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We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with

alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the

Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the

Mott insulating (MI) phases. Depending on the ratio t1=t2 the n ¼ 1=2 MI phase is topologically

nontrivial, which results in many-body edge states at open boundaries. In contrast to the Su-Schrieffer-

Heeger model the bosonic counterpart lacks chiral symmetry and the edge states are no longer midgap.

This leads to a generalization of the bulk-edge correspondence, which we discuss in detail. The edge states

can be observed in cold atom experiments by creating a step in the effective confining potential, e.g., by a

second heavy atom species, which leads to an interface between two MI regions with filling n ¼ 1 and

n ¼ 1=2. The shape and energy of the edge states as well as the conditions for their occupation are

determined analytically in the strong coupling limit and in general by density-matrix renormalization

group simulations.
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Topological phases have become an intensively studied
subject in many fields of physics. Key features of
condensed-matter systems such as topological insulators
[1–3] or superconductors [4], as well as quantum Hall
systems [5–8] have been related to robust edge states at
interfaces between phases with different topological char-
acter [9]. This fundamental relation has also been found
to hold true for various one-dimensional systems [10–14].
Ultracold atomic gases have developed into an ideal ex-
perimental testing ground for concepts of solid-state and
many-body physics [15] and they could become important
for studying topological effects [16–19]. One of the sim-
plest models possessing nontrivial topological properties
is the inversion symmetric Su-Schrieffer-Heeger (SSH)
model [20], which can be realized by ultracold fermions
in a 1D tight-binding superlattice (SL) potential with alter-
nating hopping amplitudes. Its topological properties are
classified by a Z2 topological invariant given by the Zak
phase [21,22] and have been explored both theoretically
[13,14,23] and recently experimentally [19]. Here we show
that in the case of bosons, MI phases with filling n ¼ 1=2
can be nontrivial topological insulators as well, where the
topological invariant is the Z2 many-body Berry phase, first
introduced in this context by Hatsugai [24]. It has also been
pointed out in [24,25] that the Haldane phase [26] can be
characterized by a similar Z2 Berry phase. This system is
well known to support topological many-body edge states
[27], which we take as motivation to study the relation
between the quantized Berry phase and topological edge
states of the SL-Bose-Hubbard model (SL-BHM).

For the case of an ultracold bosonic lattice gas, introduc-
ing a localized potential step allows us to create an inter-
face between gapped MI phases with different topological

invariants. Because of the interface, many-body ground
states emerge that display density minima or maxima at
the interface in analogy to an unoccupied or occupied
single-particle edge state for free fermions. This can easily
be observed with techniques developed in recent years
[28–30]. While for the SSH model a strict relation between
the existence of a single-particle midgap edge state at open
boundaries and the bulk topological invariant has been
identified [13,14], a similar relation does in general not
hold for the bosonic SL model with finite interactions due
to the absence of chiral symmetry. Instead, as we will show
using numerical DMRG simulations [31–33] and analytic
approximations, a generalized bulk-edge correspondence
holds: While either the empty (hole) or the occupied
(particle) edge state remain localized and thus stable until
the MI melts due to tunneling, one of the two many-body
states hybridizes with the bulk already for much smaller
values of the tunneling rate.
The starting point of the discussion is the 1D SL-BHM

in the grand-canonical ensemble described by the

Hamiltonian K̂ ¼ Ĥ ��N̂

K̂ ¼ �X
j odd

ðt1âyj âjþ1 þ h:a:Þ � X
j even

ðt2âyj âjþ1 þ h:a:Þ

þU

2

X
j

n̂jðn̂j � 1Þ þX
j

ð�j ��Þn̂j; (1)

where âj and â
y
j are the annihilation and creation operators

at lattice site j, and n̂j ¼ âyj âj. Particles can tunnel with

alternating hopping amplitudes t1 and t2 and there is an
on-site interaction U. �j describes a potential and � is

