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Griffiths phase in a facilitated Rydberg gas at low temperatures
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The spread of excitations by Rydberg facilitation bears many similarities to epidemics. Such systems can
be modeled with Monte Carlo simulations of classical rate equations to great accuracy as a result of high
dephasing. Motivated by experiments, we theoretically analyze the dynamics of a Rydberg many-body system in
the facilitation regime in the limits of high and low temperatures. In the high-temperature limit, a homogeneous
mean-field behavior is recovered, while characteristic effects of heterogeneity can be seen in a frozen gas. At high
temperatures, the system displays an absorbing-state phase transition and, in the presence of an additional loss
channel, self-organized criticality. In a frozen or low-temperature gas, excitations are constrained to a network
resembling an Erdős-Rényi graph. We show that the absorbing-state phase transition is replaced with an extended
Griffiths phase, which we accurately describe by a susceptible-infected-susceptible model on the Erdős-Rényi
network taking into account Rydberg blockade.
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I. INTRODUCTION

Rydberg atoms have gained a lot of attention in recent years
due to their strong interactions over large distances [1]. This,
paired with their long lifetimes in the order of milliseconds,
creates a platform to explore quantum many-body physics
of strongly interacting spin systems [2–9] and to implement
key elements for quantum information processing [10–14].
Moreover, optically driven Rydberg atoms [see Fig. 1(a)] can
be used to investigate many-body dynamics of spin systems in
inherently dissipative environments [15–19], as the laser ex-
citation into high-lying Rydberg states is often accompanied
by strong dephasing. The latter includes important dynam-
ical phenomena such as an absorbing-state phase transition
[see Fig. 1(b)], one of the simplest classical nonequilibrium
phase transitions displaying critical behavior and universality
[20,21].

Absorbing-state phase transitions are of general interest
as they occur in many phenomena outside of physics such
as population dynamics, epidemics or the spreading of in-
formation in social media [22–25]. Systems with this phase
transition are believed fall into the universality class of di-
rected percolation (DP) [20]. The unambiguous experimental
observation of DP universal behavior is, however, challeng-
ing and has only been achieved in a few systems in recent
years [26–31]. More recently, experimental signatures of such
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a transition have been reported in optically driven Rydberg
gases [32].

In Rydberg systems, dissipation can give rise to another
important dynamical phenomenon: self-organized criticality
(SOC) [33,34], which is believed to be a cause for the abun-
dance of scale invariance in nature [35–38]. An SOC system
dynamically evolves to the critical point of a phase transition
by itself due to dissipation and without the need for parameter
fine tuning [see Fig. 1(c)]. Since the dissipation is strongly
reduced once the critical point is reached, further evolution
into the absorbing phase happens on much longer timescales.
Recent experiments on Rydberg facilitation have shown some
evidence of SOC through the use of ionization or a decay
into an auxiliary inert (dead) state as a loss mechanism [see
Fig. 1(a)] [39] (see Ref. [40] for related experiments).

However, the DP transition is known to be susceptible to
disorder [41] and more recent experiments on Rydberg facil-
itation in a trapped ultracold gas of atoms gave indications
for an emergent heterogeneity in the system [42]. In such
a heterogeneous system, the critical point of the absorbing-
state phase transition is replaced by an intermediate extended
Griffiths phase. Griffiths phases are characterized by generic
scale invariance and the lack of universal behavior. This is
in contrast to an absorbing state phase transition where scale
invariance is only expected at the critical point. As a result
(e.g., in the Rydberg gas), one expects a power-law decay in
active density over time with continuously varying exponents
depending on the driving strength [43].

In Ref. [42], it was experimentally shown that a Ryd-
berg system in the facilitation regime produces signatures
of such a Griffiths phase for short times compared to
the lifetime of the Rydberg state. A power-law decay in
Rydberg density over time was observed with the decay expo-
nents varying with driving strength and a phenomenological

2643-1564/2024/6(1)/013052(12) 013052-1 Published by the American Physical Society



DANIEL BRADY et al. PHYSICAL REVIEW RESEARCH 6, 013052 (2024)

(a) (b)

(c) (d)

FIG. 1. (a) Laser field couples ground |g⟩ and Rydberg |r⟩ states,
resulting in a transition rate !f (") [see Eq. (3)]. The Rydberg state
can spontaneously decay into |g⟩ or an inert state |0⟩. (b) Steady-state
Rydberg density depending on total active density (i.e., in states |g⟩
and |r⟩) for b = 0 from Monte Carlo simulations. (c) Total active
density ntot over time from Monte Carlo simulations for b > 0, show-
ing self-organization of the system to the critical density ncrit, if the
initial density is larger. (d) Schematic of facilitation shell (white):
Atoms (grey) in the red area are subject to Rydberg blockade and
atoms in the blue area only weakly interact with the Rydberg atoms
(red).

susceptible-infected-susceptible (SIS) network model was put
forward to describe the observations. The model included a
fitting function for the node weights of the network depend-
ing on the excitation rate κ . The interpretation being that in
the network model, heterogeneity originates from a velocity
selective excitation mechanism, where only atoms with rela-
tive velocities smaller than the Landau-Zener velocity vLZ(κ )
could participate in facilitation dynamics. Above this velocity,
all further excitations are exponentially suppressed.

In the present paper, we present experimental indications
for generic scale invariance and strong theoretical indications
for a Griffiths phase in a Rydberg facilitation gas by Monte
Carlo simulations.

In the experiment, we continuously monitor the number of
Rydberg excitations in a trapped ultracold gas of 87Rb atoms.
We show that the size distribution of the Rydberg excitation
number follows a power-law distribution, i.e., shows a scale-
free behavior, over an extended parameter regime, which is a
key characteristic of a Griffiths phase.

