a consistent
Lindbladian dynamics requires the balancing presence of a
dissipation generator D of matching strength such as
D ¼ κ1. We are led to the conclusion that HNH by itself
does not define a consistent dynamical protocol, while the
generator defined by the matrices H ¼ H1, D ¼ κ1, and
P ¼ iH2 does. Referring back to the discussion of the
previous section, this generator stabilizes the covariance
matrix (35). However, this matrix, and the corresponding
effective HamiltonianΘ, do not have chiral symmetry since
H1 does not fulfill the nonequilibrium chirality condition of
Table II. Hence Θ does not possess topological ground
states. Although HNH “looks chiral,” it does not define a
fermionic topological state of Lindbladian dynamics.
Role of exceptional points.—Exceptional points are

terminal points of branch cut singularities forming in the
complex spectra of non-Hermitian linear operators [81]. At
these points eigenvalues merge, and topological numbers
counting the multivaluedness of the corresponding eigen-
value can be determined. A prototypical setup of this sort is
defined by a non-Hermitian matrix N ¼ N1 þ iN2 with
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Pauli matrix structure and Hermitian and anti-Hermitian
contributions, N1 ¼ n1;μΣμ; N2 ¼ n2;μΣμ, where μ ¼ 0, 1,
2, 3, Σ0 ¼ 1, and real coefficients n1;μ; n2;μ. The semi-
positivity constraint reads n2;0 ≥ jn⃗2j ≥ 0. Its eigenvalues,

λ' ¼ n1;0 þ in2;0 '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn⃗1 þ in⃗2Þ2

q
; ð37Þ

merge at the terminal point of the branch cut defined by the
vanishing of the argument of the square root. The classi-
fication of exceptional points according to the symmetries
of their parent operators N has attracted a lot of attention in
the recent literature [38–49].
Do exceptional points affect the phases forming as

stationary limits of driving protocols? To answer this
question, we need to take a look at non-Hermitian linear
combinations of the three constituent operators (H, D, P).
Specifically, we have seen that K ¼ H − iD governs the
approach toward the stationary limit. It is straightforward
to realize exceptional points by adaption of the chiral
model dynamics studied above. As an example, consider
the matrices VL in Eq. (24) modified as VL → VLðE11 þ
rE22Þ with real r. Inspection of Eq. (30) shows that this
changes the matrix D ¼ dμΣμ as d0 ¼ ðκ=2Þð1þ r2Þ,
d⃗ ¼ ðκ=2Þð1 − r2Þêz. Adding to this the Hamiltonian con-
tribution H ¼ H1 of the SSH model Eq. (36), we obtain a
model with dissipation generator K ¼ H − iD, whose
eigenvalues are given by

λ' ¼ −
iκ
2
ð1þ r2Þ '

"
jzj2 − κ2ð1 − r2Þ

4

#
1=2

:

Both eigenvalues have negative imaginary part, a necessary
condition to define a valid dissipation generator. For
jzj ¼ ð1 − r2Þ1=2κ=2, an exceptional point with degenerate
eigenvalues is realized.
Does this nonanalyticity affect the nature of the system’s

stationary phases? To understand what is happening,
consider the general formula for the covariance matrix
Eq. (20), represented as a frequency integral over the
retarded and advanced propagators GR ≡ ðω − KÞ−1 and
GA ≡ ðω − K†Þ−1. With Imλ' < 0 in the lower complex
plane, GR=A is analytic in the upper or lower half of the
complex plane, with simple poles at ω ¼ λ' and ω ¼ λ̄',
respectively. At first sight, it looks like the residue of
the pole integration might depend on the values ω ¼ λ'
with their nonanalytic dependence on system parameters.
However, actually doing the integrals one finds that the
resulting expression for the covariance matrix is a rational
function of these parameters.
In other words, the presence of exceptional points has no

effect on the stationary long-time phase. While we have no
proof demonstrating this feature in the most general terms,
it is straightforward to verify for translationally invariant
dynamical generators with two internal bands, and we

suspect it to be of general nature. Nonanalyticities in the
complex eigenvalue spectra of dissipation generators may
affect the transient dynamical stages on the way toward the
stationary limit or the dynamical response of the stationary
state [8–16,66]. The physical significance of exceptional
points hosted in the non-Hermitian matrix K for the
dynamical evolution is clearly read off Eq. (23), in the
perhaps clearest way for a system that approaches an
infinite temperature state (P ¼ 0). However, they do not
appear to affect the ensuing stationary phases and their
topological classification in themselves.

V. BEYOND THE MARKOVIAN LIMIT

Our discussion so far has focused on the Markovian
case of a memoryless environment. This excludes impor-
tant settings, notably those stabilizing quantum thermal
distributions of fermion systems. The extension to non-
Markovian situations is achieved via the Keldysh path
integral formalism [82,83]. In this section, we discuss how
the apparatus of symmetries manifests itself in the path
integral, and then apply it to situations outside the
Markovian limit. The main subject of this section is the
extension of the time-reversal transformation of quantum
mechanics, Fock space T combined with time inversion
t → −t, to irreversible equilibrium dynamics. The ensuing
thermal time-reversal transformation, Eq. (3), is essential to
the identification of the symmetries of Ĥ; D̂; P̂ in equilib-
rium settings. Naturally, the symmetries of Ĥ coincide with
those of the standard zero temperature setting familiar from
the literature. However, they differ from those found for
nonequilibrium dynamics, Table II.

A. Symmetries in the Keldysh path integral

Within the fermion Keldysh framework, physical observ-
ables are computed as expectation values of a coherent sate
path integral (see Refs. [84–86] for review). Specifically,
the covariance matrix now assumes the form

ΓabðtÞ ¼
Z

eði=2Þ
R
ðdω=2πÞηT−ωðωτ1−MωÞνωνcaðtÞηcbðtÞ; ð38Þ

where the kernel,

Mω ¼
"

0 K†
ω

Kω −2Pω

#
; ð39Þ

may have time,M ¼ Mðt − t0Þ, or equivalently frequency
dependence. The functional integration

R ≡ R
Dðη; νÞ is

over two Grassmann variables η ¼ ðηc; ηqÞT , ν ¼ ðνc; νqÞT ,
where each component ηc;q ¼ ðηc;q1 ; ηc;q2 ÞT is subject to a
Nambu doubling and carries a Hilbert space index. The
Pauli matrices τi act in c=q space. ηc=q are often referred to
as classical (c) and quantum (q) components of the fields.
We note that complex conjugation has no meaning for these
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integration variables. However, with the Fourier convention
[ðdωÞ ¼ ðdω=2πÞ],

