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We present a theory of electromagnetically induced transparency in a cold ensemble of strongly

interacting Rydberg atoms. Long-range interactions between the atoms constrain the medium to behave as

a collection of superatoms, each comprising a blockade volume that can accommodate at most one

Rydberg excitation. The propagation of a probe field is affected by its two-photon correlations within the

blockade distance, which are strongly damped due to low saturation threshold of the superatoms. Our

model is computationally very efficient and is in quantitative agreement with the results of the recent

experiment of Pritchard et al. [Phys. Rev. Lett. 105, 193603 (2010)]
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Strong dipole-dipole or van der Waals (vdW) interac-
tions between atoms in highly excited Rydberg states [1]
constitute the basis for promising quantum information
schemes [2] and interesting many-body effects [3–8].
Many of these studies utilize the dipole blockade mecha-
nism [9–13] which suppresses multiple Rydberg excita-
tions within a certain interaction (blockade) volume.
Electromagnetically induced transparency (EIT) [14] can
translate the interactions between Rydberg atoms into
sizable interactions between single photons [15–17].

Recently, several experiments on EIT [18–21], and the
closely related CPT (coherent population trapping) [22],
with Rydberg atoms were performed. Strong vdW inter-
actions between the atomic Rydberg states were promi-
nently manifest in Ref. [21]: Increasing the probe field
amplitude led to reduction of its transmission within the
EIT window, which, quite surprisingly, was accompanied
by negligible broadening and indiscernible shift of the EIT
line. Here we develop a theoretical model for EIT with
Rydberg atoms, whose predictions fully reproduce the
experimental observations [21]. The crux of our approach
is the coarse-grained treatment of the atomic medium
composed of effective superatoms (SAs), with each SA
represented by collective states of atoms in the blockade
volume that can accommodate only one Rydberg excita-
tion. A weak probe field propagates through the EIT
medium with little attenuation, but for a stronger field
with more than one photon per SA, the excess
photons are subject to enhanced—essentially two-level
atom—absorption. This leads to the field attenuation with
the simultaneous buildup of an avoided volume between
the probe photons [17]. The inclusion of two-photon cor-
relations is the key feature of our work, not present in the
numerical simulations of [21] and recent theoretical studies
[23] which agreed with the experiment at weak probe fields
but had significant discrepancies for stronger fields. Our

theory is not limited to weak probe fields and/or low atomic
densities, yet, despite intrinsic nonlinearity, it is intuitive
and numerically efficient, amounting to the solution of a
pair of coupled differential equations for the probe field
intensity and its second-order correlation, in the spirit of
the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
Consider an ensemble of N ¼ R

V d
3r�ðrÞ cold atoms of

density �ðrÞ in the (quantization) volume V interacting

with two optical fields. The quantized probe field Êp of

frequency !p acts on the atomic transition between the

ground jgi and excited jei states, and the control field of
frequency !c drives the transition jei ! jri with Rabi
frequency �c [see Fig. 1(a)]. A pair of atoms i and j at
positions ri and rj excited to the Rydberg states jri interact
with each other via a vdW potential @�ðri � rjÞ ¼
@C6=jri � rjj6 [24]. In the frame rotating with frequencies

FIG. 1 (color online). (a) Level scheme of atoms interacting
with probe �p and control �c fields with detunings �p and �c.

�e and �r are (population) decay rates of states jei and jri, and
V vdW denotes vdW interaction between atoms in Rydberg state
jri. (b) Truncated level scheme of the superatom, composed of
nSA atoms, with corresponding transition amplitudes due to the
probe and control fields.
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!p;c, the system Hamiltonian H ¼ H a þV af þV vdW

contains the unperturbed atomic part, H a ¼
�@

P
N
j ½�p�̂

j
ee þ ð�p þ �cÞ�̂j

rr�, and the atom-field and

vdW interactions, V af ¼ �@
PN

j ½�̂pðrjÞ�̂j
eg þ�c�̂

j
re þ

H:c:� andV vdW ¼ @
PN

i<j �̂
i
rr�ðri � rjÞ�̂j

rr, where �̂
j
�� �

j�ijjh�j is the transition operator for atom j at position rj,

�p ¼ !p �!eg and �c ¼ !c �!re are the detunings of

the probe and control fields, and �̂p ¼ �Êp is the operator

of the probe Rabi frequency, with � ¼ }ge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p=ð2@�0VÞ

q

the atom-field coupling strength on the jgi ! jei transition
with dipole moment }ge.

