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We experimentally realize a Peierls phase in the hopping amplitude of excitations carried by Rydberg
atoms, and observe the resulting characteristic chiral motion in a minimal setup of three sites. Our
demonstration relies on the intrinsic spin-orbit coupling of the dipolar exchange interaction combined with
time-reversal symmetry breaking by a homogeneous external magnetic field. Remarkably, the phase of the
hopping amplitude between two sites strongly depends on the occupancy of the third site, thus leading to a
correlated hopping associated with a density-dependent Peierls phase. We experimentally observe this
density-dependent hopping and show that the excitations behave as anyonic particles with a nontrivial
phase under exchange. Finally, we confirm the dependence of the Peierls phase on the geometrical
arrangement of the Rydberg atoms.
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I. INTRODUCTION

Synthetic quantum systems, i.e., well-controlled systems
of interacting particles, are appealing to study many-body
phenomena inspired by condensed matter physics [1]. One
of the current challenges using this approach is to inves-
tigate the interplay between the nontrivial topology of a
band structure, resulting from, e.g., an effective magnetic
field, and the interactions between the particles [2,3].
An effective magnetic field can be simulated by imple-

menting complex hopping amplitudes teiφ between the sites
of an array, characterized by a Peierls phase φ [4–6]. A
particle circulating around a closed loop then acquires a phase
analog to theAharonov-Bohmphase,which is proportional to
the enclosed magnetic flux. Effective magnetic fields and
complex-valued hopping amplitudes have been implemented
on ultracold atom-based platforms [3,7–10], by using
laser-assisted tunneling in an optical superlattice [11],
high-frequency driving of a lattice [12–14], and implement-
ing synthetic dimensions [15–17]. Alternative platforms have

also emerged such as superconductingqubitswhere complex-
valued hopping amplitudes were demonstrated [18], and
photonic [19] or phononic [20] systems operating so far in the
noninteracting regime. Here, we present the experimental
realization of Peierls phases using the intrinsic spin-orbit
coupling present in dipolar exchange interactions between
Rydberg atoms.
Platforms involving individual Rydberg atoms are prom-

ising candidates to realize strongly interacting synthetic
quantum matter [21,22]. The assembly of up to around 100
atoms in tunable geometries has already been achieved
[23–28]. The two different regimes of interaction, van der
Waals and resonant dipole-dipole [29], have been used,
respectively, to implement Ising-like [30–32] or XY spin
Hamiltonians [33,34]. In the resonant dipole-dipole regime,
when the Rydberg atoms can be considered as two-level
systems with states nS and nP, the interaction results in the
hopping of the nP excitation between two sites, making it
possible to explore transport phenomena. We recently used
this fact to realize a symmetry-protected topological phase
for interacting bosons [34]. Going beyond this two-level
configuration, it has been proposed to engineer situations
where the effective particle features an internal degree of
freedom. There, the dipole-dipole interaction couples this
internal degree of freedom with the motional one, resulting
in an intrinsic spin-orbit coupling [35]. In combination with
breaking of the time-reversal symmetry, this can lead to
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topological band structures characterized by nonzero Chern
numbers [36–38].
In this paper, we demonstrate this intrinsic spin-orbit

coupling in a minimal setup of three Rydberg atoms in a
triangle. A combination of static magnetic and electric fields
perpendicular to the triangle allows us to isolate two levels in
the nP manifold, thus giving rise to an excitation with two
internal states. The external magnetic field naturally breaks
the time-reversal symmetry, which, combined with the spin-
orbit coupling, leads to a characteristic chiral motion for a
single excitation. We experimentally demonstrate this chiral
motion and show that the dynamics is reversed by inverting
the direction of the magnetic field. The chiral motion is well
understood in an effective description, where one internal
state of the excitation is adiabatically eliminated. In this case,
the effective Hamiltonian is described by a nontrivial Peierls
phase φ in the hopping amplitude, corresponding to a finite
magnetic flux through the triangle. Remarkably, in this
approach the Peierls phase depends on the absence or
presence of a second excitation, and naturally gives rise to
density-dependent hoppings, which are required for the
creation of dynamical gauge fields [39], as recently realized
for ultracold atoms in optical lattices [40–42]. Here, we
demonstrate this density-dependent hopping by observing
the absenceof chiral dynamics for two excitations. Following
[43], the density-dependent hopping can be mapped to a
hard-core anyon model with a statistical exchange angle 3φ.
Finally, we demonstrate the ability to tune the effective
magnetic flux through the triangle byvarying the geometrical
arrangement of the three atoms. We conclude by discussing
the implications of this spin-orbit coupling on square and
honeycomb plaquettes.