ξðtÞ≡
Z

ðdωÞe−iωtξω; ξ ¼ η; ν;

we have ξ̄ω ¼ ξ−ω, as for real variables.
The Keldysh path integral contains the information

previously expressed in terms of the covariance matrix.
To see how, we use the rules of Gaussian integration to
obtain

hνca;ωηcb;ω0 i ¼ δðω − ω0Þ
"

1

ωτ1 −M

#
cc

ab

¼ δðω − ω0Þ
"

1

ω − Kω
ð−2iPωÞ

1

ω − K†
ω

#

ab
:

ð40Þ

For frequency independent Pω ¼ P, Kω ¼ K, this reduces
to the covariance matrix Eq. (20) of the Markovian
framework. However, the advantage of the Keldysh path
integral is that it allows us to go beyond that and include
processes with memory. Referring for a more detailed
discussion to Sec. V B, the most important representative of
this category is the thermal Fermi-Dirac distribution. In this
case, the damping and fluctuation kernels are related by the
fluctuation dissipation relation Eq. (47), which implies that
the process remains non-Markovian (P cannot be approxi-
mated by a constant) at all frequencies ω.
The practical identification of symmetries within the

path integral formalism differs somewhat from our previous
strategy. There, we had asked what symmetry transforma-
tions leave equations of motion invariant. Presently, it is
more natural to ask what transformations leave the path
integral action unchanged. Since equations of motion are
implied by the path integral (even though they may assume
an effectively intractable form in non-Markovian situa-
tions), the two strategies are equivalent. Within the present
approach, we use various freedoms in manipulating the
integral, notably the option to exchange the order of
variables. We here illustrate these features on a simple
consistency check, namely the path integral verification of
the Hermiticity of Γ. This introduces the manipulations
required in the subsequent discussion of antiunitary sym-
metries. Expressed in path integral language,

Γ†
abðtÞ ¼ ΓbaðtÞ ¼ hνcbðtÞηcaðtÞi

¼
Z

e−ði=2Þ
R
ðdωÞηTωðωτ1−MωÞν−ωνcbðtÞηcaðtÞ

¼ −
Z

eði=2Þ
R
ðdωÞνT−ωðωτ1−ðMωÞ†ÞηωηcaðtÞνcbðtÞ

¼
Z

eði=2Þ
R
ðdωÞνT−ωðωτ1−MωÞηωνcbðtÞηcaðtÞ ¼ ΓabðtÞ:

In the second line, we took the transpose in the action
(catching a minus sign due to the anticommutativity of the
Grassmann fields), and in the third used M†

ω ¼ −τ3Mωτ3
and a variable transform η → τ3η, ν → −τ3ν, to arrive at an
expression identical to the original integral, except differ-
ently named integration variables.
Similar manipulations applied to the covariance matrix

transformed as indicated in the last column of Table II (for
details, cf. Appendix D) lead to the condition (UX act as
unit matrices in Keldysh space)

T∶ Mω ¼ −Mω;T ¼ −UTM−ωU
†
T;

C∶ Mω ¼ þMω;C ¼ −UT
CM

T
−ωŪC;

S∶ Mω ¼ −Mω;S ¼ UT
SðMωÞ†ŪS: ð41Þ

Substitution of Eq. (39) into these relations yields con-
ditions for the blocks P, K ¼ H − iD identical to those
listed in Table II. However, recall that for a matrix kernel
with time dependence, complex conjugation M̄ω ¼ M̄−ω
implies a change in the frequency variable.

B. Symmetries in systems with detailed balance

Above we saw that the stabilization of a T-symmetric
effective Hamiltonian Θ ¼ ΘT from a dynamical process
containing a Hamiltonian contribution H requires the
Hamiltonian to transform as H → −HT. But how can this
be reconciled with the familiar case of thermal equilibrium,
where a T-symmetric effective Hamiltonian Θ ¼ βH forms
via thermalization (likewise an irreversible process) of a
system with T-symmetric H? The resolution to this seeming
paradox lies in a point mentioned in the Introduction, namely
that the T operation appropriate to the description of
Markovian irreversible dynamics leaves the physical time
parameter t untouched. By contrast, physical time reversal in
unitarily evolving systems is described by an operation
T0 ≡ T ∘ E0, where E0 is the operation E0∶t → −t in a
“theory space” containing t as an external parameter.
Systems at thermal equilibrium are not time-reversal sym-
metric in the strict sense of unitary evolution. However, they
obey a principle of microreversibility, or detailed balance,
which makes the reflection of time a meaningful operation.
To see how this comes about, consider the correlation

function trðρ̂ÂtB̂t0Þ with Heisenberg evolved operators
Ât ¼ eiĤtÂe−iĤt and thermal, normalized ρ̂ ¼ Z−1e−βĤ

with partition sum Z. We work in second quantized
representation, as indicated by the carets. As a straightfor-
ward consequence of the cyclic invariance of the trace, one
obtains the KMS relation [23,24],

trðρ̂ÂtB̂t0Þ ¼ trðρ̂B̂t0 ÂtþiβÞ; ð42Þ

i.e., an operator reordering relative to ρ̂ at the expense
of a shift of the time parameter into the complex plane.
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For Heisenberg evolved operators, this equation is based on
the specific form of ρ̂, and hence is a signature of the
thermal state. Time reversal plays no role, up to now.
Now use the relation

trðΘ̂Þ ¼ trðΘ̂†
TÞ ð43Þ

to fuse the KMS relation with an antilinear transformation
in Fock space. [In a first quantized representation, the
auxiliary relation follows from trðΘ†

TÞ ¼ trðUTΘ̄†U−1
T Þ ¼

trðΘTÞ ¼ trðΘÞ. For a verification in second quantized
representation, see Appendix (E1).] A straightforward
combination of Eqs. (42) and (43) then leads to

trðρ̂ÂtB̂t0Þ ¼ trðρ̂ðÂTÞ−t−iβðB̂TÞ−t0Þ; ð44Þ

where we assumed T invariance ĤT ¼ Ĥ of the
Hamiltonian.
This equation states the invariance of two-time correla-

tion functions under a simultaneous application of the Fock
space antilinear transformation T and the transformation Eβ

