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We generalize the ensemble geometric phase, recently introduced to classify the topology of density
matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes
cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the
corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We
show that its value at finite temperatures is identical to that of the ground state below some critical
temperature Tc larger than the many-body gap. We illustrate our result with numerical simulations of the
1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the
ground state leads to a topological charge pump with fractional winding ν ¼ 1=2. The particle transport is
no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of
the generalized ensemble geometric phase is.
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Introduction.—Starting with the discovery of the quan-
tum Hall effect [1–5] topology has become an important
paradigm for the understanding and classification of phases
of matter [6–8]. Topology is characterized by integer-
valued invariants which describe global properties of the
system and are responsible for the robustness of character-
istic features like quantized bulk transport, or edge states
and edge currents. Invariants such as the winding of the
geometric Zak phase or the Chern number of single-particle
Bloch functions are defined in terms of the wave function
of ground states and are thus restricted to cases where the
system is in a pure state.
In recent years several attempts have been made to

generalize the concept of topology to finite temperatures
and to nonequilibrium steady states of noninteracting
fermions [9–18]. For example, it was shown that the
generalization of geometric phases to density matrices
based on the Uhlmann construction [19] leads to consistent
topological invariants in 1D [11,12]. Its application to
higher dimensions [13] is, however, faced with difficulties
[20]. Other approaches predict an unphysical extensive
number of topological phases for arbitrarily small tempera-
tures [16].
Recently, it was shown that the winding of the many-

body polarization introduced by Resta [21] is an alternative
topological invariant for Gaussian mixed states of fermions
in 1D, termed ensemble geometric phase (EGP) [15,17,22],
which can also be applied in 2D [23]. It was shown that the
EGP of finite-temperature states in noninteracting systems
is reduced to the ground-state Zak phase in the thermo-
dynamic limit L → ∞ and thus these states have the same
topological classification as the corresponding ground

states (following the Altland-Zirnbauer classification
[24–26]). Despite being a genuine many-body quantity
the EGP can be measured directly [17]. Furthermore, a
nontrivial winding of the EGP of a finite-temperature or
nonequilibrium steady state upon cyclic parameter
variations has direct physical consequences. E.g., it can
lead to quantized transport in a weakly coupled auxiliary
system initially prepared in a low temperature state [27].
For noninteracting bosons the EGP winding is always
zero [28].
In the present Letter, we extend this concept to the case

of interactions between particles including the possibility of
interaction-induced fractionalization and degeneracy. We
show that a generalization of the EGP to systems with a
gapped ground state of fractional filling allows us to define
a topological invariant for finite-temperature states of one-
dimensional systems of interacting particles. The winding
of the EGP reduces to the well-known Niu-Thouless-Wu
(NTW) invariant [29,30] at T ¼ 0 and has the same value
for all temperatures below a certain critical value. The EGP
also provides a theoretical tool to detect topological order
present in the ground state in cases where the gap is small or
numerical calculations are restricted to nonzero tempera-
tures. We illustrate our results with numerical simula-
tions of the extended superlattice Bose-Hubbard model
(Ext-SLBHM) [31] at quarter filling, where the ground
state is a doubly degenerate Mott insulator (MI).
Ensemble geometric phase: Integer case.—We consider

1D lattice models with a many-body HamiltonianHðλÞ that
has a periodic dependence on some variable λ. We assume
periodic boundary conditions in space with L unit cells
and allow for interactions among the particles. Since
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single-particle Bloch states juki are no longer a good
eigenbasis, topological invariants must be defined in terms
of the many-body ground state jΦ0i. As suggested by Niu,
Thouless, and Wu [30], the Zak phase of Bloch wave
functions can be generalized by replacing the single-
particle crystal momentum k by a twist angle θ of boundary
conditions Φðx1;…; xj þ L;…; xNÞ ¼ eiθΦðx1;…; xNÞ.
Since θ and θ þ 2π define the same boundary conditions,
the parameter space ðθ; λÞ is a torus T2. Twisted boundary
conditions can be removed and replaced by periodic ones
via a canonical transformation to a twisted Hamiltonian,
H̄ðθÞ ¼ ÛðθÞHÛðθÞ−1 and jΨ0ðθÞi ¼ ÛðθÞjΦ0ðθÞi. Here,

