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Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can
experience strong interactions mediated by the many-body environment and form bipolaron bound states.
Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a
nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic
approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach
is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this
way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-
Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy
polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the
strong coupling limit, the potential substantially deviates from the exponential form valid for weak
coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang
corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find
excellent agreement with QMC results.
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Introduction.—Interactions between quantum particles
mediated by a many-body environment play an important
role in condensed-matter physics. Examples range from the
Ruderman-Kittel-Kasuya-Yodsia interaction of spins in a
Fermi liquid [1–3] to Cooper pairing of electrons in a solid
induced by lattice vibrations [4]. The mechanism that
causes such interactions can also substantially modify
the properties of individual impurities by forming quasi-
particles. A paradigmatic example is the polaron [5,6]
resulting from the electron-phonon coupling, also respon-
sible for Cooper pairing. In the strong coupling limit,
impurity interaction and quasiparticle formation are
strongly intertwined. Bipolarons are suspected to be essen-
tial for high-temperature superconductivity [7–9]. They are
important for the electric conductivity of polymers [10–14]
or organic magnetoresistance [15]. Their understanding is
one of the key questions of many-body physics.
In recent years, neutral atoms immersed in degenerate

quantum gases have become versatile experimental plat-
forms for accessing polaron physics in novel regimes and
with an unprecedented degree of control [16–31]. Length
and energy scales are very different from solids and can be
resolved and manipulated much more easily. Most impor-
tantly, polarons can be studied out of equilibrium with the
prospect of engineering their properties beyond what is
possible in equilibrium. One-dimensional (1D) gases are of
particular relevance as they show pronounced quantum
effects and powerful tools are available for their theoretical
description. It is possible to tune the impurity-bath

interaction all the way through weak to strong coupling,
e.g., by employing Feshbach and confinement-induced
resonances [32]. Contrary to higher dimensions, the system
remains stable even for infinite coupling since three-body
losses are greatly suppressed. Polaron interactions have so
far mostly been studied in regimes where the mediated
interaction between them is weak. A perturbative treatment
yields an exponential (1D) or Yukawa (3D) potential
between two impurities with the characteristic length scale
set by the healing length ξ [33–36]. A universal low-energy
theory of mobile impurities in one dimension has been
developed in Ref. [37], restricted to particle separations
much larger than ξ where the interaction is weak. A unified
treatment for all distances, but for immobile impurities and
small impurity-boson couplings has been given in
Refs. [38,39].While quantumMonte Carlo (QMC)methods
have been used to obtain polaron properties in a non-
perturbative manner [40–45] and there are numerical
mean-field studies in trapped systems extending into the
nonperturbative regime [46], analytic approaches have been
restricted to weak polaron-polaron couplings or noninter-
acting host gases [47–49]. The first attempt at strong polaron
coupling in interacting gases has beenmade only recently by
using a scattering-matrix expansion [50]. The authors
predict a deviation from the 3D Yukawa potential in agree-
ment with QMC simulations, but with some notable quan-
titative differences.
Here we develop an analytic theory of polaron inter-

actions in 1D Bose gases for arbitrary strength of the
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impurity-boson coupling, see Fig. 1(a) for a sketch. A
common description of the Bose-polaron takes into account
a coupling of the impurity only to Bogoliubov phonons
[36,51], see Fig. 1(b). This extended Fröhlich model is,
however, not adequate for strong coupling, gIB ≫ g, even if
the boson-boson interaction itself is weak, since the
impurity generates a high-density cloud of phonons around
it and phonon-phonon interactions can no longer be
neglected. Here we use a different approach that accounts
for deformation of the superfluid by the impurities, see
Fig. 1(c) [43,52,53]. As shown in Ref. [53] and elucidated
in the Supplemental Material [54], this approach minimizes
quantum fluctuations and leads to highly accurate predic-
tions for single-polaron properties already on the mean-
field level, precise enough to differentiate finite-size effects.

Employing this approach, we develop a mean-field theory
of bipolarons assuming a weakly interacting condensate
and moderately heavy impurities and verify the semi-
analytic predictions with QMC results.
Model.—We consider two impurities of equal massM in

a 1D gas of bosons of mass m < M. We assume contact
impurity-boson interactions with coupling strength gIB
which can be repulsive, gIB > 0, or attractive, gIB < 0.
We disregard a direct interaction between the impurities.
Introducing center-of-mass (c.m.) and relative impurity
coordinates R̂; r̂ and momenta P̂; p̂, the Hamiltonian reads
(ℏ ¼ 1)