We consider the evolution of the probe field only along its
propagation z axis, and assume uniform, undepleted control
field �c. Using Hamiltonian H , we obtain Heisenberg-

Langevin equations for the field ÊpðrÞ and continuous,

appropriately averaged, atomic �̂��ðrÞ operators:
ð@t þ c@zÞÊpðrÞ ¼ i�N�̂geðrÞ; (1a)

@t�̂geðrÞ ¼ ði�p � �eÞ�̂geðrÞ þ i��
c�̂grðrÞ

þ i�̂pðrÞ½�̂ggðrÞ � �̂eeðrÞ�; (1b)

@t�̂grðrÞ ¼ fi½�2 � ŜðrÞ� � �rg�̂grðrÞ
� i�̂pðrÞ�̂erðrÞ þ i�c�̂geðrÞ; (1c)

where �e � 1
2 �e and �r (� �e) are the transversal relaxa-

tion rates, with the associated noise operators dropped,

�2 ¼ �p þ �c is the two-photon detuning, and ŜðrÞ �R
d3r0�ðr0Þ�ðr� r0Þ�̂rrðr0Þ is the total vdW induced shift

of level jri for an atom at position r. Since ŜðrÞ involves
integration over all spatial coordinates r0 2 V, Eqs. (1) are
highly nonlocal. We therefore need to contrive an efficient

method to evaluate the vdW shift ŜðrÞ.
We shall be concerned with stationary interaction and

drop in Eqs. (1) all the time derivatives. Consider for the

moment Eqs. (1b) and (1c) without the vdW shift Ŝ and
small relaxation �r terms. When�p;c, j�p;2j<�e, we can

approximate the population of Rydberg state jri by a

Lorentzian function of �2: h�̂rri � h�̂y
p�̂pi=ðj�cj2 þ

�2
2�

2
e=j�cj2Þ, with the half-width w � j�cj2=�e. Observe

now that an atom in Rydberg state jri would induce vdW
shift �ðRÞ of level jri for another atom separated by
distance R, which effectively translates into the two-photon
detuning�2. The vdW interaction then blocks the excitation
of all the atoms for which �ðRÞ * w. This is the essence of
the Rydberg blockade [9]. We therefore define the blockade

radius RSA ’ ffiffiffiffiffiffiffiffiffiffiffiffi
C6=w

6
p

and call the ensemble of nSA ¼ �VSA

atoms within volume VSA ¼ 4	
3 R3

SA ‘‘superatom’’ (SA).

Since in general the atomic density �ðrÞ varies with position
r, so does nSAðrÞ, but the density of SAs �SA ¼ V�1

SA ¼
3
4	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�cj2=ð�eC6Þ
p

is constant.

Each SA can contain only one Rydberg excitation delo-
calized over VSA. We may therefore treat the medium as a

collection of NSA ¼ �SAV SAs at positions rj, which

implies a spatial coarse-graining with the grain size 2RSA

[25,26]. The total vdW shift ŜðrÞ at position r can then be
expressed as

ŜðrÞ � XNSA

j

�ðr� rjÞ�̂RRðrjÞ ¼ ���̂RRðrÞ þ ŝðrÞ; (2)

where �̂RRðrjÞ is the projector onto the Rydberg excitation
of the SA at rj. The physical meaning of the first term on

the right-hand side of Eq. (2) is that an excited SA at rj ’ r

[�̂RRðrÞ ! 1] induces divergent vdW shift averaged over

the SA volume: �� ’ 1
VSA

R
VSA

�ðr0Þd3r0 ! 1. Actually, for

a small cutoff in the interatomic separation, j ��j � �e is
finite but very large, which is the only relevant property.