[Eq. (2)] acting on functions of time EβfðtÞ ¼ fð−t − iβÞ.
Provided that ÂT ¼ Â and B̂T ¼ B̂ are T invariant, the
combined operation Tβ ¼ T ∘ Eβ of Eq. (3) defines a
symmetry of the correlation function. Note that the oper-
ation Tβ is the product of two transformations T and Eβ

acting in different spaces, namely Fock space and functions
defined over Fock space, respectively. For β → 0 we obtain
the standard operation of quantum mechanical time rever-
sal, i.e., antilinear T followed by an inversion of time. Here,
the “infinite temperature limit” simply means that in this
case, the symmetry makes a statement for unrestricted
traces of operators.
The above symmetry of correlation functions under

thermal time reversal Tβ suggests that this operation might
define a symmetry of the theory in general. To verify this
expectation, we consider the Keldysh functional [87–92]
and analyze how its action transforms under Tβ. We do not
assume a thermal distribution just yet, but will obtain it as
part of the criteria required for invariance. In Keldysh
language, the inversion of time amounts to (a) an exchange
of the forward (þ) and the backward (−) time contour, (b) a
contour-dependent sign due to the reverse ordering of
fermion or Grassmann fields along the contour, summa-
rized jointly as ν' → 'ν∓, where ν' ¼ ðνc ' νqÞ=

ffiffiffi
2

p
are

the fields on the contours', and (c) an inversion of the time
parameter νðtÞ → νð−tÞ, or νω → ν−ω [which effectively
changes the sign of all terms odd in frequency parameters
such as

R
ðdωÞηT−ωωνω]. In the ν ¼ ðνc; νqÞT representation

via classical and quantum fields, the combined effect of
these operations assumes the form ξω → ðiτyÞξ−ω, ξ ¼ ν, η.
This needs to be supplemented by (d) a shift by iβ into the
complex time domain. In the frequency representation, the
shift operation on the individual contours assumes the form

of a multiplicative factor expð'ωβ=2Þ. Turning to the
ðνc; νqÞ form, we obtain the full representation of Eβ, as

Eβ∶ ξω → Yωξ−ω; Yω ¼ ðiτyÞ exp
"
βω
2

τx

#
; ð45Þ

for both ξ ¼ ν, η. Having established the representation
of Eβ on Keldysh fields, we now need to figure out
what effect Tβ ¼ T ∘ Eβ has on a Keldysh action with
kernel M as in Eq. (39), with generally frequency-
dependent Kω ¼ Hω − iDω, and Pω.
Referring to Appendix F for details, we find that the

theory is invariant under thermal time reversal Tβ provided
that (i)

Hω;T ¼ Hω; Dω;T ¼ Dω; Pω;T ¼ −Pω; ð46Þ

where the notation emphasizes that the symmetry not
only tolerates but actually requires frequency dependence
of the operators P and D. The latter is constrained by
condition (ii),

Pω ¼ i tanh
"
βω
2

#
Dω; ð47Þ

which is an implementation of the fluctuation-dissipation
relation. This identity conditions fluctuations (P) and
dissipation (D) to each other, via a frequency-dependent
factor which one may consider the definition of the global
equilibrium temperature.
Notice how the conditions for T differ from those listed

for the nonequilibrium case in Table II, with sign changes
owed to the active transformation of the time parameter.
By contrast, the transformation C does not relate to the
time parameter in either case and remains unchanged.
However, the combined transformation S ¼ T ∘ C inherits
the changes from T:

HS ¼ H;Dω;S ¼ −Dω; Pω;S ¼ −Pω: ð48Þ

The unmodified transformation laws under C, together
with the modified ones in Eqs. (46) and (48), yield the
equilibrium column of Table II, generalizing the standard
symmetry classification [5,22] to finite temperature set-
tings. Reflecting the fact that for Gaussian systems in
equilibriumΘ ¼ βH, these conditions are identical to those
in the third column ðΘ=ΓÞ of Table II. While our analysis
was performed for a Gaussian setting, it is natural to expect
that the same symmetries characterize the self-energies
ΣðD;PÞ forming in an interacting system relaxing into an
equilibrium configuration at arbitrary temperature T. In this
case, the symmetries are inherited from that of the micro-
scopic parent theory under Eq. (3), where T acts on Fock
space operators and β is set by the temperature of a
background bath determining the system’s temperature.

SYMMETRY CLASSES OF OPEN FERMIONIC QUANTUM MATTER PHYS. REV. X 11, 021037 (2021)

021037-17



(The role of this bath can be played by the system itself,
in which case the temperature is determined by the energy
of the initial state from which the thermalizing evolution
departs.)
We finally note that, as in the complementary out-of-

equilibrium case, two gaps stabilize a topological phase:
a spectral gap jeigenvalðHÞj > 0 and a purity gap in
Γeq ¼ tanh βH=2, realized for temperatures smaller than
infinity, β > 0, as long as the spectral gap is open [72].

C. Scope of the equilibrium symmetry conditions

Our discussion above showed that their combined
symmetry under Fock space operations, X, and generalized
time reversal, Eβ, defines the symmetries of micro-
reversible systems different from that of out of equilibrium
systems. This makes one wonder just how general the scope
of the micro-reversible framework is. Can it be extended
beyond the category of equilibrium systems?
We first note that a symmetry class in the sense of our

present discussion is defined by a set of operators ðH;D; PÞ
sharing a certain set of conditions under application of
X ¼ T, C, S. (The realization of the symmetry in the
dynamical evolution may or may not include an additional
transformation of time under Eβ.) Individual deformations
of these operators do not leave the symmetry class,
provided they do not violate the symmetries of the
constituent operators. This is an important disclaimer.
For example, a lattice Hamiltonian invariant under the
combined application of lattice inversion and time reversal
does not define a class, because the addition of static
disorder would violate the symmetry.
In this reading, the irreversible relaxation into an

equilibrium configuration does not define a class, as it
requires the fine-tuning D ∝ P, Eq. (47). Physically, a
configurationD ∝ P builds up at long times when a system
acts as its own thermalizing bath; before reaching that
stage, traces of the initial state—possibly with different
symmetry properties-may remain visible. In this sense,
D ∝ P defines an attractive surface in the space H, D, P,
provided the conditions for thermalization are met.
To make this point more concrete, we consider the

long-time limit of the covariance matrix, obtained from
Eq. (40) as

Γ ¼ −2i
Z

∞

−∞

dω
2π

1

ω −H þ iD
Pω

1

ω −H − iD

¼ −2i
Z

∞

−∞

dω
2π

Gþ
ωPωG−

ω; ð49Þ

where in the second line we emphasize the dynamical
interpretation of the covariance matrix by defining the
retarded and advanced propagators:

G'
ω ≡ ðω −H ' iDÞ−1: ð50Þ

For simplicity, we neglect optional frequency dependences
in H and D, but in view of Eq. (47) not in Pω.
On this basis, we ask under what circumstances does

the covariance matrix have symmetry under T. Out of
equilibrium, the answer is given by the first three columns
of Table II. To see this in explicit terms, compute
ΓT ¼ UTΓ̄U†