Ĥ ¼ P̂2 þ 4p̂2

4M
þ
Z

dx Φ̂†ðxÞ
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Here μ is the chemical potential of the gas, which in mean-
field approximation is μ ¼ gn0, with n0 being the linear
density far away from both impurities. In the thermody-
namic limit, n0 converges to the mean density n ¼ N=L.
The interaction between the bosons of strength g is
assumed to be weak so that a Bogoliubov approximation
applies; i.e., the healing length ξ ¼ 1=

ffiffiffiffiffiffiffiffiffi
2mμ

p
[56] is large

compared to the mean interparticle distance 1=n. This
regime is characterized by a small Lieb-Liniger parameter
γ ¼ mg=n [57]. The dependence of the c.m. coordinate can
be eliminated using a Lee-Low-Pines (LLP) transformation
[58] Û ¼ exp ð−iR̂P̂BÞ, where P̂B ¼ −i

R
dx Φ̂†ðxÞ∂xΦ̂ðxÞ

is the total momentum of the Bose gas,
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where ∶∶ denotes normal ordering, i.e., interchanging all
creation operators to the left and annihilation to the right,
and mr ¼ 2Mm=ð2M þmÞ is the reduced mass. P̂, which
previously was the c.m. momentum of the two impurities, is
in the new frame the total momentum of the system. It is a
constant of motion that can be replaced by a c-number P,
and we set P ¼ 0. Note that the LLP transformation is
needed for anyM < ∞, even if one considers an impurity at
rest.
Bipolaron of heavy impurities.—Different from the

single-polaron case, the LLP transformation does not
remove the impurity coordinates entirely. To this end,
we apply a Born-Oppenheimer (BO) approximation, valid

forM ≫ m, where the kinetic energy of the relative motion
is neglected and one can replace r̂ by a c-number r. This
turns ĤLLP into a pure boson Hamiltonian.
In the following, we determine the ground state of (2) for

a weakly interacting gas, which amounts to assume small
quantum fluctuations ξ̂ðxÞ on top of the mean-field solution
ϕ0ðxÞ of Eq. (2), ϕ̂ðxÞ ¼ ϕ0ðxÞ þ ξ̂ðxÞ. Note that this
differs from the common approach, where a small-fluc-
tuation expansion is applied in the absence of the impurities
first. In contrast, we take the backaction of the impurity into
account already at the mean-field level. As shown in
Ref. [53], this (i) leads to modified Bogoliubov phonons,
coinciding with the standard ones only in the long-

FIG. 1. (a) Sketch of a bipolaron composed of two impurities in
a 1D Bose gas. (b) In the commonly used extended Fröhlich
model, a large number of phonons are created around the
impurity and phonon-phonon interactions need to be taken into
account. (c) In a description based on a deformed condensate, this
can be avoided.
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wavelength limit kξ ≫ 1, and (ii) minimizes their gener-
ation by the impurity, see Fig. 1. The smallness of quantum
fluctuations allows us to ignore them altogether when
considering the mediated impurity-impurity interaction at
distances of the order of a few rescaled healing lengths,
ξ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m=mr

p
ξ. Only at large separations do quantum

fluctuations become relevant. They are responsible for
weak Casimir-type interactions scaling as 1=r3 [37–39]
for finite gIB and 1=r2 or 1=r if either one or both of the
static impurities have infinitely strong coupling [59,60]. We
will not consider these contributions here, but show
a posteriori that the corrections are small on absolute scale.
The mean-field solutions of (2) can be obtained ana-

lytically in the BO limit, see Supplemental Material [54]. In
particular, one finds for the interaction potential between
two impurities
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where u ¼ r=ð2ξ̄
ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p
Þ is a normalized distance, and the

upper (lower) sign stays for repulsive (attractive) impurity-
boson interaction, Eðx; νÞ is the incomplete elliptic integral
of the second kind, cdðx; νÞ and snðx; νÞ are Jacobi elliptic
functions, and amðx; νÞ is the amplitude of these functions
[61]. The dimensionless parameter ν ¼ νðr; ηÞ with jνj < 1
is given implicitly by

2
jηj
n0ξ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν̃ðνþ 1Þ

p

ð1 − νÞ
cn ðu; νÞ dn ðu; νÞ ¼ ½1þ

ffiffiffi
ν̃

p
snðu; νÞ'2;

involving the Jacobi elliptic sn, cn, and dn functions and
η ¼ gIB=g. Here ν̃ ¼ ν for η > 0 and ν̃ ¼ 1 for η < 0. In
general, this equation has several solutions; however, the
physically relevant one is that with the largest ν.
Figure 2 shows examples of the effective interaction

potential VðrÞ, having a finite range defined by ξ̄. The
strong coupling regime is reached when η≳ n0ξ̄ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmr=mÞγ

p
[53]. In this case, the impurity causes a

sizable deformation of the Bose gas and VðrÞ deviates
substantially from the perturbative exponential behavior at
short distances predicted in Ref. [39]. The logarithmic scale
in Fig. 2(b) emphasizes the exponential long-range behav-
ior of our result, VðrÞ ∼ expð−

ffiffiffi
2

p
r=ξ̄Þ (see Supplemental

Material [54]), which is sufficient for experimentally
relevant energy scales, while the Casimir term ∼1=r3
[37,38] affects only the already small tails of the potential.