The last term ŝðrÞ � PNSA

j�jr
�ðr� rjÞ�̂RRðrjÞ describes the

vdW shift induced by the external SAs outside the volume

VðrÞ
SA centered at r. It can be evaluated by replacing the

summation by an integration over the entire volume V,
excluding the SA at r, which, upon using the mean-field

approximation, yields a small shift hŝðrÞi ¼ w
8 h�̂RRðrÞi.

Assuming that the probe field �̂p varies little over

distance 	RSA, we can describe the dynamics of
individual SAs in terms of collective states and operators
defined within the blockade volume VSA. The level
scheme of the SA is shown in Fig. 1(b): jGi ¼
jg1; g2; . . . ; gnSAi is the ground state, and jRð1Þi ¼ 1ffiffiffiffiffiffi

nSA
p 
PnSA

j jg1; g2; . . . ; rj; . . . ; gnSAi is the single collective

Rydberg excitation state, while jEðkÞi are the properly sym-
metrized (Dicke) states with k atoms in jei. The correspond-
ing transition amplitudes hEð1ÞjV afjGi ¼ ffiffiffiffiffiffiffiffi

nSA
p

�̂p,

hRð1ÞjV afjEð1Þi ¼ �c, etc., depend on the number of atoms

nSA inVSA. In order to calculate �̂RR, we now proceed along
the lines similar to the single atom treatment. Starting with
the SA in jGi, we adiabatically eliminate all the excited

states jEðkÞi having large widths	k�e. Note that state jRð1Þi
is reached from jGi by 2-photon transition, while all the

other states jRð1ÞEðkÞi require 2þ k photon transitions;
therefore their adiabatic elimination affects little the

populations of jGi and jRð1Þi. We then obtain for the

SA operators �̂GR � jGihRð1Þj ¼ �c
ffiffiffiffiffiffiffiffi
nSA

p
�̂p�̂GG=½ð�p þ

i�eÞ�2 � j�cj2� and �̂RR ¼ �̂RG�̂GR. To account for pos-

sible saturation of transition jGi ! jRð1Þi when the number
density of probe photons �phot is comparable to, or larger

than, the density of SAs �SA, we take �̂GG þ �̂RR ¼ 1,
which finally yields [27]

�̂ RR ¼ j�cj2nSA�̂y
p�̂p

j�cj2nSA�̂y
p�̂p þ ½j�cj2 � �p�2�2 þ�2

2�
2
e

:

(3)
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We next examine the probe field propagation in the
atomic medium. For moderate Rabi frequency �p < �e

and number density of photons �phot � �, we can assume

linear response of individual atoms to the applied field,
setting �̂ee, �̂er ! 0 and �̂gg ¼ 1. We then arrive at

the propagation equation for the probe field amplitude,

@zÊp ¼ i 
2 �̂Êp, where 
 ¼ &0� is the resonant (intensity)

absorption coefficient proportional to the atomic absorp-
tion cross section &0 ¼ !pj}gej2=ð@�0c�eÞ, while

�̂ðrÞ ¼ �̂RRðrÞ i�e

�e � i�p

þ ½1� �̂RRðrÞ�


 i�e

�e � i�p þ j�cj2½�r � ið�2 � hŝðrÞiÞ��1
(4)

is the operator-valued polarizability. Here the first fraction
is the polarizability �TLA of a two-level atom, while the
second fraction, barring the small shift hŝðrÞi, is the usual
EIT polarizability �EIT [14]. Physically, if the SA at posi-

tion r contains a Rydberg excitation [�̂RRðrÞ ! 1], the
two-photon detuning is shifted out of the EIT window

[ �� � �e] and the probe field Êp sees an absorbing two-

level system; if no Rydberg excitation is present, the
medium response is that of usual EIT with a small mean-
field shift due to the vdW interaction with the external SAs.
Then the expectation value of the probe field intensity
obeys the equation

@zhÊy
pðrÞÊpðrÞi ¼ �
ðrÞhÊy

pðrÞIm½�̂ðrÞ�ÊpðrÞi: (5)