II. SPIN-ORBIT COUPLING USING DIPOLAR
EXCHANGE INTERACTIONS

Our system consists of three 87Rb atoms trapped in
optical tweezers placed in an equilateral configuration, see
Fig. 1(a). For each atom, we consider three Rydberg states
from the 60S1=2 and the 60P3=2 manifolds (separated in
frequency by 17.2 GHz) in a V structure, as shown in
Fig. 1(b). The state j0i¼ j60S1=2;mj¼1=2i corresponds to
the absence of excitation, and the two excited states jþi ¼
j60P3=2; mj ¼ 3=2i and j−i ¼ j60P3=2; mj ¼ −1=2i, cor-
respond to the two internal states of the excitation. We
describe these two components of the excitation on a site i
by the bosonic operators a†i and b

†
i defined by a

†
i j0i ¼ jþii

and b†i j0i ¼ j−ii. The energy difference μ ¼ Eþ − E−
between jþi and j−i is controlled by a magnetic field
Bz and an electric field Ez, both orthogonal to the
atomic array. The excitation transfer between two
Rydberg atoms is governed by the dipole-dipole interaction
V̂ij ¼ (d̂i · d̂j − 3ðd̂i · r̂Þðd̂j · r̂Þ)=ð4πϵ0r3ijÞ. In our configu-
ration, the unit vector r̂ ¼ ðcosϕ; sinϕ; 0Þ lies in the ðx; yÞ
plane, and V̂ij thus reads

V̂ij ¼
1

4πϵ0r3ij

!
d̂zi d̂

z
j þ

1

2
ðd̂þi d̂−j þ d̂−i d̂

þ
j Þ

−
3

2
ðd̂þi d̂þj e−i2ϕij þ d̂−i d̂

−
j ei2ϕijÞ

"
: ð1Þ

Here, d̂xi , d̂
y
i , d̂

z
i are the components of the dipole operator

d̂i, d̂%i ¼ ∓ðd̂xi % id̂yi Þ=
ffiffiffi
2

p
, and rij and ϕij denote the

separation and the polar angle between the two Rydberg
atoms. The first three terms in Eq. (1) correspond to a
transfer of excitation conserving the total internal angular
momentum of the two atoms. The last two terms describe
the spin-orbit coupling: the excitation changes its internal
state by two quanta during the transfer, and the conserva-
tion of the total angular momentum requires that the
corresponding hopping amplitudes acquire a phase
e%i2ϕij . Therefore, the dipolar interaction leads to two ways
for an excitation to hop from site i to site j, as illustrated in
Fig. 1(c): a resonant process, with amplitude −ta or −tb,
where the internal state of the excitation is conserved, and
an off-resonant process (by an energy offset μ) with
complex amplitude we%2iϕij , where the excitation changes
its internal state. The amplitudes ta;b and w scale as 1=r3ij
(see more details in the Appendix A).
We now discuss the situation where three atoms are

arranged in an equilateral triangle and derive the expression
of the complex hopping amplitude of a j−i excitation.

(a) (b)

(c)

Site i Site j

Site i Site j

Site i Site j

1

2

3

FIG. 1. Spin-orbit coupling induced by dipolar exchange inter-
action. (a) Experimental configuration of three atoms trapped in a
tunable geometry. The quantization axis z, along themagnetic field,
is perpendicular to the array of atoms. (b) Schematic Zeeman
structure of the two Rydberg manifolds 60S1=2 and 60P3=2 used in
this work. The three levels j0i, jþi, and j−i of the V structure
involved in the dipole-dipole interaction are indicated as black
lines. The energy difference between jþi and j−i isμ, controlled by
dcmagnetic and electric fields perpendicular to the triangle. (c) The
two processes for a j−i excitation to hop from site i to site j: the j−i
excitation is annihilated on site i, and a j−i (solid arrow) or a jþi
(dashed arrow) excitation is created on site j.
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We restrict ourselves to the case μ ≫ ta;b, w and treat the
hoppings perturbatively. As the internal state-flipping
hopping is off resonant, the j−i excitation only has a small
probability of becoming a jþi excitation. In addition, as the
interaction conserves the number of excitations, once the
atoms are initialized in the three-site state j−00i, they
mostly remain in the one excitation subspace consisting of
the states j−00i, j0−0i, and j00−i. The hopping of a j−i
excitation from site 1 to 2, i.e., the change of the three-atom
state from j−00i to j0−0i [see Fig 2(a)], proceeds either
by a direct hopping with amplitude −tb, or by a second-
order coupling via the intermediate state j00þi consisting
in two successive flips of the internal state. The latter has
an amplitude −w2e2iðϕ32−ϕ13Þ=μ, with ϕ32 − ϕ13 ¼ 2π=3.
Consequently, the hopping amplitude −teiφ from site 1 to 2
is the sum of the amplitudes of these two processes

teiφ ¼ tb þ ei4π=3
w2

μ
: ð2Þ

The representation of the amplitudes in the complex plane
is shown in Fig. 2(b). In this perturbative picture, the jþi
excitation is adiabatically eliminated, and the problem
reduces to the hopping of the j−i ¼ b†i j0i excitation
described by the effective Hamiltonian

Heff ¼ −t
X3

i¼1

½eiφb†iþ1bi þ e−iφb†i biþ1'; ð3Þ

with b4 ≡ b1. Here, we write the Hamiltonian in the
second-quantized form in view of the extension to the
multiexcitation case (see Sec. IV). The Peierls phase φ can

be interpreted as the result of an emergent gauge field
and the magnetic flux through the triangle is thus 3φ.
Experimentally, both the effective hopping amplitude t and
the flux 3φ are controlled by the distance between the
atoms and the energy separation μ. For nonzero flux
(modulo π), the excitation exhibits a chiral motion when
evolving in the triangle. In particular, for 3φ ¼ %π=2 [18],
the excitation hops sequentially from site to site in a
preferred direction. Figure 2(c) shows this expected motion
for the parameters used in the experiment (see Sec. III): we
plot the site probabilities as a function of time in the case of
the complex hopping of a j−i excitation described by the
Hamiltonian (3) (dashed lines), as well as for the three-level
structure involving the jþi state, governed by the
Hamiltonian (A1) (solid lines). The fast oscillations exhibit
a frequency close to μ=h, and result from the nonperfect
elimination of the jþi state.

