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We investigate the number entropy SN—which characterizes particle-number fluctuations between
subsystems—following a quench in one-dimensional interacting many-body systems with potential
disorder. We find evidence that in the regime which is expected to show many-body localization and where
the entanglement entropy grows as S ∼ ln t as function of time t, the number entropy grows as SN ∼ ln ln t,
indicating continuing subdiffusive particle transport at a very slow rate. We demonstrate that this growth is
consistent with a relation between entanglement and number entropy recently established for non-
interacting systems.
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Introduction.—The time dependence of the entangle-
ment entropy SðtÞ after a quantum quench offers insights
into the dynamics of quasiparticles and the influence of
conservation laws. Well studied are quenches starting from
a product state in clean lattice models with short-range
hoppings and interactions. In this case, the generic picture
is one of quasiparticles propagating through the system
with a velocity bounded by the Lieb-Robinson velocity vLR
[1–3]. The entanglement entropy is then proportional to the
entangled region created by the quasiparticle excitations.
For a subsystem with volume ld in d dimensions, this leads
to S ∼ ld−1t for times vLRt ≪ l and a volume-law satu-
ration, S ∼ ld, at times vLRt ≫ l. This picture has been
confirmed in free scalar field theories [4] and in one-
dimensional systems which are conformally invariant [5].
An obvious exception from a linear increase of the entangle-
ment entropy after a quench and fromavolume-law scaling at
long times are disordered noninteracting systems in an
Anderson localized (AL) phase [6]. In this case, the spread-
ing of excitations is limited to the localization length ξloc
leading to an area law, S ∼ ld−1ξloc, instead of a volume law
at long times. The increase of the entanglement entropy after
the quench is therefore bounded [7].
In recent years, the question of localization in the

presence of interactions—termed many-body localization
(MBL)—has attracted renewed interest [8–13]. For the
spin-1=2 Heisenberg chain with local magnetic fields
drawn from a box distribution, numerical data appear
consistent with a transition from an ergodic phase at small
disorder to a nonergodic MBL phase at strong disorder
[10,14,15]. One of the hallmarks of MBL as compared to
AL is the unbounded logarithmic growth of S after a
quench [9,16,17]. Recently, evidence for S ∼ ln t has also
been obtained in an experiment on cold atomic gases [18].
Here a quench in a one-dimensional Aubry-André model of
interacting bosons was studied with single atom resolution.

In such systems where the total particle number (or
similarly the total magnetization) is conserved, the von
Neumann entropy can be split into two parts, S ¼ SN þ Sc
[18–21]. Here

SN ¼ −
X
n

pðnÞ lnpðnÞ ð1Þ

is the number entropy with pðnÞ the probability of finding n
atoms in the considered subsystem (also referred to as
charge [20] or fluctuation entropy [21]). The configura-
tional entropy Sc then contains the contributions to entan-
glement due to configurational correlations. This splitting
of S is not only useful from an experimental perspective
because pðnÞ can be determined by single-site resolution
atomic imaging [18] but also offers further insights into
questions of localization and ergodicity. Very recently, we
have shown that in any noninteracting fermionic system

Sð2Þ ∝ expðSð2ÞN Þwhere Sð2Þ is the second Rényi entropy and
Sð2ÞN the corresponding number entropy. In other words, a
growth in the entanglement entropy is always accompanied
by a logarithmically slower growth in the number
entropy [22].
An exception to this picture of correlated dynamics of

entanglement and number entropies is expected to occur in
many-body localized phases. Here SN is believed to
saturate after a quantum quench, indicating localization,
while S continues to grow in time. It has been argued that
MBL systems are described at long times by effective
Hamiltonians [23,24]