the chemical potential. In the case of hard-core bosons
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(U ! 1) and �j � const, Eq. (1) is equivalent to the

inversion symmetric SSH model.
A generic ground-state phase diagram of the SL-BHM,

taken from Ref. [34], is shown in Fig. 1 for �j � 0. Besides

MI phases with integer filling it shows loophole insulating
regions with half integer filling for t1 > t2 [35,36]. These
regions shrink when t1 decreases, and vanish at t1 ¼ t2
(simple BHM). They reappear when t1 < t2 and the point
t1 ¼ t2 marks a topological phase transition. The model
possesses chiral symmetry at half-integer filling in the
limit U ! 1.

In the case of noninteracting fermions, the topology of
the band structure is determined by its Zak phase [21]
(or winding number), � ¼ i

R
2�
0 dkhuðkÞj@kjuðkÞi, where

juðkÞi are the single-particle Bloch functions and k is the
lattice quasimomentum. While for a general 1D band
structure this phase may take arbitrary values, it is integer
(i.e., Z) quantized (in units of �) [37] when chiral symme-
try is present, and Z2 quantized for the SSH case. In this
case the winding numbers of the upper and lower band
are equal but opposite � ¼ 0 (� �) for dimerization I (II);
see Fig. 1.

For interacting systems there is no conserved lattice
quasi-momentum k and one must employ a many-body
generalization of the winding number. Like the Chern
number [38] it can be defined via generalized boundary
conditions [39], c ðxj þ LÞ ¼ ei�c ðxjÞ for all coordinates
j ¼ 1; . . . ; N and system size L. These correspond to a
magnetic flux � threading the system. When this flux is
adiabatically varied, the many-body wave function j�ð�Þi
picks up a Berry phase [22]

� ¼ i
Z 2�

0
d�hc ð�Þj@�jc ð�Þi: (2)

This topological order parameter can easily be calculated
in the hard-core limit U ! 1. We find that the MIs with
integer filling are topologically trivial with � ¼ 0 and

those with half-integer filling can take the values �I ¼ 0
for dimerization I and �II ¼ � for dimerization II. This is a
direct consequence of the quantization of the free-fermion
winding number for Hamiltonians possessing chiral sym-
metry [13,37]. Most importantly the topological invariant
stays strictly quantized even for finite U as long as the
particle-hole gap is finite. This, however, is a consequence
of inversion symmetry alone and was realized already by
Zak [21]. An exact proof including the interacting case can
be given following the proof of Hatsugai [24,40]. We
checked the quantization for small systems by exact diag-
onalization, but the Z2 invariant could as well be calculated
using DMRG or as was recently shown using quantum
Monte Carlo calculations [41]. Thus we expect the non-
trivial topology of the SSH bands to carry over to bosons
with finite interactions. This is our motivation to study
edge states of topologically nontrivial MI phases in the
SL-BHM as indicators for a quantized topological
invariant.
Let us consider a n ¼ 1=2 MI. For a chemical potential

within the range

�1=2� <�<�1=2
þ (3)

the bulk is in a gapped phase with half filling. For large

interactions U � t1 > t2 the values of �
1=2
� can be deter-

mined perturbatively within a ‘‘cell strong-coupling per-
turbative expansion’’ CSCPE [42,43] up to order
Oðt22=U; t2t

2
1=U

2Þ:
�1=2� ¼ �ðt1 � t2Þ; (4)

�1=2
þ ¼ ðt1 � t2Þ þU

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16t21 þU2

q
� 4t1t2

U
: (5)