T as

ΓT ¼ þ2i
Z

∞

−∞

dω
2π

G−
ω;TPω;TG

þ
ω;T ;

where G'
T;ω ≡ ðω −HT þ iDTÞ−1. Provided the sym-

metries hold as stated, a change of variables ω → −ω
brings us back to the original expression, ΓT ¼ Γ. We
repeat that this symmetry requires oddity HT ¼ −H of the
system Hamilton operator.
In equilibrium, we have the fine-tuning Eq. (47) which

implies a different option to establish T: In this case,
the numerator may be written as −2iPω ¼
2 tanhðβω=2ÞD ¼ i tanhðβω=2Þ½ðG−

ωÞ−1 − ðGþ
ωÞ−1&, and

the covariance matrix assumes the form

Γ¼eq i
Z

dω
2π

tanh
"
βω
2

#
ðG−

ω −Gþ
ωÞ; ð51Þ

i.e., an integral over the spectral function of the system (in
general broadened by the coupling to the bath establishing
equilibrium) over the Fermi-Dirac distribution function.
In this case, Γ ¼ ΓT holds if H ¼ þHT, as required by the
equilibrium column of Table II.
However, note that this symmetry crucially relies on

the proportionality D ∝ Pω, Eq. (47). It gets broken
by even mild departures away from equilibrium realized,
e.g., by coupling to two baths kept at different temper-
atures, T1 and T2. In this case, we have D ¼ D1 þD2,
which in general is no longer proportional to P1 þ P2 ¼
i tanhðβ1ω=2ÞD1 þ i tanhðβ2ω=2ÞD2. Of course, the out-
of-equilibrium symmetry relation still holds, provided H,
D, P satisfy the required criteria.
This also provides us with the opportunity to point out

that both in and out of equilibrium, we never encounter the
Hermitian adjoint η as a natural part of symmetry oper-
ations. For example, this operation would act on our Green

functions as Gþ
ω ¼ ðω −H þ iDÞ→

η
G−

ω ¼ ðω −H − iDÞ.
Considering the time representation of these propagators,

G'ðtÞ ¼
Z

dω
2π

e−iωtG'
ω ¼ ∓iΘð'tÞeiðHþiDÞt; ð52Þ

Ref. [33] noted that ðGþðtÞÞη ¼ G−ð−tÞ is a natural
operation exchanging retarded and advanced propagators
consistent with causality. Combined with T, this defines
the operation Tη ≡ T ∘ η [cf. Eq. (6a) of Ref. [33] ], there
introduced as the “unique way to extend Hamiltonian
symmetries to Lindbladian symmetries.” Our conclusions
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are different. As evidenced by Eq. (49), the advanced and
retarded propagators appear in Lindbladian evolution in
combination. Application of the standard antilinear oper-
ation T (no η involved) to the state exchanges Gþ ↔ G−.
Since these two operators appear in a paired configuration,
cf. Eq. (49), the operation η has no place in the symmetry
analysis of Lindbladian state evolution.
However, it is of relevance in cases where the sym-

metries of the dissipation generators K ¼ H − iD are
considered in isolation. In this case, H ¼ HT and D ¼
DT implies a symmetry KTη

¼ HT − iDT ¼ K, with physi-
cal consequences, e.g., in the statistical theory of the decay
of resonances of open quantum systems (cf. Ref. [93]).
In view of the fact that a symmetry of K under Tη may

have observable consequences for open quantum systems,
one may ask just how general such symmetries are. For
example, it is natural to expect that if a system and its
environment are time-reversal invariant in the sense of
unitary quantum mechanics, this symmetry is inherited by
the dissipative operator K after the integration over envi-
ronmental degrees of freedom. In Appendix G, we show
that this is not the case in general. Only in equilibrium does
quantum mechanical time-reversal invariance guarantee Tη

invariance of the reduced theory. This finding underpins
our general statement that time inversion out of equilibrium
is meaningless in general.
Finally, we note that the classifications of non-Hermitian

matrices K ¼ H − iD [17–19] all have in common that
they preserve the transformation laws of the Hermitian
contribution H under the antiunitary symmetries familiar
from the ground state classification. In light of the above
discussion, such an extension to non-Hermitian matrices is
only possible under conditions of global thermodynamic
equilibrium.

VI. CONCLUSIONS

In this paper, we classified the symmetries governing the
dynamics of open fermionic quantum matter. Symmetries
were defined as linear or antilinear transformations-
represented in Fock space, or in the first quantized language
of matrices for free systems—leaving the irreversible
equations of motion invariant. While this rationale resem-
bles the one applied in the identification of symmetries in
unitary quantum time evolution, two principles make the
out-of-equilibrium case different. First, unitary state evo-
lution, or, somewhat more generally, the microreversible
approach to a thermal equilibrium configuration, is gov-
erned by a single linear operator, the system Hamiltonian.
By contrast, the out-of-equilibrium generators considered
here comprise three linear operators, describing unitary
evolution, dissipation, and fluctuations, respectively.
All three must obey individually defined symmetry con-
ditions for the full dynamics to be symmetric. The second
difference concerns time itself. In unitary dynamics, the

application of antilinear symmetries (i → −i) is matched
with an extraneously imposed inversion of time (t → −t) to
leave the quantum time evolution operator, expð−iĤtÞ,
invariant. Within the more general class of equilibrium
processes, this operation is generalized to the shift inver-
sion Eβ, Eq. (2) [EβfðtÞ ¼ fð−t − iβÞ], likewise designed
to keep the dynamics invariant. Combined with the anti-
unitary Fock space transformation it defines the thermal
time reversal Tβ ¼ T ∘ Eβ, extending quantum mechanical
time reversal to irreversible equilibrium dynamics.
However, out of equilibrium time reversal becomes
unphysical, meaning that antilinear symmetries—featuring
in six out of ten symmetry classes—have a fundamentally
different representation.
In view of these differences, it is remarkable that the

stationary states stabilized by equilibrium or nonequilibrium
dynamics can be fully classified by identical symmetries.
For example, when we say that a system is in symmetry class
BDI, what we mean is that it obeys an antilinear T symmetry
(squaring to unity) and a linear C symmetry, likewise
squaring to one. If the stationary state is Gaussian, its
effective Hamiltonian can be represented as a real matrix
possessing a block off-diagonal chiral structure. The iden-
tical realization of symmetries relies on the stationarity of the
asymptotic states—where the meaning of time is lost, or,
more formally, time inversion Eβ acts as an identity and all
symmetry operations reduce to their action in Fock space. It
implies a strong principle of universality with obvious
practical consequences. Notably, the information contained
in the periodic table of topological insulators and super-
conductors universally applies to the classification of
Gaussian stationary states both in and out of equilibrium.
However, the equivalent representation of symmetries in