Note that factorizing out Im½h�̂ðrÞi� in a mean-field sense
would amount to neglecting the essential two-particle
quantum correlations [17] originating from nonlinear re-
sponse of the atoms to the Rydberg excitations. We there-
fore proceed more carefully and replace �̂ðrÞ in Eq. (5) by
its expectation value conditioned upon the presence of a
photon at r, denoted by h� � �ir,

h�̂ðrÞir ¼ h�̂RRðrÞir�TLA þ ½1� h�̂RRðrÞir��EIT: (6)

The conditional Rydberg population h�̂RRir of the SA
at r is obtained from Eq. (3) by the replacement

�̂y
pðrÞ�̂pðrÞ ! h�̂y

pðrÞ�̂pðrÞigð2Þp ðrÞ, where the probe field
intensity correlation function gð2Þp ðrÞ ¼ hÊy

pðrÞÊy
pðrÞÊpðrÞÊpðrÞi

hÊy
pðrÞÊpðrÞihÊy

pðrÞÊpðrÞi
quantifies the probability of having simultaneously at least

two photons in the blockade volume VðrÞ
SA. The field inten-

sity is now coupled to its two-photon correlation gð2Þp ðrÞ
which in turn evolves upon propagation. Note that linear,
e.g. bare EIT, response of the medium does not change the
correlation function of the propagating field, and only
nonlinear, i.e. conditional, absorption / Im½h�ðrÞi �
�EIT� modifies gð2Þp , which therefore obeys the equation
of motion [28]

@zg
ð2Þ
p ðrÞ ¼ �
ðrÞh�̂RRðrÞiIm½�TLA � �EIT�gð2Þp ðrÞ: (7)

Hence, within the EIT window, where Im½�EIT� ’ 0, the
correlations between the photon pairs with relative dis-
tance smaller than the blockade (SA) radius decay with
the rate proportional to the probability of SA excitation

h�̂RRi and the absorption rate of a two-level system
Im½�TLA�. We note that our treatment involves only a
single transverse mode of the probe field, which is effec-
tively defined by the SA cross section. If, however, during
propagation there is strong mixing of the transverse modes,
it would preclude the buildup of (anti)correlations between
the photons.

Given the input field ‘‘intensity’’ Ip � h�̂y
p�̂pi and its

correlation function gð2Þp [for ‘‘classical’’ coherent field

gð2Þp ð0Þ ¼ 1], we then use the following stochastic proce-
dure to spatially integrate the coupled coarse-grained
Eqs. (5)–(7) for z 2 ½0; L�: We divide the propagation
distance L into L=ð2RSAÞ intervals corresponding to SAs,
and for z within each SA we determine via Monte Carlo

sampling of h�̂RRðrÞir whether the SA is excited,

�̂RRðrÞ ! 1, or not, �̂RRðrÞ ! 0. We then average over
several independent realizations. The limit of infinitely
many such realizations corresponds to continuous polar-
izability of Eq. (6).
We employ our theory to simulate the experiment

of Ref. [21] with an ensemble of cold 87Rb atoms:
jgi � 5S1=2jF ¼ 2; mF ¼ 2i, jei�5P3=2jF¼3;mF¼3i
with �e ¼ 3:8
 107 s�1, and jri � 60S1=2 with

�r ¼ 5
 103 s�1 and C6=2	 ¼ 1:4
 1011 s�1 �m6 [24]
corresponding to repulsive vdW interactions. �e;r

also include the one- and two-photon laser linewidths
�!1;2=2	 ’ ð5:7; 11Þ 
 104 s�1. The atomic density is