ÛðθÞ ¼ eiθX̂; with X̂ ¼ 1

L

XL

j¼1

Xn

s¼1

ðjþ rsÞn̂js ð1Þ

is the momentum shift operator with n̂js denoting the
particle number operator of the sth site ðs ∈ f1; 2;…; ngÞ
in the jth unit cell, and the lattice constant is a ¼ 1. 0 ≤
rs ≤ 1 characterizes the position within the unit cell. In
terms of the jΨi’s the many-body equivalent of the Zak
phase then reads ϕMB ¼ i

R
2π
0 dθhΨ0ðθÞj∂θΨ0ðθÞi.

If jΨ0ðθÞi is a gapped and nondegenerate ground state, a
slow (adiabatic) change of the parameter λ ¼ λðtÞ in a
closed loop, such that the many-body gap does not close,
induces a Thouless pump, described by a current density
hĵi ¼ ∂θEðθÞ=ℏþ iðh∂tΨ0j∂θΨ0i − h∂θΨ0j∂tΨ0iÞ. Then,
following Niu, Thouless, and Wu, averaging over twisted
boundary conditions one finds a strictly integer-quantized
particle transport over one time period T . The transported
charge Δn is then directly related to the NTW invariant ν

Δn ¼ 1

4π

Z
T

0
dt

Z
2π

0
dθi½h∂tΨ0j∂θΨ0i − h∂θΨ0j∂tΨ0i&

¼ 1

2π

Z
T

0
dt

∂ϕMB

∂t ¼ 1

2π

I
dλ

∂ϕMB

∂λ ¼ ν; ð2Þ

which is the generalization of the celebrated invariant of
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
for free fermions [2,32] to the case of interactions and
disorder. In Ref. [17] the TKNN invariant was generalized
to Gaussian mixed states of fermions using the King-
Smith–Vanderbildt relation [33] between changes of
ϕMB to those of the many-body polarization P ¼
ð1=2πÞIm loghΨ0jÛjΨ0i introduced by Resta [21], where
Û≡ Ûð2πÞ: ∂λϕMB ¼ 2π∂λP. This then allowed to replace
the ground-state average by the trace over a density matrix
ϕEGP ¼ 2πP ¼ Im log TrfρÛg defining the so-called
ensemble geometric phase in [17].
Ensemble geometric phase: Fractional case.—In the

absence of interactions, gapped ground states (of fermions)
occur only at integer fillings per unit cell. This changes with
interactions. Here, gapped ground states can exist which
have fractional fillings and the Lieb-Schulz-Mattis theorem

and its generalizations [34,35] tell us that they attain a
“topological order” accompanied by fractionalization and
degeneracy [36]. In such a case the above arguments do not
hold as a parameter loop of λ does not return the initial state
to itself (up to a phase), but in general to an orthogonal state
in the ground-state manifold. For a d-fold degenerate
subspace the NTW invariant (2) must instead be replaced
by the gauge-invariant determinant of a Wilson loop [37]

νtot ¼
1

2π

Z
T

0
dt

∂
∂t Im log detWðtÞ; W¼Pei

R
2π

0
dθAðθÞ:

Here, AμνðθÞ ¼ ihΨμ
0j∂θΨν

0i is a d × d matrix, and P
denotes path ordering.
We now argue that also νtot can be related to an

expectation value of a unitary operator, which then allows
for a generalization to mixed states. To see this, we note
that following Niu, Thouless, and Wu [30], νtot can be
expressed as integral of the Berry curvature corresponding
to any one of the degenerate ground states jΨμ

0i over an
enlarged torus, extending either the time integration to T d
or the θ integration to 2πd, (μ ¼ 0;…; d − 1)