To understand and quantitatively describe the emergence
of the Griffiths phase, we theoretically analyze two limiting
cases: (i) a frozen gas and (ii) a gas with high temperature.
While we recover a direct absorbing-state phase transition in
the high-temperature limit with no signs of a velocity induced
heterogeneity, we can identify a Griffiths phase in the frozen
gas limit as a result of the finite paths along which facilitated
excitations can spread. We give a quantitative analysis of the
factors contributing to the emergence of a Griffiths phase and
provide an estimate for the characteristic exponents of the
power-law decay of Rydberg activity in this phase.

The facilitation of Rydberg excitations in a gas of optically
driven atoms can be microscopically described by a Lindblad
master equation [44] for the density matrix ρ̂, which takes the
form

d
dt

ρ̂ = i[ρ̂, Ĥ] +
∑

l

L̂l ρ̂L̂†
l − 1

2
{L̂†

l L̂l , ρ̂}. (1)

Here, the atom-light interaction Hamiltonian Ĥ is given by
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where σ̂µν
j = |µ⟩ j j⟨ν| is the transition operator between states

|ν⟩ and |µ⟩ of the jth atom. The strength of the laser driv-
ing shifted from the ground-Rydberg resonance frequency by
the detuning ' is described by the Rabi frequency %, and
there is a van der Waals interaction proportional to c6/r6

i j ,
with ri j = |r⃗i − r⃗ j | being the distance between atoms i and j.
Dissipative processes are taken into account by the Lindblad
jump operators L̂(i)

1 =
√

(1 − b)γ σ̂
gr
i , L̂(i)

2 =
√

bγ σ̂ r0
i describ-

ing spontaneous decay of the Rydberg state into the ground
state |g⟩ and the inert state |0⟩, with the branching parameter b.
Finally, dephasing, attributed to laser phase noise and Doppler
broadening [39] as well as the spread of the atomic wave
packet over the van der Waals potential [45], is described by
L̂(i)

⊥ = √
γ⊥σ̂ rr

i .
The strong van der Waals interaction of a Rydberg atom

shifts energy levels of the surrounding atoms significantly up
to distances of multiple µm. When the atoms are resonantly
coupled to a laser field, this will block further excitations into
Rydberg states from occurring for all atoms within a finite
distance, a phenomenon known as Rydberg blockade [11]. On
the other hand, if the laser excitation is strongly detuned, the
excitation of isolated atoms is suppressed while atoms close
to the facilitation distance rf ≡ 6

√ c6
'

are shifted into resonance
[Fig. 1(d)] and are excited with a greatly increased rate. This
process, termed Rydberg facilitation, leads to a cascade of
excitations quickly spreading through the system following
a single (off-resonant) excitation [46,47]. It is important to
note that Rydberg blockade still occurs in this regime. The
excitation of atoms with distances r < rf is greatly suppressed
[red zone in Fig. 1(d)].

II. EXPERIMENTAL OBSERVATION OF SCALE-FREE
BEHAVIOR IN A DRIVEN RYDBERG GAS

To experimentally test scale invariance, we investigate the
excitation density in a trapped gas of 87Rb atoms. To this
end, we prepare a sample containing 150 × 103 atoms at a
temperature of 1 µK in a crossed optical dipole trap. The
sample has a density on the order of 1012/cm3. From the 5S1/2
ground state, a UV laser at 297 nm continuously couples to
the 40P3/2 Rydberg state with a detuning of +40 MHz and a
resonant Rabi frequency of 2π × 100 kHz. The temperature
of the gas corresponds to a most probable speed v̂ = 0.7 rfγ
with the facilitation radius rf and decay rate γ .

Atoms in the 40P3/2 state are ionized because of multiple
intrinsic processes [48,49], which we use to continuously
monitor the excitation number. To this end, we guide the
resulting ions to a detector using a small electric field. This
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FIG. 2. (a) Ion signal per 10 µs time interval for a single experi-
ment run (blue line) and average over 1000 experimental runs (black
line). The ground state is off-resonantly coupled to the Rydberg
state for 100 ms. During the measurement, the density continuously
decreases because of the intrinsic ionization of Rydberg atoms. In the
first few milliseconds, the system is in the active phase, displaying
continuously high activity. Afterward, the dynamics is dominated by
isolated avalanches. The colored areas indicate the time segments
evaluated in (b). (b) Experimentally found distribution of ion counts
for different sample densities averaged over 1000 experimental runs.
We choose exemplary 5 ms-long time segments at 15 ms (orange),
40 ms (green), and 85 ms (violet) corresponding to three densities.
The distributions show power-law behavior (fitted in red), albeit with
distinct exponents (−1.51, −1.79, and −2.03, respectively). The
shaded region characterizes the uncertainty in the measurements.
It represents the maximum (minumum) relative occurrence when
shifting the evaluation windows by ±5 ms.

yields a time-resolved signal proportional to the number of
Rydberg excitations in the sample [Fig. 2(a)].

At the beginning of the continuous laser exposure, which
lasts 100 ms, there are no excitations in the sample. As soon
as the first off-resonant excitation is created, activity spreads
through the system via facilitation, setting it up in the active
phase. Due to the continuous atom loss caused by the ioniza-
tion of excited atoms, the sample density decreases, reducing
the effective driving strength. The sample thus approaches the
phase transition.

We divide the ion signal in segments of 5 ms to account
for the temporally varying effective driving. For each of these
segments, we analyze the ion count distribution in 10 µs bins
and average over 1000 experimental runs. After about 10 ms,
the average activity has dropped more than an order of magni-
tude compared to its maximum value, while in individual runs
it is dominated by avalanches. Therefore, we assume that at
this time the sample is leaving the active phase.

