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The coupling of weak light fields to Rydberg states of atoms under conditions of electromagnetically

induced transparency leads to the formation of Rydberg polaritons which are quasiparticles with tunable

effectivemass and nonlocal interactions. Confined to one spatial dimension their low energy physics is that of

a moving-frame Luttinger liquid which, due to the nonlocal character of the repulsive interaction, can form a

Wigner crystal of individual photons. We calculate the Luttinger K parameter using density-matrix renor-

malization group simulations and find that under typical slow-light conditions kinetic energy contributions

are too strong for crystal formation. However, adiabatically increasing the polariton mass by turning a light

pulse into stationary spin excitations allows us to generate true crystalline order over a finite length. The dyna-

mics of this process and asymptotic correlations are analyzed in terms of a time-dependent Luttinger theory.
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The extraordinary properties of Rydberg atoms [1],
such as large dipole-dipole interactions and long lifetimes,
are currently attracting much attention. The interest ranges
from quantum information [2–4] to many-body phenomena
[5–15]. So far only few works considered the effect of inter-
actions onto the light fields [16–21]. In recent experiments
[16] itwas shown that under conditions of electromagnetically
induced transparency (EIT) the Rydberg interaction leads to a
nonlocal, and strongly nonlinear behavior of the probe field
[22,23]. This gives rise to, e.g., the formation of a small
avoided volume which contains at most one excitation
[20,21]. In the present Letter we want to explore the many-
bodyproperties on larger length scales.Oneof the simplest but
most dramatic effects resulting from a nonlocal repulsive
interaction is the formation of a Wigner crystal, predicted
for electrons in the early days of quantum mechanics [24].
Wewill show that a similar phenomenon can be observed in a
dilute one-dimensional gas of photons coupled to Rydberg
atoms. The resulting quantum state is highly nonclassical and
cannot be created in conventional Kerr-type point-interacting
systems [25,26]. This has potential applications in photon
based quantum communication and information. E.g., the
regularity of the photon train can provide high bit rates in
quantum repeater protocols and multiplexing.

Under conditions of EITand small excitation densities, the
coupling between photons and Rydberg atoms leads to the
formation of light-matter quasiparticles, the so-called dark-
state polaritons (DSP) [27,28].TheDSP followaSchrödinger-
equationwith an externally tunablemass and additional strong
repulsive and nonlocal interactions.We analyze the formation
of a quasicrystalline state of polaritons in one dimension using
DMRGsimulations and time-dependentLuttinger-liquid (LL)
theory. We show that under typical time-independent slow-
light conditions the moving-frame ground-state displays

density-wave correlations that decay fast in propagation di-
rection due to the small polariton mass. However, using the
external control and making the DSP more massive, i.e.,
converting them into stationary spin excitations, increases
the effect of interactions. Consequently, decelerating a light
pulse to a full stop inside a gas of Rydberg atoms [29,30] can
lead to perfect crystalline order over the length of themedium.
We note that Wigner crystallization of solitons, representing
coherent light pulses, has recently been proposed in [31]. In
contrast, our approach leads to the crystallization of single
excitations, forming a regular train of single photon states
upon readout.
To be specific, we consider an ensemble ofN atomswith a

three-level linkage pattern [cf. Fig. 1(b)], composed of a
ground state jgi, intermediate state jei, and metastable
Rydberg-state jri. The transition jgi � jei is driven by a

quantized probefield Ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@!p=2�0Þ

q
Êðr; tÞe�ið!pt�qprÞ þ

H:a:, with carrier frequency !p and wave vector qp. ÊðÊyÞ
are normalized field amplitudes corresponding to annihila-
tion (creation) of a photon and are slowly varying in space

FIG. 1 (color online). (a) Schematic setup for the creation of
dark-state polaritons in amediumon lengthL. (b) Effective atomic
linkage pattern for EIT inRydberg gases. Theweak quantized field
Ê is off-resonantly driving the jgi � jei transition with a one-
photon detuning �, whereas the strong control field � is driving
the jei � jri transition with a final two-photon detuning �.
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and time. The transition jei � jri is coupled via an external
control field with Rabi frequency �, carrier frequency !c,
and wave vector qc. We chose the z axis as the common
propagation direction of the fields and define the one- and
two-photon detunings as � ¼ !e �!g �!p, � ¼ !r �
!g �!c �!p, where !g;e;r are the energies of the atomic