Choosing, e.g., a ratio t1=t2 ¼ 5 the bulk gap � ¼ �1=2
þ �

�1=2� remains finite until about t1=U � 1:2. In the limit of

largeU there is chiral symmetry and�1=2� ¼ ��1=2
þ . In this

limit we expect from analogy with the SSH model a
midgap edge state if we add an open boundary with the
topologically nontrivial dimerization (II); see Fig. 2(a).
And indeed for small values of t1=U ¼ 0:1 and 0.2
DMRG simulations show both a well-localized hole (c h)
and particle (c p) state below and above a critical chemical

potential�e, see Figs. 2(b) and 2(c). These grand canonical
ground states differ in their total particle number by one.
However, as shown in Fig. 2(d), already for t1=U ¼ 0:3,
i.e., well before the MI melts due to tunneling the situation
changes: when increasing the chemical potential the den-
sity of the bulk increases nonlocally instead of filling up
the hole at the edge. Interestingly, the localized hole at the
edge survives even when the chemical potential exceeds

�1=2
þ and the bulk becomes gapless. We will not discuss

this here. Within CSCPE we find for the critical chemical
potential �e where the grand canonical ground state turns
from c h to c p

FIG. 1 (color online). (a) Phase diagram for the SL-BHM with
t2 ¼ 0:2t1 obtained by DMRG. One recognizes the presence of
MI phases with integer and half-integer filling. (b) Different
dimerizations I and II of SL potential corresponding to Berry
phases �I ¼ 0 and �II ¼ �.
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�e ¼ �2t22
U� 2t1

ðUþ t1ÞðU� 3t1Þ : (6)

We have plotted this result for �e along with the values
from DMRG simulations in Fig. 2(e). As chiral symmetry
is broken for finite values of the interaction,�e is no longer

exactly in between �1=2� and �1=2
þ . Furthermore at a tun-

neling rate of t1=U � 0:25 the curve touches �1=2
þ indicat-

ing that it becomes energetically favorable to add a particle
to the bulk rather than to the empty edge state (hole state).
Within CSCPE we find for the critical value

�
t1
U

�
c
� 1� �

4ð1þ �� �2=2Þ ; � ¼ t2
t1
; (7)

which is slightly below the numerical value.
One recognizes that the curve of �e remains almost a

straight line and starts to bend only when it approaches

�1=2
þ . This is due to an increasing delocalization of the

particle edge state c p. In Fig. 2(f) we have plotted

the numerically determined localization length �p;h

for the particle and hole states in units of the lattice
constant, defined through the participation ratio
� ¼ ðPj�njÞ2=

P
jð�njÞ2, where �nj ¼ jnj � ð1=2Þj�

�ð� ðnj � ð1=2ÞÞÞ with ‘‘þ’’ for �p and ‘‘�’’ for �h

and where � is the Heaviside step function [44]. While

the hole state remains well localized, the localization
length of the particle state diverges as the tunneling rate
approaches the critical value ðt1=UÞc.
Although the bulk-edge correspondence does not hold in

the sense of a protected and localized many-body mid-gap
state, we found that the edge features of topologically
trivial and nontrivial phases at an open boundary are
markedly different. Although, in the topologically non-
trivial case, the localized particle feature disappears at
ðt1=UÞc we generally find that at least one of the particle
and hole states remains stable. This holds true for all
parameters corresponding to a gapped MI in the bulk.
This is a direct consequence of topology: A nontrivial
bulk of Berry phase � ¼ � can be reached from the trivial
bulk with � ¼ 0 only through a topological phase transi-
tion. However, when the underlying symmetries (inversion
in our case) are broken one phase can be adiabatically
transformed into another, which corresponds to a quan-
tized, half Thouless pump (TP) cycle [45]. Since the Berry
phase changes by �� ¼ �, the polarization, i.e., the center
of mass must change by one lattice site. This follows from
the one-to-one relation between Berry phase Eq. (2) and
polarization [46,47]. This argument is strict in an infinite
system. It carries over to semi-infinite systems with a
single open boundary, say on the left (negative) side,
provided the systems many-body gap still remains finite
during the entire TP cycle. In this case the pump effectively
creates a hole of charge �1=2 localized on the open
boundary. (That is, the density relative to the topologically
trivial case decreases by an amount corresponding to half
a particle). The same holds true for a particle of charge 1=2
when the TP is reversed and �� ¼ ��. Since the relevant

gaps in the particle (hole) case are�1=2
þ ��e (�e ��1=2� ),

both are stable for t1=U < ðt1=UÞc. Furthermore, at least
one must be stable as long as the bulk particle-hole gap