νtot ¼
1

2π

Z
T

0
dt

Z
2πd

0
dθImh∂tΨ

μ
0j∂θΨ

μ
0i: ð3Þ

As a consequence, particle transport is integer quantized
only after d cycles of a Thouless pump [32].
As shown by Aligia and Ortiz [38–40], Eq. (3) gives also

the winding number of a many-body Berry phase

νtot ¼
I

dλ
2π

∂ϕðdÞ
μ

∂λ ; with ϕðdÞ
μ ¼ ImloghΨμ

0jðÛÞdjΨμ
0i; ð4Þ

which does not depend on the particular ground state. To
see this, we note that the lattice Hamiltonian is invariant
under spatial translation by one unit cell, described by the
unitary lattice shift operator T̂. For a d-fold ground-state
degeneracy one can construct a basis set of ground states
fjΦμ

0ig with jΦμ
0i ¼ T̂μjΦ0

0i and μ ¼ 0;…; d − 1. Since
T̂−1ÛdT̂ ¼ Ûde2πidN=L with N being the total number of
fermions, and dN=L is an integer for a fractional filling
1=d, the Berry phases ϕðdÞ

μ of all states in this basis have the
same value. It should be noted that the finiteness of the
absolute value jhΨjðÛÞdjΨij in the thermodynamic limit is
an indicator of a localized, i.e., insulating ground state with
filling 1=d per unit cell [38,41].
Equation (4) then allows us to define a generalized

ensemble geometric phase for mixed states

ϕðdÞ
EGP ¼ Im log TrfρðÛÞdg ð5Þ

which we now use to construct a topological winding
number for mixed states.
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Extended superlattice Bose-Hubbard model.—Let us
discuss a specific example with interaction-induced frac-
tional topological charges and associated fractional wind-
ing number [42,43], the one-dimensional extended
superlattice Bose Hubbard model (Ext-SLBHM). As
shown in Fig. 1(b), bosons at lattice site j, described by
annihilation and creation operators âj and â†j , and with on-
site interaction strength U move along a 1D lattice with
alternating hopping t1 and t2 and a staggered potential Δ.
In addition, there is a nearest-neighbor and next-nearest
neighbor interaction V1 and V2, respectively. The
Hamiltonian reads in second quantization

H¼−t1
X

j;even

â†j âjþ1− t2
X

j;odd

â†j âjþ1þH:a:

þΔ
2

X

j

ð−1Þjâ†j âjþ
U
2

X

j

n̂jðn̂j− 1Þþ
X

j;d

Vdn̂in̂iþd:

ð6Þ

Here, n̂j ¼ â†j âj. The system has a unit cell of two sites.
With periodic boundary conditions and in the absence of
interactions one finds two single-particle energy bands with
a finite gap, which closes only for Δ ¼ t1 − t2 ¼ 0. For
sufficiently strong interactions there are further gap open-
ings and Mott insulating (MI) states with fractional fillings
emerge. The ground-state phase diagram, obtained from
DMRG (density matrix renormalization group) simulations
[44] is shown in Fig. 1(a), where MI phases with fractional
fillings are indicated.
In the following, we are interested in the phase with

average filling of ρ ¼ 1=4 per lattice site, or 1=2 per unit
cell. Here, the ground state is doubly degenerate for
periodic boundary conditions if the number L of unit cells
is even. If one starts in one of the two many-body ground
states, say jΨ1i, and changes t1 − t2 and Δ in a closed loop
in parameter space such that the many-body gap remains
open at all points, the ground-state manifold fjΨ1i; jΨ2ig
returns to itself up to a Uð2Þ rotation. Then 2 loops in

parameter space need to be performed for the initial state to
return to itself modulo a phase. Similarly the average
current hĵi needs to be integrated over two periods of length
T to lead to an integer-quantized number Δn of pumped
particles, which is verified by our numerical simulations in
Fig. 2(a). This does no longer hold true, however, for finite
temperatures. As expected and shown in the same figure the
number of transported particles deviates substantially from
unity as soon as the temperature approaches the many-body
gap, since higher energy states are occupied.
Remarkably, and in sharp contrast, the winding of the

generalized EGP ϕð2Þ
EGP remains strictly unity even at

temperatures on the order of the many-body gap as can
be seen from Fig. 2(b). (It should be noted that increasing
the temperature becomes numerically more demanding.)
It was shown in Ref. [17] for noninteracting fermions,

that the winding of the EGP ϕEGP remains the same for all
temperatures T < ∞. In the following, we will give some
arguments that also for interacting systems the EGP
winding of a thermal state is identical to that of the ground
state below some critical temperature which is larger than
the many-body gap.
Finite-temperature winding.—We first show that there

exists a critical temperature Tc different from zero, below
which the winding of the EGP coincides with that of the
many-body ground state ΔϕEGPjT<Tc