the stationary limit does not extend to the dynamical
processes stabilizing them. Here, the presence or absence
of Eβ is key and leads to the identification of 20 “dynamical
symmetry classes,” distinct by the symmetry representa-
tions in either case. Ten of them describe the asymptotic
approach toward a stationary equilibrium configuration, the
other ten the approach to stationary nonequilibrium. Where
the former assume the form of the ten well-known
symmetry conditions for fermionic Hamiltonians, the latter
require 30 ¼ 3 × 10 conditions for the generators of unitary
evolution, dissipation, and fluctuations, respectively. The
hallmark of the different symmetry representations in and
out of equilibrium is the sign difference in the T trans-
formation of the Hamiltonian contribution to the generator
of dynamics. For example, the approach to a BDI
symmetric nonequilibrium stationary state admits a
Hamiltonian contribution which, however, must be odd
under the BDI symmetry rule for Hermitian matrix gen-
erators, while in equilibrium evenness is required.
Referring back to the different treatment of time, the
equilibrium symmetry classes reflect invariance of the
dynamical approach under the joint application of Fock
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space symmetries and Eβ, while the nonequilibrium classes
do not engage the latter.
In this paper, we illustrated the above symmetry princi-

ples and the consequences for state topologies on the simple
case of the BDI chain. However, it is relatively straightfor-
ward to construct other realizations by reverse engineering.
Starting from a model effective Hamiltonian Θ of specified
symmetry and topological ground state, one thus asks which
Lindblad operators L̂α [see Eq. (10)] stabilize this state. By
design, the dissipation and fluctuation generators defining
these operators via Eqs. (11) and (13) are then conditioned
via the symmetry relations of Table II.
While the emphasis in this work has been on the bulk

classification of phases, the next stage will be a more
thorough exploration of the physics at the edge. Ideally, one
would like to use the dissipatively stabilized topological
edge as a resource for the storage and manipulation of
quantum information. This requires the decoupling of the
edge from the very physical mechanisms stabilizing it. For
example, the edge space will be decoupled if it is realized as
the dark space of an effective Lindblad equation. However,
it will be interesting to explore if the isolation of the edge
space can be achieved in different ways, building on
combined principles of symmetries and conservation laws
as in Ref. [61].
Another direction of research concerns the dynamical

processes leading to a stationary limit. In this paper,
stationarity was attained in a competition of dissipative
damping (K ¼ H − iD) and fluctuations (P). However,
there are alternative ways to describe the quantum stochas-
tic process driving the relaxation: Inspection of the
Lindblad equation shows that it contains the non-
Hermitian combinations H − P and H þ P as operators
acting to the left and right of the density matrix, while
D − iP acts from both sides. In this decomposition, the first
term describes the short-time relaxation of quantum tra-
jectories, interspersed by “quantum jumps” described by
the last. The competition between the two can be accessed
in dynamically resolved ways by postselection or meas-
urement protocols [94]. It will be interesting to explore
topological signatures in full counting statistics [95,96] in
the above language. This may define topological structures
of the symmetry constrained matrix operators H, D, P
different from those considered in this paper.
Finally, one may ask how bosonic systems fit into the

general framework. While the definition of fundamental
symmetries extends to bosonic Fock spaces, the manifes-
tations of these symmetries in concrete states are strikingly
different: individual states can be multiply, or even mac-
roscopically, occupied, in which case the dynamics
becomes (semi)classical and quantum noise less of an
issue. The action of state transformations confined by
symmetries may be noncompact (think of the bosonic
Bogoliubov transformation), and the stability of macro-
scopic stationary states becomes an issue. The latter

compromises topology of Gaussian states of bosons [97]
and makes the presence of interactions necessary [98]. At
the same time, macroscopic bosonic quantum states likely
define a more natural application field for the physics of
non-Hermitian matrices than the strongly fluctuating fer-
mion matter discussed here.
From a yet more general stance one may notice that,

as with the physics of unitarily evolving quantum matter,
the short-range entangled symmetry protected fermionic
phases considered here represent a relatively simple form of
topological matter. With promising first steps taken in
concerning the fate of fractional quantum Hall states in
open systems [99], the fascinating problem of extending the
framework to dissipative variants of fractional or long-
range entangled matter is still out there and awaiting
exploration.
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APPENDIX A: SYMMETRY CLASSES

For convenience, we here summarize the 10 symmetry
classes, along with the dimensions where they admit
topological ground states with Z or Z2 classification.

TABLE III. Periodic table of topological insulators. The first
two rows contain the classes without anti-untiary symmetries, for
brevity we use the labels '≡'1.

Class T C S 1 2 3 4

A 0 0 0 0 Z 0 Z
AIII 0 0 þ Z 0 Z 0

AI þ 0 0 0 0 0 Z
BDI þ þ þ Z 0 0 0
D 0 þ 0 Z2 Z 0 0
DIII − þ þ Z2 Z2 Z 0
AII − 0 0 0 Z2 Z2 Z
CII − − þ Z 0 Z2 Z2

C 0 − 0 0 Z 0 Z2

CI þ − þ 0 0 Z 0
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The labels Z;Z2; 0 in Table III denote the possible
topological invariants. For example, the system considered
in Sec. IV is defined in d ¼ 1 and symmetry class
ðT;C; SÞ ¼ ðþ1;þ1; 1Þ, or BDI.

APPENDIX B: ACTION OF UNITARY
SYMMETRIES

Here we elaborate on the condition that antiunitary
symmetries T, C, S be realized within the irreducible
representation spaces of the system’s unitary symmetries
U. This is best explained on the basis of examples. For
instance, the plain operator exchange CaiC−1 ¼ a†i defines
a symmetry structure of every free-fermion operator O
entirely on the basis of Fermi statistics: the operation acts
on the Nambu operators as Ai → A†

i ¼ σxAi, and using the
equivalence of these representations, Ai ¼ σxA

†
i , we obtain

A†TOA ¼ ATσxOσxA† ¼ −A†TσxOTσxAþ trðOÞ; ðB1Þ

where the trace comes from the Kronecker δ in
fai; a†jg ¼ δij. Momentarily ignoring the trace, we have
the relation O ¼ −σxOTσx, which for Hermitian O defines
an operator of class D. Now consider a situation with
particle number conservation. In this case, Ô commutes
with the unitary operator U ¼ expðiαN̂Þ, where N̂¼P

a†i ai and α ∈ uð1Þ. However, C does not,
CN̂C−1 ¼ N − N̂. The operation C couples different sec-
tors of conserved particle number such that the above
principle is violated. To understand the consequences, note
that number conservation implies block diagonality in
Nambu space, O≡ bdiagðo;−oTÞ. While the operation
C connects the two blocks it remains physically mean-
ingless in the absence of physical coupling between them.
The example illustrates how a second quantized operator of
relatively higher symmetry (number conservation) can have
a lesser symmetry on the matrix level (just Hermiticity,
class A, rather than D)—in other words, symmetries or
“structures” on the first quantized level need not be rooted
in actual symmetries of the many-body context.
However, if particle number conservation is violated

by, e.g., an order parameter a†iΔija
†
j , the previously

isolated sectors of definite number get combined to an
enlarged representation space. C now acts within this
space and does define a meaningful BCS matrix structure