Our measurement data shows persistent power-law behav-
ior in the distribution of avalanche sizes over a wide range of

densities [Fig. 2(b)]. Power laws are a clear signature of scale
invariance, which is expected only at the critical point of an
absorbing-state phase transition or in a Griffiths phase char-
acterizing a heterogeneous system. The extracted exponent of
the power-law distribution is not fixed but varies with density,
strongly indicating nonuniversal behavior. While these obser-
vations are not an experimental proof of heterogeneity, we use
them as motivation to theoretically investigate possible origins
of heterogeneity and a related Griffiths phase in the system.

III. MICROSCOPIC MODEL OF RYDBERG FACILITATION

After having shown indications of scale-invariant behav-
ior in the Rydberg facilitation gas, however, with varying
exponents in the experiments, we now turn to a theoretical
modeling of the microscopic dynamics.

In the limit of large dephasing, the dynamics of a many-
body Rydberg gas are effectively governed by classical rate
equations [50]. As such, we will simulate a gas of atoms
governed by Eq. (1) using classical Monte Carlo simulations
of a set of rate equations derived from Eq. (1) in the limit
of large dephasing. After adiabatic elimination of coherences,
Eq. (1) reduces to classical rate equations between ground,
Rydberg, and inert states [see Fig. 1(a)], with the stimulated
rate !f (") given as

!f (") = 2%2γ⊥

γ 2
⊥ + '2

( ∑
j ̸=i
j∈"

r6
f

r6
i j

− 1
)2

, (3)

where " is the set of indices of Rydberg-excited atoms. To
ensure numerical stability in the simulation, the singularity of
the potential in Eq. (3) is truncated at a cutoff value.

Using Eq. (3), we can formulate a set of classical rate
equations for the probability of the ith atom being in the
Rydberg state P(i)

r or the ground state P(i)
g as

d
dt

P(i)
r = !f (")P(i)

g − (!f (") + γ )P(i)
r , (4a)

d
dt

P(i)
g = (!f (") + (1 − b)γ )P(i)

r − !f (")P(i)
g . (4b)

If no other Rydberg atom exists in the gas or their distance
is much larger than rf, !f (") reduces to the off-resonant
excitation rate of an isolated atom:

τ = 2%2γ⊥

γ 2
⊥ + '2

. (5)

As a result of the broadening of the ground-Rydberg tran-
sition, given by the dephasing rate γ⊥, facilitation can occur in
a smeared-out region around the facilitation distance rf, given
by

δrf = γ⊥

2'
rf. (6)

Therefore, each Rydberg atom spans a facilitation shell
around it at the radius rf and with the width δrf [white disks
in Fig. 1(d)]. Inside this shell, the stimulated rate takes its
maximal value !f = 2%2

γ⊥
, referred to as the facilitation rate.

Relevant for later mappings to epidemic models is this rate
integrated over volume Vs of the facilitation shell given by

κ = !f Vs. (7)
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The relevant quantities of interest here are the coarse-
grained Rydberg density (in a small volume 'V )

ρ(r⃗, t ) = 1
'V

∑

i:r⃗i∈'V

〈
σ̂ rr

i

〉
, (8)

and the total active density of ground-state and Rydberg
atoms:

n(r⃗, t ) = 1
'V

∑

i:r⃗i∈'V

(〈
σ̂ rr

i

〉
+

〈
σ̂

gg
i

〉)
. (9)

In the following, n will be referred to as the total density of
the gas, for simplicity. As atoms in state |0⟩ do not participate
in the dynamics of the system [see Fig. 1(a)], a decay into this
state corresponds to a reduction of the total density, i.e., atom
loss.

With this, nκ corresponds to the rate with which excitations
spread through the cloud.

The gas is simulated in a cube with size L3 and peri-
odic boundary conditions, typically L = 7 rf. Atom positions
are chosen randomly and velocities are sampled from the
Maxwell-Boltzmann distribution with the temperature param-
eter v̂, corresponding to the most probable atom velocity in
the gas. After choosing a fixed time step (dt = 1/400 γ ), the
time evolution of the system is given by a fixed time step
Monte Carlo (ftsMC) algorithm [51]. We choose a ftsMC al-
gorithm as opposed to a kinetic Monte Carlo algorithm [52] as
atomic movement, paired with long-range interactions leads
to quickly changing transitional rates in the system.

In Ref. [39], Langevin equations have been derived to
macroscopically describe the density of Rydberg atoms ρ and
the total density n in the system. As shown in Ref. [39], the
homogeneous mean-field solution, in which diffusion terms
are neglected, is sufficient to model the system. These equa-
tions then take the form

d
dt

ρ = −κ (2ρ2 − ρn) − γ ρ − τ (2ρ − n) + ξ , (10a)

n = n0 − bγ
∫ t

0
dt ′ ρ(t ′), (10b)

with the off-resonant excitation rate τ and a noise term ξ .
The parameter b characterizes the percentage of Rydberg
atoms which spontaneously decay into the dead state |0⟩ [see
Fig. 1(a)]. As mentioned above, atoms that decay into this
state are effectively removed from the system.

Assuming a gas with a heterogeneous density, diffusion
results in a stabilization of the critical point over long times.
For details pertaining to this, see Ref. [53].

