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We investigate the dynamics of a one-dimensional Bose gas after a quench from the Tonks-Girardeau

regime to the regime of strong attractive interactions applying analytical techniques and numerical

simulations. After the quench the system is found to be predominantly in an excited gaslike state, the so-

called super-Tonks gas, however with a small coherent admixture of two-particle bound states. Despite its

small amplitude, the latter leads to a pronounced oscillation of the local density correlation with a

frequency corresponding to the binding energy of the pair. Contributions from bound states with larger

particle numbers are found to be negligible.
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Ultracold quantum gases in reduced dimensions have
attracted a lot of attention in recent years [1]. This is
because on one hand quantum effects play an increasing
role in lower dimensions and on the other hand these
systems became experimentally accessible using ultracold
atomic gases. A striking example is the effective fermio-
nization of a one-dimensional (1D) Bose gas with repulsive
interactions, described by the Lieb-Liniger (LL) model [2],
leading to the so-called Tonks-Girardeau (TG) gas [3–5].
In the attractive case the ground-state of the LL gas is the
highly localized McGuire cluster state [6]. In the thermo-
dynamic limit the gas is unstable, preventing direct experi-
mental studies of ground-state properties. However, in
dynamical setups, attractive and repulsive gases are
equally well accessible. A recent milestone in this direc-
tion is the creation of the super-Tonks-Girardeau (sTG) gas
[7,8] by Haller et al. [9] realized by a rapid sweep through a
confinement resonance from the strongly repulsive to the
attractive side. The sTG gas is an excited, gaslike eigen-
state, that does not contain any particle clusters. We here
analyze the dynamics of this quench process by numerical
simulations employing the time evolving block decimation
(TEBD) [10,11] algorithm recently applied to the relaxa-
tion of the repulsive LL gas [12] and a number of lattice
models [13–15].

The Hamiltonian of a 1D, trapped Bose gas with local
interactions is given by the LL model [2] with additional
potential
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g is the interaction strength, which is related to the 1D
scattering length a1D via g ¼ �@

2=ðma1DÞ, and can have
both signs. It is characterized by the dimensionless Tonks
parameter � ¼ 1=ða1D%Þ. VðxÞ ¼ m

2 !
2x2 describes a trap.

The spectrum of (1) is quite different depending on the
sign of �; however, the positive- and negative-� spectra
agree in the limits of weak as well as strong interactions
[16]. This can be understood from the problem of two
particles with V ¼ 0 and periodic boundary conditions
(PBC): Fig. 1 shows the lowest lying states with vanishing
center-of-mass momentum. The noninteracting ground-
state (left and right end of the figure at E ¼ 0) has a
constant relative wave function. For finite interactions,
the wave function develops a peak at zero interparticle
distance when an attractive interaction (� < 0) is turned
on and eventually forms a closely bound pair with binding
energy ��2 (see below). On the repulsive side (� > 0) a
diplike kink emerges with increasing interaction, which
eventually makes the wave function vanish at coinciding
particle positions—this is the famous fermionized TG gas.
When approaching the strong interaction regime from the
attractive side, the first excited state—the sTG gas—adia-
batically connects to exactly the same fermionized state.
This matching continues for higher excited states and can
be generalized to many particles [17].
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FIG. 1 (color online). Spectrum of LL Hamiltonian for two
particles with vanishing total momentum on a ring of length L as
a function of inverse interaction strength. The energy unit is
E0 ¼ 4�2

@
2=ðL2mÞ. One recognizes equivalence of the spectra

at vanishing (j�j ! 0) as well as infinitely strong interactions
(j�j ! 1).
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Figure 1 indicates that a quench from the TG regime to the
strongly attractive regime will put the gas to good approxi-
mation in the sTG state. Experiments have successfully
demonstrated this, while the difference between TG and
sTG can be detected by their different compressibility [7].

We here consider a gas of N particles confined by a
harmonic trap initially being in the ground state for � ¼
þ1. At t ¼ 0 the interactions are switched to the strongly
attractive side � � �1. In simulations we use values of �
between �6 and �145. The trap plays a minor role, since
interactions give the relevant time scale.