states (@ ¼ 1).
In the absence of Rydberg interactions the Hamiltonian

can be diagonalized using adiabatic eigensolutions, the dark-
and bright-state polaritons (BSP), which fulfill approximate
bosonic commutation relations [27,28]. Following [32] we

define the DSPs as �̂ ¼ cos�Ê � sin��̂gr, and BSPs as

�̂ ¼ sin�Ê þ cos��̂gr where tan2� ¼ g2n=�2. Here �̂��

are continuous atomic spin flip operators, n is the atomic

density and g ¼ }
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p=2@"0

q
, with the jgi � jei dipole

moment }. The DSP propagates lossless with group velocity
vg ¼ ccos2�, while the BSP has a velocity csin2� and is

subject to losses with rate ðg2nþ�2Þ=�, where � ¼ �þ
i�, with 2� being the spontaneous decay rate of jei. Near
single-photon resonance j�j & �, and for an optically thick
medium L � Labs, where Labs ¼ c�=g2n is the resonant
absorption length in the absence of EIT and L the medium
length, an input bright polariton will quickly be damped out.
In the followingwewill consider j�j � �, where absorption
is irrelevant. However, for cos2� � sin2� � 1 and light
pulses of finite length, an input bright polariton can still be
disregarded as it will quickly escape the medium (c � vg).

This allows us to eliminate the BSP and after a short transient
the free dynamics is governed by [33]

Ĥ0 ¼
Z

d3r�̂yðrÞ
�
p̂2
z

2mk
þ p̂2

?
2m?

�vgp̂zþ�ðrÞ
�
�̂ðrÞ; (1)

where p̂z ¼ �i@z, p̂? ¼ �ir?, and sin2� � 1 was used.
This corresponds to an effective Schrödinger equation for
particles with tensorial mass and additional drift terms,
moving in an external potential �ðrÞ. The drift is determined
by the EIT group velocity vg, and the masses are m�1

k ¼
vgLabsð�=�Þ andm�1

? ¼ vg=2qp [32,34]. The above model

is valid as long as the BSP amplitude is negligible and [33]

j�j � g2n

j�j ;
Labs

LDSP

� �

j�j : (2)

The first condition describes the regime of perturbative
coupling between DSP and BSP [35]. The second denotes
the region of slow-light dispersion [28,34], where LDSP is a
characteristic length scale of the DSP. Let us now take into
account interactions between the atoms in their Rydberg
state jri, with van der Waals interaction potential VðrÞ ¼
C6=jrj6. In the continuum limit and transforming to polar-
itons, we find to lowest order in cos�

Ĥint ¼ C6

2

Z
d3rd3r0

�̂yðrÞ�̂yðr0Þ�̂ðr0Þ�̂ðrÞ
a6 þ jr� r0j6 ; (3)

where we introduced a cutoff a to account for a possible
regularization at short distances [20]. However, as we will

show later, for strong interactions or heavy particles the
results become independent of the cutoff and we are allowed
to set a ¼ 0. The effect of the interaction is equivalent to a
two-photon detuning. Consequently, the interaction shift has
to be smaller than g2n=j�j which can be translated into a

minimal distance ac ¼ ðC6j�j=g2nÞ1=6, which the DSPs
have to keep to ensure the validity of the model. As shown
in [20] for the case of a resonant interaction (i.e.,� ¼ 0) and
large optical depth, an incoming coherent light pulse
will quickly develop strong antibunching with a minimum
separation length along the propagation direction corres-

ponding to the EIT blockade radius ab ¼ ðC6�=�
2Þ1=6 �

ac. A similar effect happens for� � 0 due to the fast escape
of the BSP. Since under slow-light conditions, cos� � 1, the
initial preparation produces DSPs with a mutual distance
larger than the critical value ac and a vacuum of BSPs, the

system is well described by Ĥ ¼ Ĥ0 þ Ĥint.
To address the question whether the interaction leads to

Wigner-crystallization of polaritons we restrict ourselves
to one dimension (1D). This can be achieved, e.g., by using
elongated cigar-shaped atomic ensembles with transverse
extent smaller than the blockade radius [21], or atoms in
hollow-core fibers [36,37] or trapped in the evanescent
field of ultrathin optical fibers [38,39]. The low-energy
physics can be described in terms of a Luttinger liquid
[40]. The LL model allows for an exact treatment also in
the case of bosons [41] with 1=jxj� interactions, as long as
�> 1. Transforming to a frame comoving with the EIT
group velocity removes the drift term, �vg@z, in Eq. (1).