¼ ΔϕEGPjT¼0. Thus,
different, e.g., from the prediction in [16], a temperature-
induced topological transition can only occur at a finite,
nonzero temperature.
To this end we note that the change of ϕEGP

ΔϕEGP ¼ 2π deg z ¼ Im
I

1

zðλÞ
dzðλÞ
dλ

dλ; ð7Þ

(a) (b)

FIG. 1. (a) Phase diagram of Ex-SLBHM for t2 ¼ 0.5t1,
V1 ¼ 2V2 ¼ 0.2U. Blue and white areas indicate Mott-insulating
(MI) and superfluid (SF) phases, respectively. The MI at average
filling ρ ¼ 1=4 per lattice site is doubly degenerate corresponding
to superpositions of two density waves indicated in (b) in blue
and orange. (b) Cyclic adiabatic variations of t1 − t2 and Δ
encircling the point Δ ¼ t1 − t2 ¼ 0 lead to a fractionally
quantized charge pump [42,43].

(a) (b)

FIG. 2. (a) Integrated particle current in the Ext-SLBHM as
function of time for a small system of L ¼ 12 unit cells and
different temperatures obtained by exact diagonalization in the
ρ ¼ 1=4 MI phase. Here, t1=2 ¼ 5½1' cos λðtÞ&, and
Δ ¼ −60 sin λðtÞ, with angle λðtÞ ¼ 2πt=T þ 3π=2 and
V1 ¼ 40, V2 ¼ 20, and U is infinite. The inset shows the same
for L → ∞ obtained by LCRG (Light-Cone Renormalization
Group, see Supplemental Material [45] for details) [53–55].
(b) Generalized EGP for the twofold degenerate system also
obtained by LCRG. One notices that the winding remains strictly
quantized even at temperatures where there is a substantial
occupation of excited states.
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with zðλÞ ≠ 0 for λ ∈ δC, is just the winding number or
degree of a smooth map zðλÞ ¼ TrfρðλÞðÛÞdg from a
closed loop δC in parameter space (λ) into the complex
plane C of the polarization amplitude zðλÞ. It measures the
algebraic change of phase of z as the variable λ goes around
the loop once. The degree of z is by definition the number
of solutions of z ¼ 0 inside δC taking into account their
algebraic multiplicity (for more details about degree
theory, see [56]). Suppose for all temperatures T with
T1 < T < T2, z ≠ 0 on δC, then ΔϕEGP is independent of
temperature in the interval ðT1; T2Þ. These arguments are in
parallel with Hopf’s homotopy theorem [56]. Now, the
condition zðT; λÞ ≠ 0 everywhere on δC can always be
fulfilled in a finite range of temperatures starting at T ¼ 0
until for a critical temperature Tc

jzðTc; λÞj ¼ 0; ð8Þ

for some λ on δC. This defines a temperature-induced
topological phase transition.
Critical temperature.—As shown in [17], Tc ¼ ∞ for

noninteracting fermions. To investigate the possibility of a
finite-temperature topological phase transition in an inter-
acting system, we have numerically calculated jzðTÞj for
the extended SLBHM. The results are shown in Fig. 3 in
dependence of T for different system sizes. One recognizes
that jzj remains approximately unity below temperatures
that are a sizable fraction of the many-body gap Δgap
followed by a falloff, which becomes more pronounced
with increasing system size. This behavior is very similar to
the noninteracting case, for which one finds a double-
exponential scaling (see Supplemental Material [45])
jzðTÞj ∼ exp½−2L expð−βΔgapÞ&. Note, that although
zðTÞ → 0 for L → ∞, the temperature T0, where jzj starts
to deviate from unity only scales logarithmically with
system size L.