O ¼ ð o Δ
Δ† −oT Þ with class D symmetry O ¼ −σxOTσx.

Similarly, consider the example of spin rotation symmetry
from Sec. II A, Us, where the plain C∶ai → a†i does not
commute and violates the unitarity principle, while
Cs∶aσ → ðσyÞσσ0a

†
σ0 does not. The operation Cs thus defines

a symmetry class (C) as O ¼ −σyOTσy.

APPENDIX C: SYMMETRIES IN GAUSSIAN
STATE EVOLUTION

We here derive Table II by subjecting the Lindblad
equation (16) to the symmetry operations in their second
quantized incarnation, Eq. (4).
T invariance.—Application of T in second quantized

incarnation leads to

∂tρ̂T ¼ iðĤT − P̂TÞρ̂T − iρ̂TðĤT þ P̂TÞ

þ 2AT 1

2
ðD̄T − iP̄TÞρ̂TA† − cρ̂T:

This equation becomes identical to the untransformed one,
provided ĤT ¼ −Ĥ, P̂T ¼ −P̂, and D̄T ¼ D̄, P̄T ¼ −P̄.
Comparison with Table II shows that these conditions are
met if the matrices H, P, D satisfy the conditions listed in
the first row.
C invariance.—In a similar manner, the application of C

yields

∂tρ̂C ¼ −iðĤC − P̂CÞρ̂C þ iρ̂CðĤC þ P̂CÞ

þ 2A†TUT
C
1

2
ðD̄þ iP̄Þρ̂CŪCA − cρ̂C:

We change the representation of the jump term in the
second line as

A†TUT
CðD̄þ iP̄Þρ̂CŪCA

¼ð6ÞATU†
CσxðD̄þ iP̄ÞσxUCρ̂CA†

¼ð14;15Þ
ATU†

CðDþ iPÞUCρ̂CA†¼ð9ÞATð−D̄C þ iP̄CÞρ̂CA†;

and substitution back into the equation yields

∂tρ̂C ¼ −iðĤC − P̂CÞρ̂C þ iρ̂CðĤC þ P̂CÞ

þ 2AT 1

2
ð−D̄C þ iP̄CÞρ̂CA† − cρ̂C:

By the same rationale as in the previous case, the invariance
of the equation requires the matrix transformations listed in
the second row of Table II.
S invariance.—Testing for S is not necessary, as it is a

consequence of the combined presence of C and T.
However, it is instructive to see how this symmetry
manifests itself in the Lindblad equation without reference
to the composition. Application of S leads to

∂tρ̂S ¼ iðĤS − P̂SÞρ̂S − iρ̂SðĤS þ P̂TÞ

þ 2A†TUT
S
1

2
ðD − iPÞρ̂SŪSA − cρ̂S:

Once again, the term in the second line requires special
attention:
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A†TUT
SðD − iPÞρ̂SŪSA

¼ð6ÞATU†
SσxðD − iPÞσxUSρ̂SA†

¼ð14;15Þ
ATU†

SðD̄ − iP̄ÞUSρ̂SA†¼ð9ÞATð−DS − iPSÞρ̂SA†:

Substitution into the equation leads to

∂tρ̂S ¼ iðĤS − P̂SÞρ̂S − iρ̂SðĤS þ P̂TÞ

þ 2AT 1

2
ð−D̄S − iP̄SÞρ̂SA† − cρ̂S;

and upon comparison with the untransformed equation to
ĤS ¼ −Ĥ, P̂S ¼ −P̂, D̂S ¼ −D̂, or the third line in Table II
as a condition for invariance ρ̂ ¼ ρ̂S.

APPENDIX D: SYMMETRIES IN KELDYSH
REPRESENTATION

We here discuss how the symmetry of Gaussian states as
expressed by the last column of Table II leads to Eq. (41)
for the generally non-Markovian matrix kernels M gen-
erating the dynamics.
T invariance.—According to Table II, T invariance

means the existence of a unitary matrix UT such that
Γ ¼ ΓT ¼ UTΓ̄U†

T. Starting from the representation (38),
this becomes

ðUTΓ̄U†
TÞab

¼ UTaa0

Z
e−ði=2Þ

R
ðdωÞηTωðωτ1−MωÞν−ωνca0ðtÞη

c
b0ðtÞU

†
Tb0b

¼
Z

eði=2Þ
R
ðdωÞηT−ωðωτ1þUTM−ωU

†
TÞνωνcaðtÞηcbðtÞ¼

! ΓabðtÞ:

ðD1Þ

In the third line, we transformed variables UTν → ν and
ηTU†

T → ηT (note thatUTωτ1U
†
T ¼ ωτ1), and changedω →

−ω in the frequency integral. A sufficient condition for the
invariance of the Γ matrix then is ðMTÞω ¼
UTM−ωU

†
T ¼ −Mω, which is the first line of Eq. (41).