We simulate the full many-body dynamics using the
numerical TEBD scheme, employing a fourth order trotter
decomposition [18]. To this end the continuous model (1)
is discretized, resulting in the sparsely filled Bose-Hubbard
model [19,20]. The lattice is actually finite, but comprises
all of the gas (which does not change its density distribu-
tion on the time scale in question). The TEBD algorithm is
based on a representation of the state vector in terms of
matrix-product states defined on a lattice. In order to be
able to perform calculations the dimension of the involved
matrices must be kept small corresponding to a small
entanglement between different lattice regions. For the
specific setup it is necessary that the conservation of the
total particle number is taken into account explicitly. While
time dependent simulations are generally limited to short
times due to the linear growth of entanglement entropy
[21,22], this it not crucial here. Although we also observe
such a linear growth, the increase is slow and we can go
much beyond the time scale of interactions as in [12] for as
much as N ¼ 18 particles on a 1280 sites lattice using
rather small matrices of dimension 100.

Figure 2(a) shows the local two-particle corre-

lation gð2Þð0; 0Þ, where gð2Þðx1;x2Þ¼ h�̂yðx2Þ�̂yðx1Þ�̂ðx1Þ
�̂ðx2Þi=ð%ðx1Þ%ðx2ÞÞ, as a function of time for various
values of the interaction strength. The correlation function
first grows as a power law �ðt=t0Þ� with a characteristic
time t0 ¼ 4m=ð@%2Þ, which is also used as a time unit in the

plots. By a linear fit to the numerical data, we find �
growing from 1 in the free case to a value of about 4=3

in the strongly attractive case. gð2Þ rises up to a finite value
much smaller than 1 for reasonably strong interaction. This
reflects the fact that most of the gas ends up in the
fermionized sTG state. In addition, we observe a rather
peculiar oscillatory behavior with large modulation depth.
The frequency coincides with the binding energy of a pair
of particles in the McGuire state !2 ’ �2

@%2=4m ¼
�2=t0. Thus the dynamics seems to be strongly affected
by the contribution of bound pairs. Moreover, there is no
sign of a relaxation, as observed in the repulsive case [12].

In Fig. 2(b) the local three-particle correlation gð3Þ is

plotted. One recognizes that gð3Þ remains extremely small,
showing that higher-order cluster states are not formed.
This agrees well with the finding in [23] where the overlap
of the TG wave function with the McGuire cluster state
was calculated.
Figure 3 shows the dynamical evolution of the density-

density correlations, where we fix one position at the center
of the cloud. The initial state shows the typical feature of

fermionization; i.e., gð2Þð0; 0Þ is zero and gð2Þð0; xÞ rises to
one (no correlation) on a length scale proportional to the
average interparticle distance. In the limit � ! �1 the
correlations do not show much resolvable dynamics be-
cause the initial TG is close to the sTG state. However, for

moderate interaction strength, we see gð2Þð0; xÞ rising
sharply around zero distance. This clearly shows transi-
tions to states other than the sTG state. One finds that the
characteristic length scale of the peak at the origin is given
by a1D. This gives further indication of a finite admix-
ture of the N ¼ 2 cluster state. Note, that sinceR
dxh�̂yðxÞ�̂yð0Þ�̂ð0Þ�̂ðxÞi ¼ %ð0ÞðN � 1Þ the integral