H ¼
X
l

εlηl þ
X
l;l0

Jll0ηlηl0þ; � � � ; ð2Þ

with exponentially many local conserved charges
½H; ηl� ¼ 0, random energies εl, and amplitudes Jll0 which
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decay exponentially with distance between these charges.
As a consequence of the coupling terms ∼Jll0 , a region of
length l will become entangled over time t ∼ el. Since the
entanglement entropy is extensive, one then expects S ∼
l ∼ ln t [25] consistent with the numerical and experimen-
tal observations. Note that in the Anderson case Jll0 ≡ 0
and ηl are the occupation number operators of the single-
particle localized eigenstates. If Eq. (2) is a valid effective
description of MBL phases of matter, then the increase in
entanglement at long times is entirely due to the continuing
buildup of configurational entanglement Sc. Since the
conserved charges ηl are local, the number entropy SN
has to be bounded, reflecting the expected localized and
nonergodic character of this phase. On the other hand, the
experimental data for the number entropy in Ref. [18]
appear to show a slow increase, although a detailed analysis
of the number entropy as a function of system size and
disorder strength has not yet been performed. Furthermore,
it has recently been suggested that paradigmatic models
expected to show MBL phases might ultimately be ergodic
at very long times [26,27].
These recent results motivate us to investigate the

number entropy in systems believed to show MBL. In this
Letter, we provide evidence that the picture of MBL phases
based on effective Hamiltonians (2) might be incomplete.
For all system sizes and times we can access numerically,
we find that the number entropy grows as SN ∼ ln ln t even
at strong disorder and does not show any signs of
saturating. We, furthermore, present evidence that the

relation Sð2Þ ∝ expðSð2ÞN Þ, proven for free fermionic systems
in [22], also appears to hold in the interacting case, both in
the ergodic and in the MBL phase, with proportionality
factors renormalized by interactions and disorder.
Number entropies.—If we split a one-dimensional sys-

tem S into two parts, A and B, then the Rényi entanglement
entropies are given by

SðαÞ ¼ ð1 − αÞ−1 ln trραA; ð3Þ

where ρA is the reduced density matrix of the considered
subsystem. The von-Neumann entanglement entropy is
given by S≡ Sð1Þ ¼ limα→1 SðαÞ. If the total particle num-
ber is conserved, then we can write SðαÞ ¼ ð1 −
αÞ−1 ln½Pn p

αðnÞtrραAðnÞ� where ρAðnÞ is the block of
the reduced density matrix with particle number n nor-
malized such that trρAðnÞ ¼ 1. If there is only a single
configuration for each n then trραAðnÞ ¼ trρAðnÞ ¼ 1. We

thus call SðαÞN ¼ ð1 − αÞ−1 lnPn p
αðnÞ the Rényi number

entropy, generalizing Eq. (1). Any additional entanglement
is due to different configurations in each particle sector
having finite probability and is thus part of what we call the
Rényi configurational entropy.
System.—To be concrete, let us consider a half-filled

fermionic model

H ¼ −J
X
j

ðc†jcjþ1 þ H:c:Þ þ
X
j

Djnj þ V
X
j

njnjþ1;

ð4Þ
with nearest-neighbor hopping amplitude J, interaction V,
and on site disorder Dj ∈ ½−D=2; D=2�. Here nj ¼ c†jcj is
the particle number at site j. Using a Jordan-Wigner
transformation, this model can be mapped onto a spin-
1=2 XXZ chain with magnetic field disorder. For V ¼ 2J, in
particular, one obtains the isotropic Heisenberg model
which is the most studied system to investigate MBL
physics. We set J ¼ 1 and ℏ ¼ 1 in the following.
Thermalization.—If such a system after a quantum

quench thermalizes to a high temperature state, then a
region of size 2l will contain l particles on average and
every arrangement of particles will approximately have
equal probability. If we now cut the thermalized region in
half, then the probability to find n particles in one half is
pðnÞ ¼ ðlnÞð l

l−nÞ=ð2ll Þ. For large n;l this distribution can be
approximated by a continuous distribution and one finds
for all Rényi number entropies (including α → 1) in the

ergodic case SðαÞN ¼ const:þ 1
2
lnl with SðαÞN > Sðαþ1Þ

N [22].
If the excitations in the system spread as tν after the quench
then the thermalized regions have size l ∼ tν and we obtain