In the limit η → ∞, one finds the simple explicit form

VðrÞjη→∞ ¼ 4

3

ffiffiffi
2

p
gn20ξ̄þ

1

2
gn20r for r ≤ πξ̄; ð4Þ

where the potential is linear, corresponding to a constant
attractive force acting between the impurities. This is
because for strong repulsion the Bose gas is completely
expelled in between the impurities, as long as r≲ πξ̄ and
the attractive force results only from the pressure of the
Bose gas outside of the pair. This is further illustrated in the
Supplemental Material [54].
In the BO limit of massive impurities, the effective

interaction potential can be accurately obtained in QMC
simulations. In Fig. 2 we compare our analytic predictions
for repulsive impurity-boson coupling, η > 0, with QMC
data and find excellent agreement within a few-percent
margin. Unless stated otherwise, we used N ¼ 100 bosons
in the QMC simulations. While lowest-order perturbative
theory predicts the same interaction strength in repulsive
(η > 0) and attractive cases (η < 0), nonperturbative
approaches show that VðrÞ is substantially stronger for

(a)

(b)

FIG. 2. Effective impurity-impurity interaction as function of
distance in units of ξ̄ ¼ ξ for different interactions η ¼ gIB=g and
M → ∞, where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0=m

p
is the speed of sound. Solid lines

represent semianalytical approximation Eq. (3), circles are QMC
results (error bars smaller than circle size), and dashed lines give
perturbative predictions from [38], including Casimir-type con-
tribution. (a) Comparison of effective potential VðrÞ for repulsive
impurity-boson interaction. The perturbative results were shifted
to match our predictions at infinite distance. (b) Interaction
potential on a semilog scale. Exponential decay for weak
impurity-boson couplings, η≲ 1, is seen as straight lines. The
Casimir effect (absent in the mean-field description) results in the
slower 1=r3 decay at r ≳ 6ξ.
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attraction [see Fig. 2(b)]. This can be qualitatively under-
stood, as the maximal density defect produced is limited in
the repulsive case by full depletion, while it is unlimited in
the attractive case. This makes numerical calculations in the
attractive case more challenging.
Bipolaron of finite impurity mass.—The BO approxi-

mation applies to infinitely heavy impurities and becomes
increasingly inaccurate for light impurities. The leading-
order modification is the Born-Huang diagonal correction,
VðrÞ → VðrÞ þWðrÞ [62,63]

WðrÞ ¼ 1

M

Z
dx j∂rϕ0ðxÞj2; ð5Þ

where ϕ0ðxÞ is the mean-field wave function in the
presence of two impurities at (fixed) distance r. WðrÞ
accounts for the dependence of the background-gas wave
function on the impurity coordinates when calculating the
impurity kinetic energy. Including this term, the approach is
correct up to terms of order ðm=MÞ3=2. Since the derivative
of ϕ0ðxÞwith respect to r is analytically complicated, we do
not give an explicit expression for WðrÞ. In Fig. 3(a) we
plot the total potential for η ¼ 40 and different character-
istic mass ratios. Note that the finite impurity mass enters
here in two ways, through the reduced healing length ξ̄ and
by the Born-Huang term WðrÞ. A prominent feature is the
emergence of a local maximum at distance rmax ≃ πξ̄ when
WðrÞ is included. As discussed in the Supplemental

Material [54] this maximum appears only for strong
impurity-boson coupling, i.e., if η≳ n0ξ̄. Since for large
values of r,WðrÞ decays faster than VðrÞ, the total potential
remains attractive at large distances.
While for an infinite impurity mass, the interaction

potential can be obtained directly in QMC simulations
from the ground-state energy, its estimation is more delicate
for finite values of M and involves the impurity-impurity
correlation function, giiðxÞ. Here the degrees of freedom of
the gas are integrated out and

ffiffiffiffiffiffiffiffiffiffiffi
giiðxÞ

p
is interpreted as a

wave function of the effective two-impurity Schrödinger
equation. The effective potential is proportional to
½