III. EXPERIMENTAL OBSERVATION
OF CHIRAL MOTION

To experimentally demonstrate the chiral motion of a j−i
excitation resulting from the complex hopping of Eq. (2),
we start with three 87Rb atoms trapped in 852-nm optical
tweezers arranged in an equilateral triangle with a side
length 11 μm [24]. We optically pump the atoms in the
state j5S1=2; F ¼ 2; my ¼ −2i in 200 μs using a quantiza-
tion axis defined by a magnetic field By > 0 along the y
axis contained in the triangle plane. To isolate the V
structure in the Rydberg manifold and achieve isotropic
exchange terms ta;b and w, we must apply static magnetic
and electric fields perpendicular to the plane of the triangle.
To do so, we switch on adiabaticallyBz and turn off By after
the optical pumping step, in 20 ms: for Bz < 0 the resulting
atomic state is thus j5S1=2; F ¼ 2; mz ¼ 2i. In order to fix
the Peierls phase to the value leading to the chiral motion
(3φ ≈ π=2), we set Bz ¼ −8.5 G and the electric field
Ez ¼ 0.4 V=cm, yielding μ=h ¼ −16 MHz. With these
values and rij ¼ 11 μm, we measure, from a spin exchange
experiment with two atoms [33], ta=h ≃ 1.5 MHz, and
tb=h ≃ 0.55 MHz in good agreement with theoretical
calculations of the interaction energies [44]. We then
deduce w=h ≃ 2.7 MHz using the values of the angular
part of the dipole matrix elements. After switching off the
dipole traps, we prepare the j000i state in 2 μs using a
stimulated Raman adiabatic passage [34], via the inter-
mediate state j5P1=2; F ¼ 2; mz ¼ 2i. Finally, we address
atom 1 with a focused laser beam tuned near the 6P3=2 −
60S1=2 transition [45] and apply a 400-ns π pulse with a
microwave resonant with the light shifted j0i → j−i tran-
sition. This prepares a j−i excitation on site 1.
After the preparation of the system in the state j−00i, we

let it evolve under the action of the dipole-dipole interaction
for a time τ. We then apply a 400-ns read-out pulse to
deexcite the atoms in j0i back to the 5S1=2 manifold, and

(a)

(c)

(b)

FIG. 2. Peierls phase on a triangle. (a) The two available
processes for a j−i excitation to hop from j−00i to j0−0i: direct
hopping with amplitude −tb, or virtual hoppings via j00þi.
(b) Complex plane representation of the effective hopping, which
is the sum of the two processes depicted in (a). (c) Calculated
evolution of the site probabilities after preparing j−00i with total
flux 3φ ¼ π=2, for an ideal complex hopping (dashed lines) and
for our three-level structure involving the jþi states (solid lines).
The excitation does not spread as time flows, and moves from site
to site in a chiral way.
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switch on the dipole traps again. Atoms in the 5S1=2 state
are recaptured, whereas atoms still in Rydberg states are
lost. A final fluorescence image reveals, for each site, if the
atom is in the j0i state (the atom is recaptured), or in
another Rydberg state (the atom is lost). Our detection
method does not distinguish between these other Rydberg
states, including jþi and j−i. We will denote the Rydberg
states other than j0i as a single state j1i. As the jþi
subspace is hardly populated in our experiment, the loss of
an atom corresponds mainly to its detection in
the j−i state.
The result of this first experiment is presented in

Fig. 3(a), where we plot the three-site probabilities to be
in the states j100i, j010i, and j001i as a function of the
interaction time τ. As expected, we observe a chiral motion
of a localized j−i excitation in the counterclockwise
direction 1 → 3 → 2 → 1. This is the signature of an
effective magnetic field acting on the hopping excitation,
described by the Peierls phases. The fact that the three
probabilities do not sum to 1 comes from the imperfect
preparation of the state j100i and detection errors.
To reverse the direction of motion, we reverse the sign

ofBz after the optical pumping stage. The initial atomic state
is now j5S1=2; F ¼ 2; mz ¼ −2i. In this configuration,
following the Rydberg excitation, the V structure in the
Rydberg manifold involves j0i ¼ j60S1=2; mJ ¼ −1=2i,
jþi¼ j60P3=2;mJ¼−3=2i, and j−i¼j60P3=2;mJ¼þ1=2i.
The value of μ remains unchanged, as the Stark shift only
depends on jmjj. The hopping of a j−i to a jþi excitation
now corresponds to a decrease of the internal momentum by
two quanta: the orbital phase factor is thus e2iϕij , and the sign