SðαÞN ðtÞ ¼ constþ ν

2
ln t: ð5Þ

Localization.—The presence of disorder (i.e.,D ≠ 0) can
prevent thermalization and lead to localized states. The
simple scaling argument why free particles (V ¼ 0) on a
lattice with short-range hoppings become localized for
strong potential disorder works as follows [6,28,29]. A real
hopping process requires a resonance, i.e., an energy
matching between the two sites involved in the hopping
process. Assuming a random, homogeneous distribution of
the corresponding energies, the smallest energy difference
between two states in a subsystem of volume ld decreases
as l−2d in d dimensions on average. The transport between
quasidegenerate states needs on the order of n ∼ l hopping
processes and the amplitude for such a virtual n-site
hopping process falls of exponentially with distance.
Therefore distant resonances have a vanishingly small
probability to proliferate and to delocalize the system. A
noninteracting system at sufficiently strong disorder will
therefore be in an AL phase and both S and SN will saturate.
In one dimension, even arbitrarily weak disorder is suffi-
cient to localize all states. The crucial question then is what
influence interactions have on the probability of distant
resonances.
If the model (4) is in an AL phase for V ¼ 0, a localized

basis fjψ lig exists such that the noninteracting Hamiltonian
becomes diagonal, H0 ¼

P
l εlηl ¼

P
l εld

†
l dl. We can

transform (4) to this localized basis using c†j ¼P
lhψ ljϕjid†l , where jϕji is the original Wannier basis.
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Here l canbeunderstood as the index of the site aroundwhich
the localized single-particle wave function is centered, i.e.,
jhψ ljϕjij2 ∼ expð−jl − jj=ξlocÞ where ξloc is the localization
length. If we transform the interaction part to the new basis,
we find contributions describing density-density interactions
between localized orbitals as well as hopping processes
between these orbitals. The density-density part is given

by Hð1Þ
int ¼

P
l;l0 Jll0ηlηl0 with an amplitude which

decays exponentially with distance between the orbitals,
Jll0 ∼ V expðjl − l0j=ξlocÞ. If this would be the only relevant
correction due to interactions, then particles would remain

localized with Hð1Þ
int causing a logarithmic buildup of con-

figurational entanglement, see Eq. (2). However, the inter-
action also leads to a correlated hopping between the single-
particle orbitals jψ li

Hð2Þ
int ¼

X
l;l0;k;k0

Kll0kk0d
†
l dl0d

†
kdk0 ; ð6Þ

with unequal lattice sites and exponentially decaying ampli-
tude Kll0kk0 . Similar to the AL case, one then has to consider
the possibility of resonances destroying localization. In
contrast, hopping processes are now long ranged so that
both direct and virtual transitions to distant sites are possible.
The smallest expected average mismatch in energy,
Δε ¼ εl − εl0 þ εk − εk0 , on a subsystem of length l now
decreases as l−4. Without taking the renormalization of the
bare energies εl into account, one would thus still conclude
that distant resonances do not proliferate. On the other hand,
numerical and experimental data [30] indicate that for small
disorder interactions do destroy the localized phase. In other
words, in this case energy renormalizations do seem to lead to
a proliferation of resonant hopping processes. For strong
disorder, on the other hand, it has been argued that the
processes (6) are irrelevant, particles are localized, and
Eq. (2) is the proper effective model [31,32]. However, these
results are based on approximations. The proof of MBL for
weak interactions in Ref. [32], in particular, is based on an
assumption about limited level attraction in the statistics of
energy eigenvalues.
Numerical results.—Since the question about the rel-