�ðzÞ ¼ �0 exp½�ðz� z0Þ2=2�2
�� with peak �0 ¼

1:32
 107 mm�3 and half-width �� ¼ 0:7 mm; indistin-

guishable results are obtained for homogeneous ensemble
of density �� ¼ 1:2
 107 mm�3 and length L ¼ 1:3 mm,
leading to the resonant optical depth of �
L ¼ 4:524. The
control field �c=2	 ¼ 2:25
 106 s�1 [29] is slightly de-
tuned by �c=2	 ¼ �105 s�1. The corresponding blockade
radius is RSA ’ 6:6 �m and each SA contains on average
�nSA ’ 14:7 atoms. We emphasize that our simulations are
insensitive to moderate variations (� 20%) of the SA
volume VSA and the number of atoms nSA (’ 14� 3) it
contains.
In Fig. 2 we compare the transmission spectra for differ-

ent input probe intensities with the corresponding plots of
Ref. [21]. Already for �pð0Þ=2	 * 0:1 MHz the vdW

interaction induced nonlinearities play an important role.
The agreement between our stochastic simulations and the
experiment is remarkable. We also show the local intensity

correlation gð2Þp ðLÞ at the exit from the medium.
Figure 3 summarizes the results of our simulations in-

volving the continuous polarizability of Eq. (6). The weak
field of �p=2	 & 0:01 MHz encounters linear EIT re-

sponse. Increasing the input probe intensity leads to lesser
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transmission through the EIT window (�2 	 0) and to
small mean-field shift and broadening of the EIT line.
This is due to the higher probability of two or more
photons, exciting Rydberg states jri, to be at the same

SA. The induced large vdW level shift �� results in strong
photon absorption, simultaneously reducing the photon
coincidence probability within the SA volume VSA.

Hence, both IpðzÞ and gð2Þp ðzÞ decay, but once gð2Þp ðzÞ � 1,

the attenuation of the probe field intensity IpðzÞ slows

down. Eventually Ip ¼ h�̂y
p�̂pi saturates at a value

corresponding to less than one photon per SA, �phot &

�SA, with vanishing coincidence probability. With
�phot ¼ @�0cIp=ð2}2

ge!pvÞ, where v ¼ 2j�cj2=ð �
�eÞ
(’ 6000 m=s) is the probe group velocity within the EIT

window j�2j & �!EIT, we have that �phot ¼ ð�=4Þ

h�̂y

p�̂pi=j�cj2 and the maximal saturation intensity is

Imax
p ’ ð4�SA=�Þj�cj2. In the medium the photons are

anticorrelated (antibunched) within the temporal window
of �t ’ 2RSA=v ( ’ 1:6 ns), which does not change when
they leave the medium for free space.

Had we not taken into account the probe field intensity

correlation, equivalent to setting gð2Þp ðzÞ ¼ 18 z 2 ½0; L�,
Fig. 3(b), we would have had faster, exponential decay of
IpðzÞ, unrestrained by the buildup of avoided volume be-

tween the photons, as well as sizable shift and broadening
of the EIT line, which contradict the observations of [21].

Outside the EIT window, around the Autler-Townes
doublet �2 	��c, the probe is strongly absorbed,
Im½h�i� ’ 1, but the correlation function is amplified, since
in Eq. (7) Im½�TLA � �EIT�< 0. In other words, linear
absorption is larger than the conditional absorption, which
results in photon bunching but very low flux.

We finally note that for relatively strong input fields
�pð0Þ & �e of Fig. 3, the validity of linear response of

the atoms inherent in polarizability of Eq. (4) may not be
a priori justified. This is indeed the case for an optically
thin atomic medium. But in the optically thick medium,
within a few absorption lengths, even a strong probe field
and its two-photon correlation function quickly decay to
the level at which the above approximation is justified.
To conclude, EIT via atomic Rydberg states is sup-

pressed by collective Rydberg excitations of SAs which
depend on the local probe field intensity and its two-
particle correlation within the SA (blockade) volume. For
strong input fields, the buildup of anticorrelations between
the photons upon propagation through the medium leads to
the saturation of transmitted field intensity to a value
corresponding to one photon per blockade volume.
Conversely, suitably antibunched input fields should ex-
hibit large transmission affected only by small linear
absorption.
In a one-dimensional configuration, the spatial correla-

tions between the photons in the medium translate at
the output into temporal correlations in free space, which
can be measured by coincidence detection. The limit of
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PRL 107, 213601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 NOVEMBER 2011

213601-4



maximal saturation intensity Imax
p of the transmitted

through the EIT window field then corresponds to a train
of nonoverlapping single-photon pulses with the temporal
separation �t of a few ns.
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