of the Peierls phase is changed. Figure 3(c) shows the same
three-site probabilities as in Fig. 3(b) for this opposite
direction of Bz. As expected, we now observe a chiral
motion of the j−i excitation in the clockwise direction
1 → 2 → 3 → 1.
Finally, we compare the experimental data for the chiral

motion in both directions with a theoretical model solving
the Schrödinger equation for this three-atom system includ-
ing all the Zeeman sublevels of the 60S1=2 and 60P3=2
manifold. In these simulations, the preparation and detec-
tion errors are included as well as shot-to-shot fluctuations
in the atomic positions; the latter leads to small modifica-
tions of the coupling parameters for each shot. The details
of these simulations are presented in Appendix A. The
results are plotted as solid lines on the data in Figs. 3(a) and
3(b). In both situations, we obtain a good agreement with
the model, which reproduces the frequency, the amplitude,
and the damping of the chiral motion.

IV. DENSITY-DEPENDENT PEIERLS PHASE
AND MAPPING TO ANYONS

For ensembles of two-level atoms in resonant interaction,
the excitations can be mapped onto hard-core bosons, a fact
used in our previous work [34]. A natural question to ask in
our present multilevel situation is the consequence of the
hard-core constraint on the dynamics of the j−i excitations.
In order to explore this experimentally, we now initialize
the three-atom system with two j−i excitations on sites 2
and 3, while site 1 is in state j0i, thus preparing the three-
atom state j0−−i. To do so we again use the addressing

(a) (b)

FIG. 3. Observation of the chiral motion of a single j−i excitation. (a),(b) Evolution of the three-site probabilities to be in the states
j100i, j010i, and j001i as a function of the interaction time for two opposite directions of Bz. Upper panel: experimental results and
theoretical predictions (solid lines) including experimental errors in the preparation and the detection, as well as shot-to-shot fluctuations
in the atomic position (which lead to the observed damping of the oscillations). Bottom panel: associated trajectories of the center
of mass of the excitation ðx̄; ȳÞ for specific windows of the excitation time τ, defined by x̄ ¼

P
3
i¼1 xipi=

P
3
i¼1 pi and ȳ ¼P

3
i¼1 yipi=

P
3
i¼1 pi [where ðxi; yiÞ are the coordinates of site i, and pi the probability for the j−i excitation to be on site i]. Error bars

denote the standard error on the mean, and are often smaller than the symbol size.
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laser on site 1, but tune the π microwave pulse on resonance
with the free-space j0i → j−i transition.
In the case of hard-core bosons evolving with the

Hamiltonian in Eq. (3), one can show that the hole (state
j0i) propagates in the opposite direction with respect to the
single j−i excitation case, as observed using superconduct-
ing circuits [18]. The result of our experiment is presented
in Fig. 4, where we use the same parameters as for the
single excitation experiment, i.e., a Peierls phase φ ¼ π=6.
Remarkably, here we do not observe any chiral motion: the
hole state j0i propagates almost symmetrically towards
sites 2 and 3, suggesting that the hopping amplitude
between sites is now real, and that the description of the
dynamics by the Hamiltonian (3) is no longer valid. This
indicates that the hard-core constraint between the excita-
tions j−i influences the induced Peierls phases.
To understand this, we come back to the hard-core

constraint in our system.
Two particles, irrespective of their internal state jþi or

j−i, cannot reside on the same site. As a consequence, the

effective hopping from site 1 to 2 is modified if an
excitation is already present on site 3: This suppresses
the off-resonant process, which is at the origin of the
complex hopping amplitude in the single excitation case,
leaving only the direct hopping described by −tb.
Therefore, the hard-core constraint generates a density-
dependent hopping, where the phase of the hopping
amplitude, as well as its strength, depends on the occupa-
tion of the third lattice site. The effective Hamiltonian
describing this situation generalizes the one of Eq. (3) to the
case of more than one j−i excitation:

Hmany
eff ¼ −t

X3

i¼1

½eiφð1−niþ2Þb†iþ1bi þ Δb†iþ1biniþ2 þ H:c:';

ð4Þ

with niþ2 ¼ b†iþ2biþ2 the occupation of the third site and
Δ ¼ ðtb − tÞ=t. The first term in the effective Hamiltonian
shows that the Peierls phase is now density dependent. The
second term describes a conventional correlated hopping,
which does not modify the real or complex nature of the
couplings between sites (see Appendix B). In addition, the
adiabatic elimination leads to two-body interaction terms
∝ðw2=μÞninj, that do not play a role in an equilateral
triangle and that we therefore drop.
The influence of the density-dependent Peierls phases on

the hopping amplitudes has a simple interpretation in terms
of Abelian anyonic particles in one dimension in the
absence of a magnetic field [43,46–49]. Here, we obtain
anyonic particles with a hard-core constraint and a stat-
istical angle 3φ. For this mapping, we use a particle-hole
transformation and interpret a single hole as an anyonic
particle. In the absence of a gauge field, a single anyon (a
hole) exhibits a symmetric dynamics in a triangle, which is
the result observed in Fig. 4. Now placing two anyons (two
holes) in the triangle, we are back to the case studied in
Sec. III, where we observe a chiral motion (Fig. 3): In the
anyon interpretation, this is due to the statistical phase
under exchange of the two anyonic particles, or equiv-
alently to the fact that one of the two anyonic particles
carries a magnetic flux for the other one. The value of this
magnetic flux through the triangle is the statistical phase of
these anyons. The mapping onto anyons can be made
rigorous and is presented in Appendix B.
We still observe a residual asymmetry in the dynamics,