In the absence of decay into |0⟩, i.e., for b = 0, and in the
absence of an off-resonant excitation, i.e., τ = 0, the dynam-
ics described by Eqs. (10) feature an absorbing-state phase
transition at the critical atom density

ncrit = γ

κ
, (11)

when the facilitation rate is fixed or, alternatively, at the
critical facilitation rate κcrit = γ /n0 for fixed density. Below
the critical point, any initially existing excitations in the sys-
tem will eventually decay and the steady state of the system
is one where all atoms are in the ground state (absorbing
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FIG. 3. (a) Sum of Rydberg and ground state atom densities
over time from Monte Carlo simulations (blue dots) for v̂ = 0 rfγ

and v̂ = 100 rfγ compared with the prediction from the Langevin
Eqs. (10) from Ref. [39] (red line). (b) Rydberg density for
v̂ = 100 rfγ . (c) Rydberg density for v̂ = 0 rfγ . For all plots, we use
the parameters: n0 = 4 r−3

f , %/γ = 20, '/γ=2000, γ⊥/γ = 20,

b = 0.3, L/rf = 7.

phase). Above the critical point, any arbitrarily small number
of excitations initially present in the system will facilitate
further excitations cascading through the system until a steady
state with finite excitation density ρ(t → ∞) > 0 is reached
(active phase).

Off-resonant excitations, with the rate τ , will seed an exci-
tation cascade in the active phase; whereas, in the absorbing
phase, they cause fluctuations in the excitation number. As
a result, the true absorbing state ρ = 0 can only be approxi-
mately reached experimentally through a large separation of
the off-resonant and facilitation timescales, suppressing off-
resonant excitations on the experimentally relevant facilitation
timescales.

Finally, the (slow) decay into a dead state |0⟩ with rate
bγ is responsible for the self-organized approach to the crit-
ical point when starting in the active phase, as indicated in
Fig. 1(c). Starting at an initial density n0 above the critical
value ncrit, i.e., in the active phase, the large number of atoms
in the Rydberg state causes a fast loss of atoms into the
dead state. As a consequence, the total density of atoms n
effectively participating in the facilitation process, i.e., atoms
in states |g⟩ and |r⟩ decrease quickly and approach the critical
value. This loss continues at the critical density and drives the
system further into the absorbing state. However, this happens
on a much slower timescale, as fewer Rydberg excitations are
present at the critical point.

In Fig. 3, we have plotted the time evolution of the total
density n, initially ten times higher than the critical density
ncrit, and the Rydberg density ρ for a frozen gas as well as
a high-temperature gas with otherwise identical conditions,
obtained from Monte Carlo simulations. Here, all atoms in
the system are initially in the ground state until one atom
is off-resonantly excited to the Rydberg state. For compari-
son, we also show the solution of the mean-field Langevin
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Eqs. (10), which capture the long-time SOC dynamics of
the high-temperature gas, but fail to describe the frozen gas
outside of very short times [see Figs. 3(b) and 3(c)]. The dis-
crepancy in the peak values of ρ can be attributed to Rydberg
blockade, which truncates the maximum number of Rydberg
excitations simultaneously present in the gas.

Qualitatively, the Rydberg density in the frozen gas dis-
plays a similar time dynamic to that of the high temperature
gas, albeit with substantial quantitative differences in the long-
time limit. We will show that in the low-temperature regime
of the Rydberg gas, the absorbing state phase transition is
replaced with an extended Griffiths phase, whose characteris-
tic features become visible when off-resonant excitations and
decay into state |0⟩ are negligible.

It is important to note that for b > 0 the decay into |0⟩
dominates the dynamics at times t > 1/bγ . Thus, to ex-
perimentally observe a Griffiths phase by monitoring the
long-time dynamics with this system, ionization and loss of
Rydberg atoms (manifested in the parameter b) must be re-
duced as much as possible.

In Ref. [42], it was argued that a Rydberg atom moving
at an average velocity larger than the Landau-Zener ve-
locity vLZ = 2π2%2rf/(3') effectively decouples from the
excitation cascade. As a result, it was argued that this sys-
tem features an emerging heterogeneity at high temperatures.
Considering the two limiting cases of a frozen gas and a
high-temperature gas, we argue that the Griffiths phase, which
originates from spatial inhomogeneity, disappears when the
atom’s average velocity is increased above a certain limit,
resulting in a direct absorbing-state phase transition.

A quantitative discussion of the crossover between a
frozen system with an extended Griffiths phase and a high-
temperature gas with a direct absorbing-state phase transition
is beyond the scope of the present paper and is subject to
future work. Instead we will focus on the quantitative de-
scription of the facilitation dynamics in a low-temperature or
frozen gas.

IV. NETWORK STRUCTURE OF FACILITATION
PATHS IN A FROZEN GAS

The emergence of a Griffiths phase results from facilitation
events being constrained to a network structure. In the limit of
a frozen gas, atoms have random but fixed positions. If we
regard the system at the timescale of facilitated excitations,
off-resonant excitations can be neglected. Therefore, the dy-
namics are described by the facilitated spreading of Rydberg
excitations, which is only possible if atomic distances are
approximately rf. As a result, we can regard the structure
of atom positions and the paths along which excitations can
spread as a random graph with edges where atoms have the
distance r ∈ [rf − δrf

2 , rf + δrf
2 ].

Assuming a uniform distribution of atom positions in the
gas, the probability that a randomly selected atom has k atoms
in its facilitation shell [see Fig. 1(d)], meaning the atom is of
degree k, is given by the Poissonian distribution:

P(k) = (nVs)k

k!
exp (−nVs). (12)

As the degree distribution is Poissonian, we can map this
problem to a random Erdős-Rényi (ER) network [54]. In con-
trast, the network structure of atoms trapped by an optical
lattice or tweezer array would be given by a regular lattice
network.

Of particular interest in random graph theory is the ques-
tion if a system percolates. In a percolating system, the
probability p that a bond between two randomly selected
atoms exists is high enough, such that a path exists which
runs through the entire system, i.e. there almost surely exists a
single cluster (i.e., a single connected set of vertices) with its
size in the order of the system size. If, however, the connectiv-
ity is below a critical threshold for bond connectivity p < pc,
the system is composed of many small, disconnected clusters
[54,55]. For p = pc, the percolation transition occurs. A 2D
network with p = pc from Monte Carlo sampling is illustrated
in Fig. 4.