ffiffiffiffiffiffiffiffiffiffiffi
giiðxÞ

p
'00=

ffiffiffiffiffiffiffiffiffiffiffi
giiðxÞ

p
, for details see Supplemental

Material [54]. The large statistical noise arising from
division by

ffiffiffiffiffiffiffiffiffiffiffi
giiðxÞ

p
does not allow one to unambiguously

identify a local potential maximum in a weakly interacting
gas, γ ≪ 1. The maximum conjectured by the analytic
theory is, however, clearly seen in the regime of strong
interactions, γ ≳ 1, and although being outside the range of
validity, its position is reasonably well predicted, see
arrows in Fig. 3(b). Note that, in the limit of a Tonks-
Girardeau gas [65], γ → ∞, the maxima coincide with the
first maximum of Friedel oscillations [66] at n0r ¼ 1 and in
a super-Tonks-Girardeau gas would correspond to quasi-
crystal lattice spacing. The attractive polaron interactions
can lead to bound bipolaron states. In one dimension, at
least one two-body bound state exists if the Fourier trans-
form of the interaction potential at zero momentum is
negative. We calculated the bipolaron energy of the lowest
bound states for repulsive and attractive impurity-boson
couplings with and without the Born-Huang corrections
and compared the results to QMC simulations. While an
attractive contact interaction only allows for a single bound
state, here several ones are possible due to the finite
extension of the effective potential. Note, however, that
the first excited state of two bosonic impurities, mappable
to the ground state of two fermions, becomes bound only
above a critical interaction strength ηc. In Fig. 4 we plot the
energies of the ground and first excited states of the
bipolaron as a function of η ¼ gIB=g for a Bose gas with
Lieb-Liniger parameter γ ¼ 0.125 for repulsive and attrac-
tive interactions. Since the effective interaction potential is
unbounded in the attractive case, much larger bipolaron
energies are obtained for η → −∞. Once the Born-Huang
corrections are included, an excellent quantitative agree-
ment is found for mass ratios as smallM=m ¼ 3. As shown
in the Supplemental Material [54], the predictions become
less precise if the boson-boson interaction is increased, but
even for γ ¼ 1, the discrepancy is below the few-percent
level for η ≤ 1 and saturates below 15% for η → ∞.
The bipolaron energies are in the same order as typical
single-polaron energies and in the strongly repulsive
regime gIB ≫ gn0ξ̄ they are comparable to the energy of
a dark soliton E ∼ ℏn0c. For the experimental data of

(a)

(b)

FIG. 3. Interaction potential for mobile impurities. (a) Mean-
field potential including Born-Huang correction for different
mass ratios. (b) Total interaction potential UðrÞ from QMC
simulations for the mass ratio M ¼ 3m, but η → ∞ and different
Lieb-Liniger parameters. Arrows point to analytical predictions
of maxima rmax ¼ πξ̄ ¼ π=

ffiffiffiffiffiffiffiffiffiffiffi
2mrμ

p
, where we used the equation

of state for μ from Bethe ansatz [64].
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Ref. [26], where n0 ≈ 7μm−1 and c ≈ 3.4 mm=s, the latter
corresponds to temperatures of T ¼ E=kB ≈ 240 nK.
Conclusions.—We presented a detailed study of bipolar-

ons and polaron-polaron interactions in ground-state 1D
Bose gases. We have developed a semianalytical theory
applicable for weakly interacting bosons and valid for
arbitrarily strong impurity-boson interactions. As opposed
to solid-state systems, where impurities couple only to
collective excitations, the high compressibility of the Bose
gas makes it necessary to take into account the action of the
impurity to the quasicondensate. This was done by expand-
ing the quantum field of the bosons around a deformed
quasicondensate [53]. In this way the density of phonons
created by the impurities remains small also for strong
impurity-boson couplings and phonon-phonon interactions
can be disregarded. We derived the short-range potential
from analytic mean-field solutions in BO approximation
and found excellent agreement with QMC simulations.
In the limit of strong impurity-boson interactions,
gIB=g ≫ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmr=mÞγ

p
, the potential deviates substan-

tially from the perturbative exponential form and attains a
linear short-range dependence. When lowest-order correc-
tions to the BO result are included, the potential becomes
nonmonotonic and attains a local maximum at a distance of
πξ̄. As the interactions in the gas are made stronger, the
height of the peak is increased and its position moves
toward the first maximum of the Friedel oscillations.
Comparison with QMC simulations shows that the analytic
model provides a precise prediction for bipolaron energies

for bosonic and fermionic impurities. Thus, the mean-field
description beyond the Froehlich model constitutes an
excellent basis for the analysis of nonequilibrium and
many-body properties of Bose polarons. Going away from
equilibrium, e.g., by applying periodic drive or similar
Floquet techniques, will open new avenues to modify
interactions of impurities mediated by a many-body
environment with applications to fields such as high-Tc
superconductivity and others. For this it is important to
have tractable theoretical tools at hand. The application of
our approach to the nonequilibrium physics of interacting
polarons will be the subject of future work.
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Note added.—Recently, we became aware of a recent
related work on bipolarons in the limiting case of infinite
impurity masses, using a different approach [67]. The
conclusions are in agreement with ours in this limit.
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