see Fig. 4(b), which is also present in the simulation. This
indicates that the complex-valued hopping is not fully
suppressed. Following the same effective Hamiltonian
approach as the one outlined in Sec. II, the internal
state-flipping hopping is now a fourth-order process, as
shown in Fig. 4(c). Considering the hopping from site 1 to
site 2, the hole can directly hop with an amplitude −tb, or
virtually go through jþþ0i, leading to a total amplitude
teiφ ¼ tb þ w4=μ3e−4iπ=3. As w ≪ μ, the complex part of

(a)

(b)

(c)

FIG. 4. Demonstration of density-dependent hopping for two
excitations. (a) The presence of a j−i excitation on site 3 prevents
the internal state-flipping process responsible for the complex
hopping of the j−i excitation from 2 to 1: only the real coupling
remains. (b) Probability to be in the doubly excited three-site
states j011i (targeted initial state), j101i, or j110i as a function of
the interaction time τ. Upper panel: simulations in an ideal case
including the three levels of the V structure. Lower panel:
experimental results together with the simulation taking into
account experimental parameters, including state preparation.
(c) Hopping processes to go from site 1 to site 2 in the two-
excitation case, showing the direct coupling and the fourth-order
process via j0þþi.
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this hopping is extremely small compared to the single
particle case, thus leading to the observed quasi-symmetric
dynamics.

V. TUNABILITY OF THE PEIERLS PHASE

In a final experiment, we demonstrate the control of the
Peierls phase in the single excitation case by tuning the
geometry of the triangle while keeping the same value for μ.
To do so, we study an isosceles triangle parametrized by the
angle γ, see Fig. 5(a). In this configuration, the distance
between sites 1 and 3 varies with γ. The effective coupling,
and hence the Peierls phase, is then different for each
link: the direct hoppings are t12 ¼ t23 and t13 ¼ κt12 with
κ ¼ 1=ð2 cos½γ=2'Þ3; the virtual couplings are κw2eiγ=μ for
the 1→2 and 2 → 3 couplings and w2e−2iγ=μ for the 3 → 1
coupling. The variation of the magnetic flux through the
triangle, which is the sum of the three Peierls phases, is
represented in Fig. 5(b) as a function of the angle γ. It
exhibits an almost linear dependence for γ ∈ ½0°; 90°'.
Our demonstration of the control over the Peierls phase is

achieved by observing how a single j−i excitation prepared
initially on site 2 splits between site 1 and site 3 after a given
evolution time: for a negative flux (modulo 2π) the excita-
tion propagates towards site 1, while it propagates towards
site 3 for a positive flux. For zero flux (modulo π) the
propagation is symmetric. Figure 5(c) shows the result of the
experiment. We plot the population imbalance between site
1 and site 3, I ¼ ðPj100i − Pj001iÞ=ðPj001i þ Pj100iÞ, at time
τ ¼ 0.4 μs, as a function of the angle γ.We chose τ ¼ 0.4 μs
as it corresponds to the excitation mainly located on sites

1 and3 for γ ¼ 0°.As expected,weobserve that the imbalance
varies with the angle γ, and hence with the magnetic flux
[Fig. 5(b)]. For γ ¼ 0° and 75° (zero flux) the propagation is
symmetric. The data are in good agreement with the simu-
lation of the dynamics of the system (dashed line).

VI. EXTENSION TO OTHER GEOMETRIES

As demonstrated in the previous section for the case of
an isosceles triangle, the Peierls phase depends on the
geometrical arrangement of the atoms. A natural question
to ask is what happens for geometries other than a triangle.
In the following, we discuss theoretically the Peierls phase
patterns for plaquettes of square and honeycomb lattices,
considering the perturbative regime where the jþi excita-
tion can be eliminated.
For a square geometry, see Fig. 6(a), we find a nearest

neighbor hopping teiφ with a Peierls phaseφ, as the adiabatic
elimination gives rise to two distinct virtual processes of
equal strength. On the contrary, the next-nearest-neighbor
hopping remains real valued. Consequently, a single exci-
tation experiences a homogeneous gauge field with a flux 4φ
through the square. As for the triangle case, the presence of a
second excitation gives rise to a density-dependent hopping
and quenches the virtual processes. Note that in addition to
the density-dependent phase one needs to include in this case
density-density interaction terms. These terms are in general
comparable in strength to the hopping and, unless properly
compensated, will influence the dynamics for several exci-
tations. They are thus important for the determination of the
many-body ground state properties. The detailed study of
such effects will be the subject of future work. Therefore, the
dynamics of two excitations is accounted for by a modified
homogenous magnetic gauge field. Finally, for three exci-
tations, all virtual processes are forbidden and we recover a
time-reversal symmetric dynamics.
For atoms on a honeycomb array, the situation can no

longer be described by a homogeneous magnetic field. As
shown in Fig. 6(b), the Peierls phase φ resulting from the