evance of resonances ultimately cannot be decided ana-
lytically, we investigate the number entropy for the model
(4) by exact diagonalization (ED). We concentrate on
V=J ¼ 2 corresponding to the isotropic Heisenberg model.
In our notation the critical coupling, where all eigenstates
are expected to become localized, is Dc=J ≈ 14 [10,14].
We study quenches starting from half-filled random prod-
uct states, averaging over both disorder realizations and
initial states. If not stated otherwise the data shown for
L ≤ 18 are obtained by standard full diagonalizations of the
Hamiltonian, averaged over 10 000 disorder realizations for
L ≤ 14 and 3000 realizations for L > 14, while a second
order Trotter-Suzuki decomposition of the time evolution

operator is used for L ¼ 24, see [33] for details. The
entropies are always calculated for systems with open
boundary conditions and blocks of length l ¼ L=2.
Let us first consider the regime D < Dc where there is

consensus that the system is ergodic. ED [39,40], large-
scale density-matrix renormalization group (DMRG) cal-
culations [41,42], and phenomenological numerical
renormalization groups [43,44] furthermore find subdiffu-
sive transport either all the way down to zero disorder or up
to a second critical disorder below which transport becomes
diffusive. In contrast to the linear-in-time spreading of
excitations in the clean case, it now takes time t ∼ l1=ν for
excitations to spread across a region of length l with ν ¼
1=2 corresponding to diffusion. We therefore expect S ∼
l ∼ tν while SN is given by Eq. (5). This scaling of SðtÞ in
the ergodic regime is consistent with DMRG calculations
for infinite chains with binary disorder [42] and with ED
[40] for box disorder. In Fig. 1, results for the number
entropy of model (4) at various disorder strengths D < Dc
are shown. We find that SNðtÞ grows logarithmically
consistent with Eq. (5) and thus ergodic behavior. This

(a)

(b)

(c)

FIG. 1. SN for D < Dc ≈ 14: (a) SNðtÞ for L ¼ 24, with 500
disorder realizations and logarithmic fits, SN ¼ ðν=2Þ ln tþ b.
(b) SNðt → ∞Þ for different system sizes L. (c) Prefactors ν and
constants b of the logarithmic fits as a function of D for L ¼ 24.

(a)

(b)

(c)

FIG. 2. SN for D > Dc: (a) SNðtÞ for L ¼ 24 and double
logarithmic fits, SN ¼ ðν=2Þ ln ln tþ b. (b) SNðt → ∞Þ for differ-
ent system sizes L. (c) Prefactor ν and constant b of the double
logarithmic fits as a function of D for L ¼ 24, see also [33].
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is also supported by the close to linear scaling of the
saturation value SNðt → ∞Þ with system size. Finally, we
note that the prefactor ν decreases continuously as a
function of disorder D and appears to approach zero for
D → Dc. The precise behavior close to the transition point
is very difficult to extract from our numerics and outside the
scope of our work. The results for the number entropy are
qualitatively consistent with previous results for the scaling
of the current [41] and of the bipartite particle number
fluctuations Δn [16,45].
Turning to the case D > Dc, it is expected that it then

takes time t ∼ el to entangle regions over a distance l. The
resulting scaling of the von-Neumann entropy S ∼ ln t has
been demonstrated already by various methods and for a
number of different models and our results are consistent
with such a scaling as well. Our main new result are the
data for the number entropy presented in Fig. 2. We
find that the number entropy continues to increase as
SN ∼ ln ln t and that the saturation value continues to grow
as a function of length as in the ergodic case D < Dc,
however, now only approximately logarithmically. For the
numerically accessible times and lengths we find no
indications for a saturation of the number entropy as would
be expected if the system is localized. Note that SN ∼ ln ln t
is exactly the scaling which is anticipated if the system is
ultimately ergodic and t ∼ el is not only the relevant
scaling for the buildup of configurational entanglement
but also for the spreading of particles [see derivation of
Eq. (5)]. As a function of disorder strength D we find that
the prefactor ν of the double logarithmic growth is
decreasing continuously. There are no indications for a
sharp transition. Let us also comment on the bipartite
particle fluctuations Δn investigated previously [16,45].
Our results (not shown) are consistent with ΔnðtÞ growing
without bounds andΔnðt → ∞; LÞ increasing with increas-
ing system size L.
To provide further support for an unbounded growth of

the number entropy, we now show that the numerical
results are consistent with a relation recently proven in the
noninteracting case [22]. There we found that