C invariance.—In the path integral formalism, C invari-
ance, Γ ¼ ΓC ¼ −UT

CΓTŪC, is probed as

ð−UT
CΓTŪCÞab

¼ −U†
Cbb0Γb0a0UCa0a

¼ −U†
Cbb0

Z
eði=2Þ

R
ðdωÞηT−ωðωτ1−MωÞνωνcb0ðtÞη

c
a0ðtÞUCa0a

¼ −
Z

eði=2Þ
R
ðdωÞηT−ωU†

Cðωτ1−MωÞUCνωνcbðtÞηcaðtÞ

¼
Z

eði=2Þ
R
ðdωÞνT−ωðωτ1þUT

CM
T
−ωŪCÞηTωηcaðtÞνcbðtÞ¼

! ΓabðtÞ;

where in the crucial fourth line we swapped the order of
variables both in the action and the preexponential variables
(picking up a sign in the process). Except for a different
naming of the dummy variables, η ↔ ν, the final expres-
sion equals the original one, provided M satisfies the C
entry in Eq. (41).
S invariance.—Finally, S invariance, Γ ¼ ΓS ¼

−UT
SΓ†ŪS, is established as

ð−UT
SΓ†ŪSÞab

¼ −U†
Sbb0 Γ̄b0a0USa0a

¼ −U†
Sbb0

Z
e−ði=2Þ

R
ðdωÞηTωðωτ1−MωÞν−ωνcb0ðtÞη

c
a0ðtÞUSa0a

¼ −
Z

e−ði=2Þ
R
ðdωÞηTωðωτ1−U†

SMωUSÞν−ωνcbðtÞηcaðtÞ

¼
Z

eði=2Þ
R
ðdωÞνT−ωðωτ1−UT

S ðMωÞ†ŪSÞηTωηcaðtÞνcbðtÞ¼
! ΓabðtÞ;

which leads to the final entry in Eq. (41).

APPENDIX E: PROOF OF EQS. (43) and (44)

Consider a general second quantized q-body operator
with nonvanishing trace: Ŷ ¼

P0
i;j Yi1;…;iq;jq;…;j1a

†
i1…

a†iqajq…aj1 , where the coefficients Yi1;…;iq;jq;…;j1 are anti-
symmetric under pairwise exchange of i and j indices
among themselves (Fermi statistics), and the primed
sum

P0
extends over ordered indices i1 < ) ) ) < iq,

j1 < ) ) ) < jq. The trace of this operator is readily
obtained as trðŶÞ ¼

P0
i Yi1;…;iq;iq;…;i1 trðn̂i1…n̂iqÞ ¼

2N−q P0
i Yi1;…;iq;iq;…;i1 , where N is the dimension of the

single particle Hilbert space, and n̂i ¼ a†i ai, or

trðŶÞ ¼ 2N−q

q!

X

i

Yi1;…;iq;iq;…;i1 ; ðE1Þ

with an unrestricted index summation.
With Ŷ† ¼

P0
i;j Ȳi1;…;iq;jq;…;j1a

†
j1…a†jqaiq…ai1 , the same

construction yields

trðŶ†Þ ¼ 2N−q

q!

X

i

Ȳi1;…;iq;iq;…;i1 :

Now consider ŶT ¼
P0

i;j YTi1;…;iq;jq;…;j1a
†
i1…a†iqajq…aj1,

where the transformed coefficients YTi1;…;iq;jq;…;j1≡
Ȳi01;…;i0q;j0q;…;j01

ŪTi01i1
…ŪTi0qiqUTj0qjq…ŪTj01j1

. The trace is
obtained via Eq. (E1) as
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trðŶTÞ ¼
2N−q

q!

X

i

YTi1;…;iq;iq;…;i1

¼ 2N−q

q!

X

i

Ȳi1;…;iq;iq;…;i1 ¼ trðŶ†Þ;

where in the second equality the unitarity of the matrices
UT was used. With Θ̂ ¼ Ŷ† we arrive at Eq. (43).
To prove Eq. (44), we apply Eq. (43) to the operator

Θ̂≡ ρ̂ B̂ Âtþiβ in Eq. (42). Assuming Hermiticity of B̂
and Â, we obtain Θ̂† ¼ Ât−iβB̂ ρ̂, and the subsequent T
operation gives Θ̂†

T ¼ TΘ̂†T−1 ¼ ðTÂt−iβT−1ÞðTB̂T̂−1Þ
ðTρ̂T−1Þ ¼ ðÂTÞ−t−iβB̂Tρ̂, where Ĥ ¼ ĤT was used.
Substitution into Eq. (42) yields Eq. (44).

APPENDIX F: PROOF OF EQ. (46)

We here prove how the invariance condition (46) follows
if the theory is symmetric under the combined application
of Tβ ¼ T ∘ Eβ to the Keldysh functional. We will see that
the symmetry condition in turn relies on the fluctuation-
dissipation relation Eq. (47). For concreteness and the sake
of easy comparability to the previous discussion, we
monitor the consequences of the symmetry for the sta-
tionary long-time limit of the covariance matrix:

Γab ≡
Z

eði=2Þ
R
ðdωÞηT−ωðωτ1−MωÞνω

Z
∞

−∞
ðdωÞνca;ωηcb;−ω:

Proceeding as in Eq. (D1), we apply the T symmetry to
obtain

ðUTΓ̄U†
TÞab ¼

Z
e−ði=2Þ

R
ðdωÞηTωðωτ1−M−ω;TÞν−ω

×
Z

ðdωÞνca;−ωηcb;ω;

whereM−ω;T ¼ UTMωU
†
T [cf. Eq. (41)]. We now take one

more step to apply the Eβ transformation, which
is represented on the Keldysh integration variables through
Eq. (45). A first observation is that this transformation
leaves the preexponential terms invariant. [To see this,
rearrange the latter as νcaηcb → −ηcbνca → −ηcbνca − ηqbν

q
a ¼

−ηTbνa, where in the final second step we noted that
expectation values of purely quantum type, hηqbν

q
ai, vanish

in a Keldysh theory. In this representation, the trans-
formation Eq. (45) drops out due to YT

−ωYω ¼ 1.] Then,

ðUTΓ̄U†
TÞab ¼

Z
eði=2Þ

R
ðdωÞηT−ωðωτ1þYT

ωMω;TY−ωÞνω

×
Z

ðdωÞνca;ωηcb;−ω:

Comparing with the original representation, we find that
UTΓ̄U†

T ¼ Γ if

YT
ωMω;TY−ω ¼ −Mω: ðF1Þ

We now need to investigate what this relation implies for
the matrix blocks defining the Kelysh operator M through
Eq. (39). This is best done in a Pauli matrix decomposition,

Mω ¼ Hωτx −Dωτy − Pωð1 − τzÞ;
Mω;T ¼ Hω;Tτx þDω;Tτy − Pω;Tð1 − τzÞ;

YT
ωMω;TY−ω ¼ −Hω;Tτx þDω;Teωβτxτy − Pω;Tð1þ eβωτxτzÞ

¼ −Hω;Tτx þDω;Tðchτy þ ishτzÞ
− Pω;Tð1þ chτz − ishτyÞ;

where we used the abbreviations ch ¼ coshðβωÞ and
sh ¼ sinhðβωÞ. Comparison of the linearly independent
contributions multiplying τy; τz; 1 then readily leads to
Eq. (46) and the constraint Eq. (47).