(a)

(b)

(c)

FIG. 5. Tunability of the Peierls phase. (a) Tunable geometry
used for this experiment based on an isosceles triangle with
r12 ¼ r23 ¼ 11 μm. (b) Calculated evolution of the magnetic flux
threading through the isosceles triangle as a function of γ.
(c) Experimental imbalance I between site 1 and site 3 (see
text) after having prepared an excitation on site 2 and letting the
system evolve for τ ¼ 0.4 μs, as a function of the angle γ.
A positive imbalance means that the excitation mainly resides on
site 1. The three insets represent the triangle configurations for
three values of γ, marked on the graph by the three dotted lines.
The dashed line is the simulation.

(b)(a)

FIG. 6. Flux pattern resulting from the complex hopping for
plaquettes of various geometries. (a) Square geometry. The
effective Hamiltonian approach yields teiφ ¼ tb þ iw2=ðμ

ffiffiffi
2

p
Þ

and t0 ¼ tb=23=2 − 2w2=μ. In this case, the flux 4φ through the
square corresponds to a homogeneous magnetic field. (b) Honey-
comb geometry. Here, teiφ ¼ tb þ 3w2=ð4

ffiffiffi
3

p
μÞeiπ=3, t0eiφ0 ¼

tb=33=2 þ 139w2=ð108μÞe2iπ=3, and t00 ¼ tb=8 − 4w2=ð3
ffiffiffi
3

p
μÞ.

The flux pattern is well described as a homogeneous magnetic
field with flux 6φ through the honeycomb in combination with an
alternating flux Φ ¼ φ − φ0 through the red and blue triangles.
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nearest-neighbor hopping gives rise to a homogenous
magnetic field with total flux 6φ. In addition, considering
the next-nearest-neighbor coupling introduces a second
Peierls phase φ0. The combination of the two phases leads
to an alternating flux pattern. Such a pattern has been
previously discussed in connection to the Haldane model
on a honeycomb lattice [50] and provides an intuitive
explanation for the appearance of nontrivial Chern numbers
with C ¼ %1 reported in Refs. [36,38]. For a lattice
geometry consisting of many plaquettes, the Peierls phase
φ for the nearest-neighbor hopping would now vanish by
symmetry, whereas the second Peierls phase φ0 of next-
nearest hopping remains finite. We would thus be able to
observe chiral edge states in the single-particle regime. In
Ref. [38] we obtained these chiral edge states by analyzing
the band structure of the system and computing the
associated Chern numbers for the V-structure levels
scheme. The perturbative approach presented here provides
more intuition on the link between the honeycomb con-
figuration and the Haldane model.

VII. CONCLUSION

We have experimentally demonstrated the spin-orbit
coupling naturally present in dipolar exchange interactions
by observing the characteristic chiral motion of an exci-
tation in a minimal setup of three Rydberg atoms. A simple
explanation of this chiral motion is achieved in the
perturbative regime, where the spin-orbit coupling gives
rise to Peierls phases describing a homogenous magnetic
field through the triangle. Notably, the Peierls phase
depends on the occupation of neighboring sites and there-
fore naturally gives rise to a dynamical gauge field.
Especially, we have demonstrated in our minimal setup
that these density-dependent Peierls phases can be inter-
preted as particles with an anyonic exchange statistics. This
minimal setup can be extended to one-dimensional anyon-
Hubbard and lattice-gauge field models, which will be
discussed elsewhere [51]. By varying the spatial arrange-
ment, we engineer geometry-dependent Peierls phases and
explore theoretically configurations beyond the triangle.
In particular, for the honeycomb plaquette, we show
that at the single-particle level and in the perturbative
approach, our system shows the same couplings as those of
the celebrated Haldane model, which is characterized
by a nontrivial topological band structure. This leads to
an intriguing open question, whether the combination of
such topological band structures with the strong inter-
actions between the bosonic particles can lead to the
experimental observation of integer or fractional Chern
insulators [52,53].
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APPENDIX A: NUMERICAL SIMULATION
OF THE DYNAMICS

Here, we present numerical simulations of the dynamics
of the excitations in the triangle, including all the Zeeman
sublevels of the 60S1=2 and 60P3=2 manifolds.
We first describe the role of the different exchange terms

of the dipole-dipole interaction of Eq. (1) on the various
Zeeman states (Fig. 7). The terms d̂þi d̂

−
j , d̂

−
i d̂

þ
j , d̂

þ
i d̂

þ
j , and

d̂−i d̂
−
j keep the system inside the V structure consisting of

the three states fj0i; jþi; j−ig. On the contrary, the d̂zi d̂
z
j

term couples Zeeman states outside the V structure. The
effect of this last term is, however, inhibited thanks to the
electric and magnetic fields, which energetically isolate the
V structure. In this case, the hopping dynamics is described
by the Hamiltonian