Assuming a fixed excitation density �0 and j�j � �, we
follow the standard LL approach [40] to construct an
effective low-energy Hamiltonian

HLL ¼ 1

2	

Z
dx

�
uKð	�̂Þ2 þ u

K
ðr
̂Þ2

�
: (4)

�̂ and 
̂ are conjugate fields with ½
̂ðxÞ;�̂ðyÞ�¼i�ðx�yÞ.
u and K are the sound velocity and the Luttinger para-
meter, respectively. TheK parameter governs the asymptotic
behavior of the charge-density-wave correlations (CDW)
in the ground state. For example, the oscillatory part
of the density correlations is given by h�̂ðzÞ�̂ð0Þiosc�
�2
0cosð2	�0zÞz�2K, with �̂ðzÞ ¼ �̂yðzÞ�̂ðzÞ. As first-order

correlations decay as h�̂yðzÞ�̂ð0Þi � z�1=ð2KÞ the pointK ¼
1=2 marks the crossover from a regime where superfluid
order dominates (K > 1=2) to a regime with predominant
CDW correlations of period 1=�0 (K<1=2). We note that
technically spoken, the interaction (3) is of short-range char-
acter and we will not find any slower-than-power law corre-
lations as for, e.g., unscreened Coulomb interactions [42].
We like to point out that one can create true crystalline

order by adding a weak periodic lattice potential �ðxÞ ¼
�0 sinð2	x=dÞ, which leads to a sine-Gordon Hamiltonian
[40] for commensurate fillings �0 ¼ 1=ðsdÞ, s 2 N.
This model exhibits a quantum phase transition to a
gapped ordered phase for arbitrarily small but finite �0, if
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K <Ks ¼ 2=s2 [40,43]. To avoid the necessity of a
comoving lattice potential one then should consider
stationary-light polaritons [34,44,45].

Although no exact expression for K exists, an approxi-
mate closed formula was given in [46]:

K ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p ; � ¼ 	3

180
�4
0mC6; (5)

where� is a measure for the ratio between interaction and
kinetic energy.

To check this expression we determined K numerically
usingDMRG [47] andmade use of the fact thatK=u¼	�2

0�
is determined by the compressibility��1 ¼ �2

0ð@�=@�0Þ ¼
�2
0Lð@2E=@N2Þ [40]. Furthermore, uK ¼ 	�0=m, which is

true for any Galilean-invariant model [48]. We have
validated the numerical procedure for the case of the inte-
grable Lieb-Liniger model, where � can be calculated
exactly as a function of interaction. Using a proper discreti-
zation of the model [49] leads to the results for K shown in
Fig. 2 for regularized and diverging van der Waals interac-
tions. As expected for large� (i.e., smallK) theK parameter
becomes independent of the cutoff a. Moreover, for a ¼ 0,
Eq. (5) gives the right order of magnitude over the whole
range and wewill use this expression in the following. Aswe
are interested in the regime of small K we conclude that
the actual form of the potential at short distances is irrelevant
and only the asymptotic form is important. Hence we can
set a ¼ 0, as long as �0a � 1.

Let us first discuss the time-independent case �ðtÞ ¼
� ¼ const. We concentrate on the ground state where
CDW correlations should be most pronounced. In Fig. 3
we have plotted the normalized two-particle correlation

gð2ÞðzÞ in the ground state of Ĥ ¼ Ĥ0 þ Ĥint obtained by
DMRG corresponding to different values of K. The large-z
behavior follows the LL expression and one recognizes

well pronounced oscillations for K � 1=2. For small
distances the plots show an extended spatial region over

which gð2ÞðzÞ vanishes, showing that the CDW is a regular
array of single-photon Fock states. The correlations
around z ¼ 0 become more suppressed than in the case
of free fermions, which is the strongest possible for point
interactions [25,50].
We can use Eq. (5) to estimate the critical interaction

strength required to enter the CDW dominated regime, i.e.,
K � 1=2, giving �crit ¼ 3=2. � is proportional to the
effective mass of the polaritonsm� v�1

g � g2n=�2 which

is different along longitudinal (mk) and transverse direc-

tions (m?), and can be tuned via the control field �. For
m ¼ mk we find

� ¼ 	3

180

�
�

j�j
�
2ð�0LabsÞ4 c

vg

OD6
c ; (6)

where ODc ¼ ac=Labs is the optical depth per critical
radius. In the crystalline state the characteristic length
scale is LDSP � 1=�0 and thus condition (2) translates
into �0Labs&�=j�j. Using, e.g., �0Labs¼�=j�j¼1=100
and vg=c ¼ 10�5, we find that the optical depth per critical

radius at� ¼ �crit has to beOD
k
c * 20. As the mass along

the transverse direction is larger, the conditions are more
relaxed here and a similar analysis yields OD?