If N is the number of atoms and s1(N ) is the size of the
largest connected cluster (LCC), then the system percolates
if limN→∞ s1(N )/N > 0. For an ER network, the percolation
transition occurs when the average network degree is ⟨k⟩ = 1
[55,56]. Using Eq. (12), the density at which the percolation
transition occurs is therefore

nperc = 1
Vs

. (13)

This density is a factor !f/γ larger than the critical density
ncrit of the absorbing state phase transition, given by Eq. (11).
We can verify that Eq. (13) corresponds to the correct perco-
lation density by calculating the size of the LCC s1 depending
on the density of the gas (Fig. 4). In the thermodynamic limit,
s1/N = 0 for all densities n < nperc. As numeric simulations
are restricted to a finite system size, however, we instead
consider the percolation transition to occur when s1 grows
faster than linear with the density n (the black dashed line in
Fig. 4 corresponds to linear growth).

Of relevance for the Griffiths phase is the size distribution
of clusters in the network. Using Monte Carlo simulations,
we can verify that the lengths of clusters follow a geometric
distribution P(s) ∼ e−cs under the assumption that clusters are
made of linear chains of s atoms. This assumption holds true
for small cluster sizes and an average network degree ⟨k⟩ ≪ 1.

We can then approximate the decay constant c, with p0
being the probability of an atom having the degree k = 0, as

P(s) = p0(1 − p0)s−1 (14a)

= e−nVs (1 − e−nVs )s−1 (14b)

∝ e−cs, (14c)

with c = −ln(1 − e−nVs ). In Fig. 5, a comparison between
cluster sizes in Monte-Carlo simulations and Eqs. (14) is
shown. The agreement is very good for small densities as
almost all clusters in the gas are composed of linear chains.
As the density of the gas increases, the probability that at least
one atom in the cluster has more than two connections, i.e.,
k ! 3, increases. While the distribution remains exponential,
the probability for larger clusters to exist in the system greatly
increases compared to the prediction by Eqs. (14).
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FIG. 4. Schematic frozen gas atom positions (blue dots) for a 2D
system with L = 10 rf. Network clusters connecting atoms which
have distances ri j ∈ [rf − δrf

2 , rf + δrf
2 ] (grey dashed lines) and the

largest connected cluster of these (red lines) for n0 = nperc are shown
(left). Size of largest connected cluster (LCC) s1 depending on the
density from Monte Carlo samples in a 3D cube with L = 7 rf (right).
The black dashed line corresponds to a power law with exponent
ν = 1. And LCC divided by number of atoms N depending on
density (inset).

V. EPIDEMIC DYNAMICS ON THE NETWORK

It is known that Rydberg systems in the facilitation regime
bear close similarities to epidemics [42,57]. In the follow-
ing, we will systematically analyze the Rydberg facilitation
dynamics on the random network formed by atoms within
their respective facilitation shells. For this, we will map the
dynamics to the SIS epidemic model [58–60]. We will (i)
disregard the decay of Rydberg atoms into the dead state |0⟩
[parameter b = 0, see Fig. 1(a)], reducing the dynamics of
each atom to a two-level system. Additionally, we will (ii)
neglect off-resonant excitations by setting τ = 0, meaning
excitations can only be created by means of facilitation. We
will refer to simulations carried out with these two constraints
as the SIS approximation.

One major difference between our Rydberg system in the
SIS approximation and a classical SIS system remains with
Rydberg blockade. Atoms excited to the Rydberg state do not

2 4 6 8 10 12 14
s
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10−2

100

P
(s

)

FIG. 5. Network cluster size probability distribution
from 3D Monte-Carlo samples (dots) and Eqs. (14)
(dashed lines). From left to right for the densities
n0/nperc = [0.019, 0.063, 0.125, 0.188, 0.250, 0.313].

only facilitate the spread of excitations, they can also block
the spreading in adjacent clusters. This will be analyzed more
systematically later.

The network structure of a cluster of atoms in facilitation
distance of each other strongly depends on the temperature
of the gas. If the RMS average relative velocity v is large,
such that each excited Rydberg atom meets many ground-state
atoms during its lifetime γ −1, i.e., if in a 3D gas

v ≫ γ n−1/3, (15)

any network structure is effectively washed out and the system
is homogeneous. Close to the critical point of the absorbing-
state phase transition, the above condition is equivalent to v ≫
γ r f . If, on the other hand, the average velocity of atoms is
very small, such that during a facilitation time !−1

f they do
not move out of the facilitation shell, i.e., if

v ≪ !f δrf, (16)

the atoms form a finitely connected network. We will now
discuss these two limits.

A. High-temperature limit

In a high-temperature gas with RMS average relative
velocity v ≫ γ n−1/3, we can map the system to the SIS epi-
demic model [58–60]. The SIS model is characterized by the
infection and recovery rates, λ and µ, respectively, which for
the Rydberg gas read

λ = nκ, (17a)

µ = γ . (17b)

The SIS model predicts an active (absorbing) phase transi-
tion when

λ(1)
c = µ, (18)

where excitation spread equals spontaneous decay. This cor-
responds to the critical density Eq. (11) of the absorbing state
phase transition discussed before.

In Fig. 6(a), Monte Carlo simulations of the Rydberg sys-
tem with the SIS approximation and ρ(t = 0) = n are shown
for the high-temperature gas for different values of n and
a fixed facilitation rate !f . We note that as shown in the
Appendix, the excitation probabilities following from Monte
Carlo simulations of rate equations and those from full co-
herent density matrix simulations agree, showing that the rate
equation approach remains valid also in the high-temperature
limit. One recognizes that an active (absorbing)-state phase
transition occurs for λ = λ(1)

c , with the Rydberg density either
exponentially decaying at the timescale µ (for λ < λ(1)

c ) or
decaying to a steady-state active density (for λ > λ(1)

c ). At the
critical density [green curve in Fig. 6(a)], the system should
decay with ρ ∼ t−1 [61], however, this decay is truncated by
an exponential decay due to finite system size.