H ¼
X

i≠j
ða†i b

†
i Þ
$

−ta we−i2ϕij

wei2ϕij −tb

%$
aj
bj

%

þ
X

i

μ
2
ðnai − nbi Þ þHvdW; ðA1Þ

where the two bosonic operators a†i and b†i on site i are
defined by a†i j0i ¼ jþii and b†i j0i ¼ j−ii. The hopping
amplitudes ta;b are related to the dipole matrix elements by

ta;b ¼
jh%jd̂þj0ij2

8πϵ0r3ij
; w ¼ 3hþjd̂þj0ih0jd̂−j−i

8πϵ0r3ij
: ðA2Þ

The term HvdW includes the van der Waals interactions
between the Rydberg levels (typically around 70 kHz),
which are negligible with respect to the hopping ampli-
tudes. However, we do include it for the quantitative
comparison between theory and experimental results.
To isolate the V structure, we apply dc magnetic and

electric fields perpendicular to the triangle. The magnetic
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field of 8.5 G lifts the degeneracy of the Zeeman sublevels
of a single atom. However, the pair state j−−i is still
degenerate with j60P3=2; mj ¼ −3=2; 60P3=2; mj ¼ 1=2i.
To avoid leakage to this state due to the resonant inter-
action, we lift the degeneracy by additionally applying an
electric field. We choose Ez ¼ 0.4 V=cm, for which the
static dipole moment induced by the electric field is still
small. Isolating Rydberg manifolds prevents one from
using short interatomic distances where Rydberg levels
get intermixed. On the other hand, strong interactions and
thus, fast dynamics are necessary to neglect the decay of the
Rydberg levels and the motion of atoms. For our experi-
ment, an interatomic distance of 11 μm is a good trade-off.
All parameters are optimized under the constraint that the
condition for chiral propagation is fulfilled.
As seen in the main text, the dynamics of the excitations

in the triangle can be qualitatively understood by consid-
ering only the exchange interactions between the levels of
the V structure, see Fig. 2. Since the isolation of the V
structure is in practice not perfect, we perform simulations
including all Zeeman sublevels of the 60S1=2 and 60P3=2

manifolds. Considering the Rydberg states outside these
two manifolds results in van derWaals interactions between
the atoms, which we include in the simulation. This
interaction has, however, a negligible influence on the
dynamics for the parameters used in the experiment. The
strengths of both the resonant and van der Waals inter-
actions are calculated in the presence of the applied electric
and magnetic fields using our open source calculator [44].

The simulation starts with a triangle where each atom is
in the j0i state. As a first step, we simulate the preparation
of the j−i excitations using the addressing beam inducing a
local light shift of typically 6 MHz, and the microwave
pulse. We take into account the van der Waals and exchange
interactions between the atoms during the preparation.
After prediagonalizing the single-atom Hamiltonians
describing the interaction of the atoms with the applied
static fields, we introduce the microwave couplings. The
microwave couples the Stark- and Zeeman-shifted states of
the 60S1=2 manifold to the 60P3=2 manifold. As mentioned
in Sec. III, we apply a light shift to one atom and tune the
frequency of the microwave to be resonant with the
transition to the j−i excitation. The computations are
performed in the rotating frame within the rotating-wave
approximation. The simulation of the preparation process
indicates leakage to other states outside the V structure, on
the order of 5%. Presumably, this leakage could be reduced
using optimal control. As a second step, we simulate the
time evolution of the prepared state under the influence of
the dipolar exchange interaction.
We take into account experimental imperfections by

sampling over 500 different realizations of the initial con-
figuration of the triangles. First, we take for the probability
for lattice vacancies (due to missing atoms or errors in the
stimulated Raman adiabatic passage process) the measured
value 0.17. Second, we consider shot-to-shot fluctuations of
the positions of the atoms in their tweezers, which results in
varying hopping strengths. Importantly, due to these fluctu-
ations, the atoms can also be positioned in such away that the
interatomic axis is not exactly perpendicular to the quantiza-
tion axis. In this case, the dipolar interaction can change the
magnetic quantum number by one, provoking additional
leakage to states outside the V structure. These experimental
imperfections are responsible for the observed damping of
the dynamics. Finally, detection errors are included through a
MonteCarlo sampling of the numerical results [34,54]. In the
simulations we account for the fact that the detection scheme
does not distinguish between states other than j0i by
computing the probabilities Pj100i, Pj010i, and Pj001i as
measured in the experiment. Note that the preparation of a
state with two excitations is experimentally challenging and
prone to additional errors. Therefore, we have scaled
vertically the theory curve shown in Fig. 4(b) by a factor 0.8.

APPENDIX B: MAPPING ONTO
AN ANYONIC PROBLEM

1. Formal mapping

Here, we demonstrate that the excitations on a triangle,
described by a Hamiltonian with the density-dependent
Peierls phases, can be understood as a system of hard-core
Abelian anyons with a nontrivial phase under exchange.
We start from the Hamiltonian (4)

FIG. 7. Rydberg levels in a V structure and hopping processes.
We consider two atoms as shown on top of the figure, with their
six Zeeman sublevels and focus on the V structure highlighted
in black. Starting from the initial state j−0i, the dipole-dipole
interaction in the case of a quantization axis perpendicular to the
atom array induces three types of hopping. The first term of the
dipole-dipole interaction makes the system leave the V structure.
The two other terms are the direct (solid arrow) and the complex
(dashed arrow) hoppings, mentioned in the main text.