T0 ∼ Δgap= lnL: ð9Þ

From our numerical data it remains unclear if jzðTÞj has a
strict zero, indicating a topological phase transition, or not
and it would be interesting to investigate other interacting
superlattice models such as [57,58].
In order to show that interactions may lead to a finite

value of Tc let us consider the flattened Hamiltonian

H̃ ¼ E0

Xd

μ¼1

jΨμ
0ihΨ

μ
0jþ E1

X

j≠ð0;μÞ
jΨjihΨjj; ð10Þ

with Δgap ¼ E1 − E0. Here, all excited states have the
maximum weight compatible with temperature and gap.
Since the total Chern number of all excited bands must be
opposite to that of the ground state, flattening a many-body
Hamiltonian to such a form is expected to lead to the
“worst” case. Then for the polarization amplitude
zðTÞ ¼ Trfexpð−βH̃ÞðÛÞdg=Z holds Trfe−βH̃ðÛÞdg ¼
zð0Þdðe−βE0 − e−βE1Þ þ TrfðÛÞdge−βE1 , where zð0Þ ¼
ð1=dÞ

P
μhΨ

μ
0jðT̂ÞdjΨ

μ
0i is the zero-temperature polariza-

tion amplitude. As shown in [38,41] jzð0Þj → 1 in the
thermodynamic limit L → ∞ if the ground state is
insulating. Since TrfðÛÞdg does not depend on the
Hamiltonian, its phase is fixed and does not change
upon parameter variations. Thus, the winding of ϕðdÞ

EGP for
the flattened Hamiltonian H̃ at temperature T
remains equal to that in the ground state as long as
e−βE0 − e−βE1 > jTrfðÛÞdgje−βE1=d. With this we find
for the critical temperature Tc, defined through Eq. (8),
(with kB ¼ 1)

Tc ¼
Δgap

ln½1þ jTrfðÛÞdgj=d&
: ð11Þ

As shown in the Supplemental Material [45] jTrfðÛÞdgj is
intensive and bounded by a value of order OðdÞ.
Summary.—We have introduced a many-body topologi-

cal invariant for finite-temperature states of interacting
many-body systems with fractional filling and ground-state
degeneracy. The invariant is based on a generalization of
the EGP introduced in [17]. In the limit T → 0 it coincides
with the well-known NTW invariant [30]. We showed that
there exists a critical temperature Tc, defined by a vanishing
polarization amplitude, which generically is larger than the
many-body gap. Below Tc the EGP-based topological
winding number is identical to the ground-state invariant.
The generalized EGP also allows us to detect topological
properties from finite-temperature measurements. It can be
measured either directly (see [17]) or obtained from the full
counting statistics, measurable, e.g., in ultracold atom
experiments with a gas microscope. A nontrivial topologi-
cal winding of the EGP can furthermore induce a quantized
transport in a weakly coupled auxiliary system, prepared at

(a) (b)

FIG. 3. Temperature scaling of polarization amplitude jzðTÞj
for the extended SLBHM for the parameters of Fig. 2 and
different system sizes (a) for small systems obtained with exact
diagonalization, (b) for larger systems obtained with LCRG,
which is an infinite size method. Here, λðtÞ ¼ 3π=4 but we
verified that the results hold for any value of λ. Also a finite length
L was cut out and used for the calculation of jzðTÞj. The inset
shows the behavior in the low temperature regime. As shown in
[41] jzðT → 0Þj → 1 for increasing system size.
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a low temperature [23]. We illustrated our results for the
Ext-SLBHM model at quarter filling, which has a twofold
degenerate ground state and an associated fractional topo-
logical charge of 1=2. The arguments given here can be
extended to interacting two-dimensional systems of the
Chern class with translational invariance, and thus to
systems like fractional Chern insulators with intrinsic
topological order. These systems can be mapped to inde-
pendent one-dimensional systems by transforming to
momentum space in one of the spatial directions.
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