APPENDIX G: ALTERNATIVE APPROACH TO
SYMMETRY CLASSIFICATION?

Our approach to symmetry classification is based on the
idea that equilibrium dynamics—and even more restrict-
edly, unitary Hamilton dynamics—should be viewed as a
special case of more general nonequilibrium evolutions.
However, one may also approach the situation from
an opposite perspective. Its starting point is a microscopic
Hamiltonian Ĥt ≡ Ĥs þ Ĥb þ Ĥc describing a system
(Ĥs), an environment (Ĥb), and their coupling (Ĥc).
Elimination of the environment makes the system dynamics
irreversible. Assuming that symmetries are preserved in the
process, one may attempt a classification based on the
symmetries of the microscopic Hamiltonian. For example,
a time-reversal invariant microscopic Hamiltonian, Ĥt ¼
Ĥt;T would then define a system dynamics with inherited T
invariance. Specifically, the matrix generator K ¼ H − iD
containing the quadratic contribution of the system
Hamiltonian in first quantized languageH and the damping
due to environmental coupling would satisfy H ¼ HT
and D ¼ DT and in consequence invariance under
Tη ≡ T ∘ η: H − iD ¼ ðH − iDÞ†T ¼ HT − iDT.
However, there is a loophole in this argument. It ignores

the state of the environment, as described by its distribution
functions. (Unlike the transient state of the system, which
does not play a role in the symmetry classification, the
states of the environment are robust as per definition of the
term “environment.”) In the following, we consider a case
study illustrating how the violation of T invariance by a
nonequilibrium environmental distribution can break the
invariance of the effective system dynamics, K ≠ KT.
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Microscopic model.—We consider a model with two
fermionic modes a ¼ ða1; a2Þ, each coupled to a bath with
modes bμ ¼ ðbμ;1; bμ;2Þ. We choose bath temperatures T1;2,
which for T1 ≠ T2 breaks equilibrium. The system-bath
Hamiltonian reads

Ĥt ¼ Ĥ þ Ĥint þ Ĥc þ Ĥb;

Ĥ ¼ a†ðhxΣx þ hyΣyÞa; Ĥint ¼ λa†1a1a
†
2a2;

Ĥc ¼
X

μ

gμ½a†1bμ þ b†μ1a&; Ĥb ¼
X

μ

b†μϵμ1bμ:

ðG1Þ

Here, the 1;Σx;y;z act in band space and Ĥs ≡ Ĥ þ Ĥint

describes the system Hamiltonian, featuring a free part and
a density-density self-interaction, which we will see plays
an important role. The terms Ĥc and Ĥb model the coupling
to a harmonic bath. With the real couplings gμ, the above
system-bath Hamiltonian is time-reversal invariant, with
transformations in band space as

Ua
T ¼ Σx; Ubμ

T ¼ Σx ∀ μ: ðG2Þ

The microscopic Keldysh action for the noninteracting
contribution to this setting reads, in the frequency
domain [from now on, a ¼ ðac;1; ac;2; aq;1; aq;2ÞT; bμ ¼
ðbc;μ1 ; bc;μ2 ; bq;μ1 ; bq;μ2Þ

T],

S0 ¼
Z

ðdωÞāTðω −HÞτxa;

Sc ¼
Z

ðdωÞ
X

μ

gμ½āT1 ⊗ τxbμ þ b̄Tμ1 ⊗ τxa&;

Sb ¼
Z

ðdωÞ
X

μ

b̄TμG−1
μ;ωbμ; G−1

μ;ω

¼
"

0 ½ω − ðϵμ þ iκÞ&1
½ω − ðϵμ − iκÞ&1 2iκðtþω1þ t−ωΣzÞ

#
; ðG3Þ

where H is the above system Hamiltonian matrix, the
Pauli matrix τx acts in Keldysh space, and t'ω ¼
1
2 ½tanhðβ1ω=2Þ ' tanhðβ2ω=2Þ&. The infinitesimal param-
eter κ > 0 defines the causality of the Green functions, and
it fixes the state of the bath: inverting the above matrix we
find Gcc;μ ¼ 2πiδðω − ϵμÞðtþω1þ t−ωΣzÞ, where the depar-
ture from equilibrium is measured by a nonzero coefficient
t−ω, and the appearance of a matrix Σz in band space. Notice
that the distribution mismatch breaks the T invariance of
the action, Σz;T ¼ −Σz. Although the distribution functions
couple to the action only infinitesimally via κ, they do feed
back into the system dynamics on an Oð1Þ level, as the
following discussion shows.

Effective Lindblad model.—Integrating out the bath, we
obtain the effective system action,

Seff ¼
Z

ðdωÞāTG−1
eff;ωa − λ

Z
dtðn1cn2q þ n1cn2qÞ;

ðG4Þ

with

G−1
eff;ω ¼

"
0 ðG−

eff;ωÞ−1

ðGþ
eff;ωÞ−1 2Peff;ω

#

¼
"

0 ω1 − ðH þ idω1Þ
ω1 − ðH − idω1Þ 2idωðtþω1þ t−ωΣzÞ

#
;

where dω ¼ π
P

μ g
2
μδðϵμ − ωÞ and nic ¼ āicaic þ āiqaiq,

niq ¼ āicaiq þ āiqaic, i ¼ 1, 2, and we neglected a Lamb
shift renormalizing the system Hamiltonian, which is
unimportant for the present discussion.
At this level, it looks like the induced matrix generator

K ≡H − idω1 is T symmetric. However, this changes once
the interaction Hamiltonian is taken into account. To first
order in perturbation theory, this generates a self-energy
correction ∼λ

R
ðdωÞGþ

eff;ωPeff;ωG−
eff;ω, where the Σz matrix

contained in Peff;ω reflects the absence of equilibrium.
Substituting this expression into Eq. (G4), we induce a term
∝ Σz in K. This term is a consequence of the sensitivity of
the self-energy to the bath distribution functions, which
for T1 ≠ T2 break time reversal. In this case, KT ≠ K and
the symmetry under non-Hermitian time reversal Tη [33]
is lost.
The upshot of the above discussion is that out of

equilibrium, the microscopic T symmetry of a system plus
environment Hamiltonian does not stabilize an induced Tη

symmetry of the matrix generator K. Only in equilibrium
the full symmetry of the theory (including the bath
distribution functions) under Tβ descends to a Tη symmetry
of this operator, as outlined in Sec. V. Out of equilibrium,
the only way to stabilize an antilinear T symmetry of a
dynamical evolution and its stationary phases (then without
reference to time reversal) is via generators defining the
criteria of Table II.
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