c * 5.
Nevertheless, a crystalline structure will be challenging
to prepare along both directions as for typical parameters
ODc & 1. It should be noted, though, that in a finite-size
system the CDWmight still be observable, as its amplitude
can be quite large [51].
A closer look at Eq. (6) suggests a possibility to over-

come this challenge using standard light storage techniques
[27,52,53]. Let us consider an initial polariton pulse close
to the moving-frame ground state but now with time-
dependent control fields. In the absence of interactions,
decelerating the DSPs by reducing vg in time preserves

their spatial structure and density �0 [28]. Simultaneously,

FIG. 2 (color online). Luttinger parameter K as a function
of interaction strength. The continuous line shows the analy-
tical approximation [46] for C6=r

6. Green diamonds show
results from DMRG calculations with periodic boundary
conditions (BC) for the unscreened potential. Red circles are
for �0a ¼ 1=5, blue triangles for �0a ¼ 1=2. The numerical
parameters were �x ¼ 1=10�0 with L ¼ 10=�0 and d ¼ 32 for
periodic BC. Quantum Monte Carlo results for C3=r

3 can be
found in [41].

FIG. 3 (color online). Normalized two-particle correlation.
Main panel: 1� gð2ÞðzÞ, in double logarithmic scale. Inset:
gð2ÞðzÞ in linear scale. Full lines show numerical results for
interaction strength increasing from orange over black to blue.
The particles are subject to periodic boundary conditions. Note
that at �0z * 5 finite size effects become noticeable.
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their effective mass is increased, which suggests an
increasing � and hence a decreasing K according to
Eq. (5) for interacting DSPs. When the pulse is brought
to a complete stop, KðtÞ approaches zero potentially lead-
ing to true long-range order. If vg is switched off instanta-

neously, the initial spatial correlations will be frozen. Thus
the switching has to be done smoothly on a time scale �
long enough for correlations to propagate through the
system. The latter process is determined by the speed
of sound uðtÞ ¼ 	�0=½mðtÞKðtÞ�. For small K we find
the scaling K � 1=

ffiffiffiffi
m

p � ffiffiffiffiffiffi
vg

p
; i.e., the sound velocity

decreases only with the square root of the group velocity,

uðtÞ � 1=
ffiffiffiffiffiffiffiffiffi
mðtÞp � ffiffiffiffiffiffi

vg
p

, allowing the correlations to

propagate through the system before being frozen.
In order to describe the adiabatic switch off we consider

the LL Hamiltonian (4) with time-dependent parameters
KðtÞ and uðtÞ [54]. Choosing a special, but generic time

dependence �ðtÞ ¼ g
ffiffiffi
n

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðtÞc=vgð0Þ � 1

q
, where fðtÞ¼

exðtÞ sinh½xðtÞ�e�arcoshðCÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2�1

p
, with xðtÞ¼ arcoshðt=�þ

CÞ and C ¼ ðK2
0 þ 1Þ=ð2K0Þ, K0 ¼ Kðt ¼ 0Þ and switch-

off time �, the time-dependent LL model can be solved
exactly (see [33] for details). Because of the finite speed
of sound, the final correlations exhibit a ‘‘crossover’’ as a
function of distance from the power-law behavior with adia-
batic exponent KðtÞ to one with the initial exponent K0 at a
length scale l0 ¼ ð	4=90ÞC6�

5
0� � ODcð�0acÞ5c�j�j=�,

as can be seen in Fig. 4. Obviously, the switch-off time �
should be maximal. On the other hand, � has to be suffi-
ciently small to bring the pulse to a complete stop within
the medium, such that L � R1

0 dtvgðtÞ. Using the above

protocol, we find

l0
L
¼ 2	

K0

�0Labs

j�j
�

: (7)