�1=2
þ ��1=2� is positive.
In the following, we discuss a possible experimental

realization of edge states using ultracold atoms. Although
a sharp open boundary is difficult to realize, an interface
between two MI phases with integer (e.g., n ¼ 1) and half-
integer filling (e.g., n ¼ 1=2) can be created by increasing
the potential energy �j by �� for a number of consecutive

lattice sites such that

�1� <�<�1þ; (8)

�1=2� þ�� < �<�1=2
þ þ ��: (9)

Here, �1=2
� and �1� denote the upper (þ) and lower (�)

boundaries of the insulating regions in the phase diagram
of Fig. 1. As shown, e.g., in Ref. [48] for the case of Bose-
Fermi mixtures, an effective potential step can be created
by an admixture of a second atomic species; e.g., fermions,
with very small hopping rates. Under appropriate condi-
tions (see [48]) the fermions form a connected cluster at the

FIG. 2 (color online). (a) n ¼ 1=2 MI with open boundary
corresponding to topologically nontrivial dimerization (II).
Plots in (b)–(d), calculated by DMRG, show density distributions
below (blue triangles) and above (red squares) the critical
chemical potential of edge-state occupation �e for t1=U ¼
0:1, 0.2, 0.3 respectively. While a well-localized hole state
(empty edge) can be observed in all cases, the particle state
(occupied edge) becomes unstable already before the MI melts

(e). Because of the absence of chiral symmetry �1=2
þ (green up-

pointing triangles) approaches�e (black circles) already at small
values of t1=U. Solid curves show analytic results from CSCPE,
dashed straight lines correspond to hard-core results. (f) When

�e approaches �1=2
þ the particle state becomes delocalized as

can be see from the localization length �p;h of particle and hole

edge states. Systems of length L ¼ 65 are considered in the
DMRG simulation and numeric error bars are within the
symbol size.
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center of the trap with unity filling and sharp boundaries.
This results in an increase of the potential energy of the
bosons �� which extends over all sites of the fermion
cluster. Depending on the location of the interfaces relative
to the sublattices the winding number either stays,
�� ¼ �I

1=2 � �1 ¼ 0, or jumps, �� ¼ �II
1=2 � �1 ¼ �.

Figure 3 shows the density distribution in a weak har-
monic trap with an additional potential step �� calculated
by DMRG. One clearly recognizes interfaces between a
central n ¼ 1=2 MI and surrounding n ¼ 1 MI regions.
Since the number of heavy particles was taken to be even,
both interfaces are characterized by the same change j��j.
The upper plot shows the case �� ¼ 0, the lower one
�� ¼ �. In the first case there is a simple step in the
density and no additional structure at the edge. The same
holds at an interface between any two MI phases with
integer fillings irrespective of the dimerization. In the
second case, however, one sees pronounced dips or peaks
in the average density.

Generalizing the CSCPE to the case of an interface with
a finite potential step one can easily determine the potential
heights �� for which none of the states c h;p hybridizes

with the bulk, as well as the critical chemical potential at
which the many-body ground state turns from the hole
edge state c h to the particle edge state c p. The first case