B. Frozen gas limit

In the limit of an effectively frozen gas, the atoms that
can participate at the facilitation process form a network. The
dynamics of an SIS epidemic strongly depend on the structure
of this underlying network. For example, in the case of a

013052-6



GRIFFITHS PHASE IN A FACILITATED RYDBERG GAS … PHYSICAL REVIEW RESEARCH 6, 013052 (2024)

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

ρ
/
n

n

(a)

10−1 100 101 102 103

γt

10−6

10−5

10−4

10−3

10−2

10−1

100

ρ
/
n

n
(b)

FIG. 6. Decay of Rydberg density over time from Monte Carlo
simulations in the SIS approximation (b = 0, τ = 0) with an ini-
tial density ρ(t = 0) = n for the gas at high temperature (a) with
v̂ = 100 rfγ and for the frozen gas (b) with v̂ = 0 rfγ . The black
dashed line in (a) is a power-law decay with ρ ∼ t−1, expected at the
critical density. The colors show total system densities (increasing
from left to right) with n = 0.003, 0.03, 0.39, 1.98, 3.97, 5.95, 9.12,
11.90, 14.28, 15.91, 16.66, and 19.94. (a) only shows the lowest
seven densities. The critical density is ncrit = 0.39. Between the
percolation density nperc = 15.91 and n(2)

crit = 16.6, the curves feature
a decay (see Fig. 7).

heterogeneous but scale-free network, i.e., P(k) ∼ k−ν , the
absorbing phase can disappear altogether, leaving the system
in an endemic phase regardless of the infection rate [62–64].

For the case of a heterogeneous ER network, which de-
scribes the frozen gas of atoms, an active phase can only
occur if the network is above the percolation threshold (i.e.,
⟨k⟩ > 1). However, for a finitely connected (but percolating)
ER network, the threshold for the active phase is modified
since activity occurs in localized regions and thus the effective
infection rate is reduced. One finds [61]

λ(2)
c = µ

⟨k⟩
⟨k⟩ − 1

, (19)

with ⟨k⟩ being the average degree of the network. For
⟨k⟩ → ∞, the threshold given by Eq. (18) is recovered. For
a fixed facilitation rate and facilitation volume, this threshold
can be expressed in terms of a critical density of atoms using
⟨k⟩ = nVs:

n(2)
crit = 1

Vs
+ γ

κ

≡ nperc + n(1)
crit. (20)

If the network is below the percolation threshold, the fi-
nite size of clusters truncates the spread of activity through
the system. Therefore, the network cannot support an active
phase and, instead, a Griffiths phase emerges above the critical
infection rate λ(1)

c [61]. One of the most distinguishing char-
acteristics of a Griffiths phase is the presence of rare regions
with above average activity which lead to a slow, algebraic
decay of excitations [43].

In the nonpercolating network (i.e., ⟨k⟩ < 1), for λ " µ
decay dominates, leading to very short times until all ac-
tivity disappears in clusters as excitations cannot sustain
themselves. If, however, λ > λ(1)

c = µ, the time until activity
disappears in clusters increases exponentially with cluster size
s and is given by [65]

τ (s) ∝
√

2π

s
λ

(λ − 1)2
exp

{
s
(

ln(λ) − 1 + 1
λ

)}
. (21)

In the following, we will refer to τ (s) as the extinction time
of activity in a cluster. As a result of the convolution of
exponentially rare cluster sizes P(s) ∼ e−cs and a cluster life-
time increasing exponentially with cluster size τ (s) = eas, the
activity in the Griffiths phase decays with a power law:

ρ(t ) =
∫

ds sP(s) e−t/τ (s). (22)

Using Eqs. (14) and (21), the integral in Eq. (22) can be ap-
proximated with Laplace’s method and results in an algebraic
decay

ρ ∼ t−c/a, (23)

with the coefficient a given by Eq. (21) as a = ln(λ) − 1 + 1
λ

.
If the network is above the percolation threshold, i.e., if
⟨k⟩! 1, but the driving strength is below the critical value
for the active phase λ(2)

c , the decay of activity is expected to
follow a stretched exponential. A qualitative phase diagram of
the facilitation dynamics in the frozen Rydberg gas is shown
in Fig. 7.

Figure 6(b) shows the results of Monte Carlo simulations
for a frozen gas in the SIS approximation for the same pa-
rameters and color code as in the high-temperature case of
Fig. 6(a). For n < ncrit, all initial excitations decay exponen-
tially (curves 1 and 2 from left to right), corresponding to the
absorbing phase. The behavior changes at and above the criti-
cal point but below the percolation threshold ncrit " n < nperc
(curves 3–7). Here, the system is in an extended Griffiths
phase with a power-law decay with varying exponents. Above
the percolation threshold but below the threshold of the active
phase nperc " n < n(2)

crit, the decay is expected to become a
stretched exponential [61], which we cannot resolve, however,
in our simulations due to the very long timescale of this decay.
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FIG. 7. Schematic phase diagram of Rydberg facilitation of a
frozen gas with the percolation threshold given at ⟨k⟩ = 1. Increasing
the density n of the gas, one moves along the red line crossing from
an absorbing into a Griffiths phase at ncrit, and subsequently into a
phase with stretched exponential decay at the percolation threshold
nperc and eventually into the active phase at n(2)

crit. Time has been
rescaled such that µ = 1.