Sð2ÞN ≥ γ

�
Sð2Þ

2 ln 2
− ln

�
I0

�
Sð2Þ

2 ln 2

���
þ b ð7Þ

provides a tight bound with γ ¼ 1, b ¼ 0, and I0 being the
modified Bessel function. In other words, a growth of the
second Rényi entropy Sð2Þ is always accompanied by a
growth, albeit logarithmically slower, of the corresponding

number entropy Sð2ÞN . In Fig. 3 we show that this bound with
a renormalized γ (and curves shifted by b > 0 for ease of
presentation) appears to remain valid in the interacting case
both for D < Dc and D > Dc. Note that in the interacting
case, i.e., V ≠ 0, γ appears to decrease continuously with
increasing D but does not show indications of a sharp
transition.
Finally, we want to consider a system with very strong

disorder to check whether the increase of the number
entropy is transient. To this end, we consider the model (4)
with binary disorder Dj ∈ f−D=2; D=2g. For D → ∞ this
will result in finite segments which are coupled by the
interaction term but not by hopping processes. We, fur-
thermore, limit the size of segments with equal potential
�D=2 to four lattice sites. In this case, the disorder is no
longer uncorrelated but this should only help in reducing

the timescale where SðαÞN potentially saturates. Numerically,
we find that the bound (7) also holds in this case, see Fig. 4.
For t≲ tTh, where tTh ∼ expðD=ΩÞL2 [26,33] is the
Thouless time with Ω being a constant, the original bound
in the noninteracting case (γ ¼ 1) holds, while a renor-
malized bound holds for longer times. In the thermody-

namic limit, Sð2ÞN thus appears to grow without bounds in
this model as well.
Conclusions.—The slow increase of the number entropy

SN ∼ ln ln t and the increase of the saturation value as a
function of system size, found in our numerical simula-
tions, are not expected in an MBL phase. There are at least
two different possible interpretations of these data. First, it

(a) (b)

FIG. 3. Sð2ÞN and bound (7) for (a)D < Dc, and (b)D > Dc. The
renormalization parameter γ appears to decrease monotonically
with increasing D.

FIG. 4. Sð2ÞN for model (4) with binary disorder D ¼ 20 and
segments with equal D limited to four sites (1000 disorder
realizations). For t < tTh an unrenormalized bound (γ ¼ 1) holds
while γ is renormalized for t > tTh, see text.
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cannot be excluded that the observed behavior after all is
transient and that SN in the thermodynamic limit does
saturate at very long times. While this interpretation would
not challenge the established phenomenology of MBL
phases, it is then an open question to understand the origin
of such a long-time transient behavior as well as the time
and length scales where particle fluctuations ultimately
cease to grow. While finite-size effects have been suggested
to strongly affect numerical studies of MBL [46], we note
that in contrast to Ref. [26] our data—which also challenge
the established MBL phenomenology—are obtained at
strong disorder. Second, it is possible that hopping proc-
esses introduced by the interaction term (6) are relevant and
resonances do exist. A possible scenario would be that for
D > Dc the dynamic scaling t ∼ el does hold, leading to a
logarithmic growth of the entanglement entropy but that the
same dynamical scaling also holds for the spreading of
particles resulting in an unbounded growth SN ∼ ln ln t.
While this implies that the system is ultimately ergodic at
very long timescales, it will not drastically alter the
behavior on experimentally accessible timescales: MBL
systems would still be good quantum memories and the
Hamiltonian (2) an effective description.
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Science 364, 256 (2019).