(c h) can be detected by measurement of a local particle
number less than 1=2 on the n ¼ 1=2 MI side of the

interface, the second (c p) by measurement of a local

particle number larger than 1 on the n ¼ 1 MI side.
To verify these results we performed DMRG simulations

for a step potential �j=U ¼ ���ðj� jstep þ 0:5Þ. In

Fig. 4(a) we show the density for different values of �.
For �=U ¼ 0:45 the system is inside the stability region
of both edge states. One clearly recognizes a well local-
ized dip in the density. �=U ¼ 0:50 corresponds to an
occupied edge inside the stability region. Here a clearly
pronounced density peak appears. When � is chosen such
that the system is outside the region of the n ¼ 1=2 Mott
insulator (�=U ¼ 0:37 and �=U ¼ 0:65) the density dip
on the n ¼ 1=2 side starts to vanish while interestingly the
peak on the n ¼ 1 MI side remains. Figure 4(b) shows the

local occupation number hn̂edge1 i at the edge of the n ¼ 1
MI side as function of �=U. As soon as � exceeds �e as
calculated in CSCPE (red dashed line), there is a clear
jump indicating the transition from hole to particle edge
state.
A particular feature of the edge state in the SL-BHM, not

present in the hard-core limit, is the peak of the local
density on the border of the n ¼ 1 MI region above unity.
Within CSCPE we calculate this density, which yields in
zeroth order of t2

hn̂edge1 i ¼ 1þ 4��t21
U3

þ 6��2t21
U4

þOð1=U5Þ: (10)

We checked the validity of this result by comparing to
DMRG data and found good agreement until the n ¼ 1
MI starts to melt.
In summary, we have discussed topological properties of

the one-dimensional SL-BHM with alternating hopping
rates t1 and t2. In the limit of infinite interaction U this
model corresponds to the SSH model for free fermions,
which is known to possess topologically nontrivial insulat-
ing phases for t1 � t2 with a strict bulk-edge correspon-
dence. We introduced a many-body generalization of
the Zak phase as topological order parameter, which
is quantized as a consequence of inversion symmetry.

FIG. 3 (color online). Ground-state density distribution of the
SL-BHM with harmonic trap and potential step between sites
j ¼ �6 and j ¼ 5 leading to interfaces between n ¼ 1=2
(in the center) and n ¼ 1 MI regions. �

trap
j ¼ !ðjþ 0:5Þ2, with

!=U ¼ 0:001. Results are obtained by DMRG simulations for
�=U ¼ 0:55. (a) The topological trivial n ¼ 1=2 MI phase with
t1=U ¼ 0:04, t2=U ¼ 0:2 and ��=U ¼ 0:6. (b) Topological non-
trivial n ¼ 1=2 phase with t1=U ¼ 0:2, t2=U ¼ 0:04, and
��=U ¼ 0:6 (blue squares), 0.7 (red stars). The right panel
illustrates the interface in the topologically trivial case (c) and in
the nontrivial case with occupied (d) and unoccupied interface (e).

FIG. 4 (color online). (a) Density distribution at potential step
��=U ¼ 0:6 at jstep ¼ 6 for t1=U ¼ 0:2, t1=t2 ¼ 5 and increas-

ing chemical potential �=U. (b) Local particle number hn̂edge1 i at
the edge of the n ¼ 1MI region as function of �=U showing the
occupation at the edge if �>�e ¼ 0:47 (dashed red line).
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We analyzed edge states of a MI with filling n ¼ 1=2 for
open boundary conditions using DMRG and analytic per-
turbative calculations and found that the bulk-edge corre-
spondence does not hold strictly in the sense of a protected
and localized many-body midgap state. Instead we showed
that, as a direct consequence of nontrivial topology, at least
a particlelike or a holelike edge state remains localized and
stable until the MI melts. While sharp open boundaries
may be difficult to realize in cold-atom experiments, we
showed that an interface between a n ¼ 1 and n ¼ 1=2MI
can be created where two topologically distinct phases are
in contact. The required potential step can be realized by an
admixture of a second heavy atom species. We found that
similar edge states emerge as in the case of open boundary
conditions. These edge states are characterized by a density
dip at the edge below 1=2 and a density peak at the edge
with local particle number exceeding 1. These features
allow a simple detection of the edge states and thus a
verification of the different topological nature of the MI
phases in cold-atom experiments.
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