VINCENT LIENHARD et al. PHYS. REV. X 10, 021031 (2020)

021031-8



Hmany
eff ¼ −t

X3

i¼1

½eiφð1−niþ2Þb†iþ1bi þ Δb†iþ1biniþ2 þ H:c:';

ðB1Þ

with ni ¼ b†i bi. The excitations are described by the
bosonic creation (annihilation) operators b†i (bi), respec-
tively, with ½bi; b†j ' ¼ 0 and ½bi; bj' ¼ 0 for i ≠ j. The hard-
core constraint is most conveniently accounted for by the
anticommutation relations fbi; b†i g ¼ 1 and fbi; big ¼ 0.
In order to map the Hamiltonian to Abelian anyons, we

define the new modes Bn by the unitary transformation

B†
1 ≡ e−iφð3−n2−2n3Þb1; ðB2aÞ

B†
2 ≡ e−iφð1þ2n1−3n3Þb2; ðB2bÞ

B†
3 ≡ e−iφðn1−1Þb3: ðB2cÞ

Under this transformation, the Hamiltonian (4) now
takes the simple form

H ¼ −t
X3

i¼1

½B†
iþ1Bi þ ΔB†

iþ1Bið1 − B†
iþ2Biþ2Þ þ H:c:';

ðB3Þ

which does not feature the density-dependent Peierls
phases. The second term in Eq. (B3) describes a conven-
tional correlated hopping where the (real) couplings depend
on the number of particles in the new modes. The influence
of the Peierls phases is now hidden in the nontrivial
commutation relations of the modes Bn, which can be
shown to obey

fBn; B
†
ng ¼ 1; ðB4aÞ

fBn; Bng ¼ 0; ðB4bÞ

BnBm ¼ e3iφ signðn−mÞBmBn; ðB4cÞ

B†
nBm ¼ e−3iφ signðn−mÞBmB

†
n; ðB4dÞ

for n ≠ m. Here, signðxÞ ¼ 1 for x ≥ 0 and signðxÞ ¼ −1
for x < 0. This is the algebra of Abelian anyons in one
dimension with statistical angle 3φ and infinite, repulsive
on-site interaction (a hard-core constraint) [43]. For φ ¼ 0
(φ ¼ π=3) we recover hard-core bosons (fermions).
However, for the flux π=2 with φ ¼ π=6 one finds the
nontrivial “semionic” commutation relations [55]

B1B2 ¼ −iB2B1 and B†
1B2 ¼ iB2B

†
1; etc:; ðB5Þ

that describe particles “halfway” between bosons and
fermions.

2. Interpretation of the dynamics on a triangle

The dynamical behavior of one or two excitations (b†i )
observed in the experiment can now be interpreted as
follows in the anyonic picture (B†

n). Because of the implicit
particle-hole transformation in (B2), a single excitation b†i
corresponds to a triangle occupied by two anyons B†

n. The
chiral motion of a single excitation due to the magnetic
field in (3) therefore maps onto the chiral motion of a hole
flanked by two anyons in (B3). However, in the anyonic
picture, the phase that induces chiral motion is not due to a
magnetic field [which is absent in (B3)], but rather is a
consequence of the statistical phase collected by two
anyons that exchange places. Similarly, the symmetric
motion in the case of two excitations b†i corresponds to
the nonchiral dynamics of a single anyon B†

n subject to
(B3), i.e., without magnetic field.
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[38] S. Weber, S. de Léséleuc, V. Lienhard, D. Barredo, T.
Lahaye, A. Browaeys, and H. P. Büchler, Topologically
Protected Edge States in Small Rydberg Systems, Quantum
Sci. Technol. 3, 044001 (2018).

[39] U.-J. Wiese, Ultracold Quantum Gases and Lattice
Systems: Quantum Simulation of Lattice Gauge Theories,
Ann. Phys. (Berlin) 525, 777 (2013).

[40] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois,
M. Messer, and T. Esslinger, Realization of Density-
Dependent Peierls Phases to Engineer Quantized Gauge
Fields Coupled to Ultracold Matter, Nat. Phys. 15, 1161
(2019).

[41] L.W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and
C. Chin, Observation of Density-Dependent Gauge Fields
in a Bose-Einstein Condensate Based on Micromotion
Control in a Shaken Two-Dimensional Lattice, Phys.
Rev. Lett. 121, 030402 (2018).

[42] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E.
Demler, N. Goldman, I. Bloch, and M. Aidelsburger,
Floquet Approach to Z2 Lattice Gauge Theories with
Ultracold Atoms in Optical Lattices, Nat. Phys. 15, 1168
(2019).

[43] E. Fradkin, Field Theories of Condensed Matter Systems
(Addison-Wesley, Redwood City, CA, 1991).

VINCENT LIENHARD et al. PHYS. REV. X 10, 021031 (2020)

021031-10



[44] S. Weber, C. Tresp, H. Menke, A. Urvoy, O. Firstenberg,
H. P. Büchler, and S. Hofferberth, Calculation of
Rydberg Interaction Potentials, J. Phys. B 50, 133001
(2017).
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