It is interesting to note that this expression does not depend
on the interaction strength. This is a consequence of the
chosen protocol where the temporal change of vgðtÞ depends
on the interaction strength.Assuming thatK0 is close to unity
and that �0Labs � �=j�j, l0=L can approach unity showing
that a crystalline order over the whole medium is possible.
Changing the control-field in time leads to additional

couplings between the DSP and BSP [28]. The decay rate
due to this coupling is given by �� ¼ � _�2=g2n. RequiringR
�
0 dt��ðtÞ � 1 and using the above protocol we find

c�=Labs�4K2
0=ðK2

0�1Þ2. For K0�0:99 and Labs�5�m
we have � � 0:16 ns, which is certainly feasible.
So far we have assumed that the initial state for the light

storage is the moving-frame ground state of the LL
Hamiltonian. Let us now discuss the effects of initial
excitations. As the system is nonintegrable it is reasonable
to assume that the state of the DSPs after the initial
preparation is thermal (we set kB ¼ 1). In a thermal state
all correlations decay exponentially with a correlation
length�LT=K ¼ 	�0=ðmTK2Þ [55]. Since for a noninter-
acting gas and adiabatic mass changes TðtÞ � 1=mðtÞ
holds, one naı̈vely expects that the correlation length
increases �1=K2ðtÞ. Evaluating the bosonic correlation
functions with a thermal distribution we find a slightly
different result (cf. Fig. 4). For intermediate length scales,

correlations decay as expð�jzj2=L2
corrÞ as long as jzj &

Lcorr ¼ 2
ffiffiffiffiffiffiffiffiffiffi
l0L

0
T

q
=	K0 � ðln½K0=KðtÞ�Þ1=4 which crosses

over to an exponential decay for larger distances [33].
Here L0

T is the initial thermal correlation length.
To estimate the initial temperature of the DSP we

observe that any polariton component with frequency
larger than the off-resonant EIT linewidth �2=j�j will
escape [33]. Thus a reasonable estimate for an upper
temperature limit is T & ð1=2Þð�2=j�jÞ, and we obtain
the final correlation length at finite temperature asffiffiffiffiffiffiffiffiffiffi

l0L
0
T

q
L

¼
�
�0Labs

j�j
�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

OD

j�j
�

s
: (8)

Although the first term on the right side is less than unity,
the whole expression can still approach unity and thus even
for an initial polariton wave packet with finite energy an
almost perfect Wigner crystal can be created.
An important question is how to observe the crystalline

structure of the stored DSPs. This is achieved by turning the
stationary excitations back into propagating photons, follo-
wing standard light retrieval techniques [27]. However, this
must be done by instantaneously switching on the control
field as an adiabatic switch-on would just invert the genera-
tion process. The resulting regular train of single-photon
pulses that leaves the medium can then be detected using
standard correlation measurement techniques [21].

FIG. 4 (color online). Main panel: space dependent amplitude
of the oscillatory part of the correlation function in the long-time
limit, K0 ¼ 0:8; KðtÞ ¼ 5� 10�5. The dashed blue line shows
the spatial decay of density-density correlations for zero tem-
perature, which shows a crossover from adiabatic to diabatic
algebraic decay at l0�0 ¼ 100 (indicated by the rightmost ver-
tical line). The solid red line shows the modified decay for initial
temperature corresponding to a thermal length LT�0 ¼ 10 (left-
most vertical line), which shows a crossover to exponential
decay at length scale Lcorr�0 � 40. Inset: �ðtÞ=�ð0Þ for K0 ¼
0:8 and vgð0Þ=c ¼ 10�5.
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In summary, we showed that the combination of EITwith
interacting Rydberg gases leads to strongly interacting light-
matter particles, termed Rydberg polaritons. We discussed
the experimental requirements needed to obtain a quasi-
long-range-ordered ground state corresponding to a
moving-frame Wigner crystal of Rydberg excitations in
one dimension bymapping the problem to a Luttinger liquid.
Numerical and analytic results showed that under slow-light
conditions the kinetic energy contributions in the longitudi-
nal direction are too large to enter the density-wave domi-
nated regime. Using a time-dependent Luttinger liquid
approachwe showed, however, that decelerating a light pulse
in a gas of Rydberg atoms to a full stop over a sufficiently
long deceleration time can create true crystalline order over a
substantial fraction of the medium. Turning the Wigner
crystal of spin excitations back into electromagnetic fields
by a sudden switch-on of the drive field produces a train of
photons with long-range crystalline order.
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by the Harvard Quantum Optics Center. The financial
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