[19] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91,
097902 (2003).

[20] T. Rakovszky, C. W. von Keyserlingk, and F. Pollmann,
Phys. Rev. B 100, 125139 (2019).

[21] R. Bonsignori, P. Ruggiero, and P. Calabrese, J. Phys. A 52,
475302 (2019).

[22] M. Kiefer-Emmanouilidis, R. Unanyan, J. Sirker, and M.
Fleischhauer, arXiv:2003.03112.

[23] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev.
B 90, 174202 (2014).

[24] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.
111, 127201 (2013).

[25] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.
110, 260601 (2013).

[26] J. Suntajs, J. Bonca, T. Prosen, and L. Vidmar, arXiv:
1905.06345.

[27] M. Žnidarič and M. Ljubotina, Proc. Natl. Acad. Sci. U.S.A.
115, 4595 (2018).

[28] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[29] 50 Years of Anderson Localization, edited by E. Abrahams
(World Scientific, Singapore, 2010).

[30] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M.
H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch,
Science 349, 842 (2015).

[31] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B891,
420 (2014).

[32] J. Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016).
[33] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.124.243601 for more
details on the numerics, additional data deep in the MBL
phase, a discussion of the Thouless time, and further evidence
for the nontransient growth of the number entropy in the
thermodynamic limit, which includes Refs. [34–38].

[34] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
[35] M. Suzuki, Commun. Math. Phys. 51, 183 (1976).
[36] M. Suzuki, Phys. Rev. B 31, 2957 (1985).
[37] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. X 5,

041047 (2015).
[38] E. V. H. Doggen, F. Schindler, K. S. Tikhonov, A. D. Mirlin,

T. Neupert, D. G. Polyakov, and I. V. Gornyi, Phys. Rev. B
98, 174202 (2018).

PHYSICAL REVIEW LETTERS 124, 243601 (2020)

243601-5

https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.150404
https://doi.org/10.1103/PhysRevLett.97.150404
https://doi.org/10.1007/JHEP11(2016)166
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.100.014203
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.113.217201
https://doi.org/10.1103/PhysRevLett.113.217201
https://doi.org/10.1126/science.aau0818
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevB.100.125139
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1751-8121/ab4b77
https://arXiv.org/abs/2003.03112
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.110.260601
https://arXiv.org/abs/1905.06345
https://arXiv.org/abs/1905.06345
https://doi.org/10.1073/pnas.1800589115
https://doi.org/10.1073/pnas.1800589115
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1103/PhysRevLett.117.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.243601
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevB.31.2957
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1103/PhysRevB.98.174202


[39] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller, and E.
Demler, Phys. Rev. Lett. 114, 160401 (2015).

[40] Y. Bar Lev, G. Cohen, and D. R. Reichman, Phys. Rev. Lett.
114, 100601 (2015).

[41] M. Žnidarić, A. Scardicchio, and V. K. Varma, Phys. Rev.
Lett. 117, 040601 (2016).

[42] T. Enss, F. Andraschko, and J. Sirker, Phys. Rev. B 95,
045121 (2017).

[43] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys.
Rev. X 5, 031033 (2015).

[44] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5,
031032 (2015).

[45] R. Singh, J. H. Bardarson, and F. Pollmann, New J. Phys.
18, 023046 (2016).

[46] D. A. Abanin, J. H. Bardarson, G. de Tomasi, S.
Gopalakrishnan, V. Khemani, S. A. Parameswaran, F.
Pollmann, A. C. Potter, M. Serbyn, and R. Vasseur, arXiv:
1911.04501.

PHYSICAL REVIEW LETTERS 124, 243601 (2020)

243601-6

https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevB.95.045121
https://doi.org/10.1103/PhysRevB.95.045121
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1088/1367-2630/18/2/023046
https://doi.org/10.1088/1367-2630/18/2/023046
https://arXiv.org/abs/1911.04501
https://arXiv.org/abs/1911.04501