Finally, for n ! n(2)
crit the system enters the active phase where

excitations simply decay to a steady state.
In the following, we want to give a quantitative estimate for

the power-law decay coefficient in the Griffiths phase based on
the SIS model and compare them with those from the Monte
Carlo simulations. In contrast to the standard SIS model, a
Rydberg system features Rydberg blockade and facilitated
de-excitation, making it unclear if analytic predictions from
an SIS model would be accurate. To check this, we com-
pare the extinction time of activity in clusters in a linear
excitation chain, given by Eq. (21), using the spreading rate
λ = !fVs × 1r−3

f , with Monte Carlo simulations of the SIS
approximation in Fig. 8. For this, we simulate a 1D cluster of
length s, where each atom is initially in the Rydberg state and
measure the average time until all atoms are decayed. Here,
we assume the above-mentioned SIS approximation (no decay
to |0⟩ and no off-resonant excitations). One recognizes that
Eq. (21) gives a good approximation of the extinction time.

Using Eqs. (14) and (21), we can approximate the power-
law exponent ν in the Griffiths phase dependent on the density
and internal rates. We receive

ν ≡ − c
a

= − ln(1 − e−nVs )
ln(λ) − 1 + λ−1

, (24)

with λ = 4π!f
δrf
rf

. The comparison with exponents fitted from
the power-law decay of Rydberg density in Monte Carlo simu-
lations of the frozen gas under the SIS approximation (seen in
Fig. 6) can be seen in Fig. 9(b). Our very rough approximation
of the Griffth-phase decay exponents qualitatively fits with
Monte Carlo data.

0 10 20 30
s

100

101

102

103

τ
(s

)

FIG. 8. Extinction times for activity in clusters in Monte Carlo
simulations of 1D lattice chains of length s (blue dots) and prediction
by Ref. [65] (red line).

A fundamental difference between Rydberg facilitation
and classical SIS activity spreading is Rydberg blockade.
Considering the frozen gas limit, two effects arise from Ryd-
berg blockade: First, if an atom is surrounded by two Rydberg
atoms in the facilitation distance, i.e., the atom is in the middle
of a cluster, then it cannot be facilitated, as it receives twice
the dipole shift and is pushed out of resonance again. If this
atom decays or is in the ground state at the beginning, it
cannot be excited, resulting in a hole splitting the cluster
[19]. Additionally, Rydberg atoms can block excitations from
spreading through adjacent clusters. However, neither of these
effects change the actual structure of the network, instead they
effectively retard the timescale at which excitations spread.
For a quantitative comparison, we simulate the Rydberg gas
and compare the decay of excitations in the SIS approximation
with and without Rydberg blockade (Fig. 9).

As blockade allows fewer Rydberg atoms to be present
in the system, the steady-state Rydberg density of the active
phase, and therefore the density at which the power-law decay
of the Griffiths phase begins is much lower. However, as seen
in Fig. 9, the exponents of the power-law decay in the Griffiths
phase show no qualitative change depending on the presence
of Rydberg blockade in the system.

VI. CONCLUSION

We studied the facilitation dynamics of Rydberg excita-
tions in an ultracold gas of atoms. In the homogeneous limit,
the system is expected to show a phase transition between an
absorbing phase and an active phase, and—in the presence
of an additional loss channel from the Rydberg state—SOC.
However, experiments with a gas of trapped 87Rb atoms at
low temperatures show signs of scale-invariant dynamics in an
extended parameter regime, which is a signature of a Griffiths
phase replacing the critical point of the absorbing-state phase
transition.

To understand the emergence of scale invariance in the
experiment in an extended parameter regime, we numerically
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FIG. 9. (a) Decay of Rydberg density over time from Monte
Carlo simulations in the SIS approximation for the frozen gas with-
out Rydberg blockade (full lines) compared to the results from
Fig. 6(b) (dashed lines). The colors show total system densities
(increasing from left to right) with n = 0.003, 0.03, 0.39, 1.98,
3.97, 5.95, 9.12, 11.90, 14.28, 15.91, 16.66, and 19.94. (b) Power-
law decay exponent ν = −c/a of Rydberg density over time fitted
from frozen-gas Monte Carlo simulations in the SIS approximation
from Fig. 9(a) with Rydberg blockade (blue dots), without Rydberg
blockade (orange dots), and from the analytical approximation given
by Eq. (24) (red line).

simulated the many-body Rydberg gas in the facilitation
regime through the use of Monte Carlo simulations in the
classical rate-equation approximation. We showed that the
latter is well justified for the large dephasing characteristic
for the experiment even for a high-temperature gas. Since a
Griffiths phase originates from heterogeneity in the system,
we numerically and theoretically analyzed two limiting cases:
(i) a high-temperature gas and (ii) a frozen gas. While in the
high-temperature limit, a homogeneous mean-field behavior
is recovered, with a clear absorbing-state phase transition and
SOC, the facilitation dynamics in a low-temperature or frozen
gas is governed by the presence of a network structure of
atoms that can participate in the excitation spread. Numerical
simulations show characteristic power-law decay of Rydberg
excitations in time if off-resonant excitations and atom losses
are neglected.

We have shown that in the frozen gas the spread of exci-
tations is constrained to a network resembling a random ER

graph. Increasing the density of atoms, the ER network has a
percolation transition from a fragmented phase, in which the
maximum cluster size of connected atoms remains finite, to
a phase where the size of the largest cluster scales with the
size of the system. A theoretical explanation of the Rydberg
facilitation dynamics observed in Monte Carlo simulations
can then be given by mapping to a SIS epidemic model on
such an ER graph taking into account the effects of Rydberg
blockade, which truncates the maximum Rydberg excitation
density. An active phase of self-sustained Rydberg excitations
is only possible above the percolation threshold. Below this
threshold, an extended Griffiths phase emerges in the place
of the (for homogeneous systems) expected absorbing-state
phase transition. We showed that the modified SIS model
quantitatively explains the observed power-law decay expo-
nents as well as the overall dynamics of the Rydberg density.

While the limits of a high-temperature and a frozen gas
are well captured with our model, it does not yet allow the
study of the crossover between the two regimes. To this end,
the Rydberg facilitation process needs to be mapped to a
dynamical network, which is beyond the scope of the present
paper and will be the subject of future work. Furthermore,
to quantitatively understand the power-law exponents in the
number distribution of Rydberg atoms in a given time inter-
val observed in the experiment, it is necessary to extend the
microscopic simulations to much larger system sizes match-
ing those used in the experiments. To this end, different
approaches, e.g., using machine-learning algorithms might
be useful [66]. Finally, the interplay between coherent quan-
tum dynamics and dynamical network structures in Rydberg
facilitation under conditions where dephasing is much less
dominant could give rise to very different dynamics [67,68].
The latter requires, however, the development of microscopic
simulation techniques capable of incorporating quantum co-
herences in 3D Rydberg gases, at least in an approximate
way [69].
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APPENDIX: EFFECTS OF RELATIVE MOTION
BETWEEN ATOMS

The rate equation approximation used for the Monte Carlo
simulations [e.g., Eq. (3)] is valid as long as the population
dynamics are slow compared to the dephasing rate. In a frozen
gas, the relevant timescales are solely determined by the
internal dynamics of an individual atom for a given (fixed)
configuration of Rydberg atoms in its vicinity. If, however,
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FIG. 10. Velocity-dependent excitation probability of a ground-
state atom flying past a Rydberg atom for the impact parameter
d = 0.5rf (blue) and d = rf (orange) (see inset) calculated from
Monte Carlo simulations with fixed time step dt = 1/400 γ (dots),
full numeric density matrix simulation (solid lines), and analytical
Landau-Zener formula Eq. (A2) (dashed lines). Full solution and rate
equation approximation only differ for the case of grazing incidence
(d = rf).

the gas of atoms has a finite temperature, a ground state atom
can fly in and out of the facilitation volume Vs of a Rydberg
atom, which can amount to a fast sweep of the detuning of the
ground state atom. Thus, there is an additional timescale given
by the crossing time ∼δr f /v.

To analyze the effects of atomic motion onto the facilitation
process, we consider the two-body problem of a ground state
atom moving with velocity v and with the impact parame-
ter d relative to a Rydberg atom (see inset of Fig. 10). For
d > rf, the ground state atom is not shifted into resonance
and no facilitation occurs. For d " rf, one has to distinguish
two cases depending on the impact parameter: (i) d < rf the
ground-state atom flies through the facilitation shell twice
(blue case in Fig. 10) and (ii) d ≈ rf the ground-state atom
grazes the facilitation shell and is only briefly shifted into
resonance (orange case in Fig. 10).

In case (i), using the excitation rate from Eq. (3) as !↑(t ),
we find the excitation probability after a single pass of the
ground state atom through the facilitation shell as

pexc = 1 − exp
{
−

∫ t f

ti
dt !↑(t )

}

= 1 − exp
{
−2%2

∫ t f

ti
dt

γ⊥

'(t )2 + γ 2
⊥

}
. (A1)

Note that this expression assumes a short passage time
through the facilitation shell, so the facilitated de-excitation
process can be ignored. For longer passage times, the excita-
tion probability approaches the steady-state value of 1/2, as
can be seen Fig. 10.

Linearizing the time-dependent detuning '(t ) for times
ti < t < t f , while passing through the facilitation shell, we
receive '(t ) ≈ '̇ × (t − t0), yielding

pexc = 1 − exp
{
−2%2

'̇

∫ ' f

'i

d'
γ⊥

'2 + γ 2
⊥

}

≈ 1 − exp
{
−2π

%2

'̇

}
, (A2)

where we have assumed that |'i, f | = |'(ti, f )| ≫ γ⊥, which
is exactly the same expression as given by the Landau-Zener
formula.

If pexc is small, the asymptotic excitation probability after
two passages is just pexc ≈ 1 − exp{−4π%2/'̇}. From this
discussion, we expect the rate equations to accurately describe
the facilitation process even for large atom velocities as long
as the impact parameter d is different from r f ± δr f .

In case (ii), however, i.e., for grazing incidence, the
Landau-Zener formula is no longer valid and there could
be a difference between the rate-equation approximation and
the solution of the full two-particle density matrix equations.
This is indeed the case, as can be seen from Fig. 10, where
we have plotted the asymptotic excitation probability of the
ground-state atom as a function of relative velocity and impact
parameter both from a simulation of the full density-matrix
equations (dashed lines), the analytic Landau Zener formula
(solid line), and by a Monte Carlo simulation of the rate equa-
tion in the large-dephasing limit with time step dt = 1/400 γ
(dots). One recognizes perfect agreement except for large
relative velocities and impact parameters close to the facili-
tation radius d ≈ rf, where the rate equations predict up to an
order of magnitude higher excitation probabilities than the full
simulation. Since δrf ≪ rf, the contribution of these grazing-
incidence cases is negligibly small, allowing us to accurately
describe high gas temperatures with a fixed time-step Monte
Carlo algorithm.

Furthermore, at high temperatures (as can be seen from
Fig. 10), the excitation probability above the Landau-Zener
velocity vLZ = 2π2%2rf/(3') indeed quickly drops and
scales as 1/v, the number of ground-state atoms seen by a
moving Rydberg atom in a given time increases linearly with
its velocity v, too. This compensates the former effect, and
thus does not lead to an emerging heterogeneity in phase space
as argued in Ref. [42], as long as the Rydberg atom does not
move out of the gas sample.
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