over gð2Þð0; xÞ must be constant in time, as long as the
density is homogeneous. The increase at x1 � x2 ¼ 0
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FIG. 2 (color online). Left: Time evolution of the local two-
particle density-density correlation in a system of N ¼ 18 par-
ticles calculated via TEBD (colored lines). Gray line: two-
particle case with PBC and � ¼ 0. Right: Time evolution of
local three-particle correlation gð3Þ (red dashed) at the trap center
and gð2Þ (black) for comparison at � ¼ �145. (The artifacts for
very short times are due to the finite time steps used by the
numerical algorithm.)
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FIG. 3 (color online). Time evolution of the nonlocal density-
density correlation function for interaction strength � ¼
�18:7931 calculated for N ¼ 18 particles using TEBD.
Curves are shown for 0 (black), 1=4 (dotted), and 1=2 (red,
maximum value at x ¼ 0) oscillation periods of the local corre-
lation. Inset: gð2Þ at times of 3.5 (black, solid), 4 (dotted), and 4.5
(red, maximum value at x ¼ 0) periods. The vertical dashed line
indicates x ¼ a1D. The blue dashed line shows gð2Þ for a TG gas
shifted by a1D and renormalized.
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must therefore be accompanied by a decrease at larger
distances as seen in the correlation waves building up in
Fig. 3. The inset of Fig. 3 shows another interesting feature:
apart from small distances, where oscillations continue, the
correlations become quickly stationary (at least over sev-
eral oscillation periods) and can be well approximated for

intermediate distances by gð2Þ of a TG gas shifted by a1D
and renormalized by a factor (1� ��1) (dashed, blue line).
This can be explained as follows: As shown in [23] the
wave function of the two-particle problem with finite
attractive interactions has a node at some distance x ¼ a
and for larger distances coincides with the TG wave func-
tion apart from normalization. For large j�j, a≈ a1D.
Furthermore, the renormalized and shifted TG correlation

curve agrees very well with gð2Þð0; xÞ for a system of hard
rods with excluded volume a≈ a1D [24]. The fact that the
TEBD results show slightly more pronounced oscillations
than the shifted TG or hard-rod curve is due to the small
excitation of higher gaslike states.

We will show now that the two-particle correlations in
the trapped gas can be very well reproduced by a system
containing only N ¼ 2 particles. This is due to the fact that
eigenstates are expected to be well approximated by pair
product states of the Jastrow-Bijl type [23]

�ðx1; . . . ; xnÞ ¼
�Y
i<j

’ðxi � xjÞ
�YN

j¼1

exp

�
� x2j

2l2osc

�
; (2)

with l2osc ¼ @=ðm!Þ, and ’ðxi � xjÞ being a two-particle

wave function. The two-particle solution will provide in-
sight into the nature and the size of the oscillations ob-
served in the numerics. For the actual calculations we
impose PBC, which is reasonable for the comparison to
the trapped gas, since the latter is homogeneous to good
approximation over some interparticle distances. The PBC
problem gives analytical expressions and allows us to
extract the scaling with � in the strongly interacting re-
gime. This problem has been solved in the original paper
by Lieb and Liniger [2], and we will use their solution.

The Hamiltonian for the two-particle problem reads in

first quantization Ĥ ¼ � @
2

2m ð@21 þ @22Þ þ g�ðx1 � x2Þ. All
eigenstates can be constructed from coordinate Bethe an-
satz [25]. In the primary sector (0 � x1 � x2 � L), the

solution is ’ðy ¼ x1 � x2Þ ¼ 2Aeið�=4Þ cos½�2 ðyL � 1
2Þ�. A is

a normalization constant, and � is related to the scattering
phase shift� ¼ �2tan�1½ðk2 � k1ÞL=2�� via� ¼ �=2�
�. Note that eið�=4Þ is not a simple phase factor as � will be
imaginary for the bound state.

We will now calculate asymptotic expressions for the
bound state ’b, where � ! �1, as well as TG and sTG
states’�, where � ! �1. For the bound state’b we need
to find an imaginary solution of the Bethe equation.

Substituting � ¼ i~� we find in the strongly interacting

limit ~� ¼ ð�2�Þ. With this we calculate the normalization

of the wave function, yielding Ab !
ffiffiffiffiffiffiffiffiffi
~�=2

q
=L. Thus

’bðx1�x2¼0Þ¼2Abe
�ð ~�=4Þcosh

~�

4
���!�!�1�

ffiffiffiffiffiffiffiffi��
p
L

: (3)

Because of bosonic statistics the local two-particle corre-

lation is given in terms of the wave function as gð2Þð0; 0Þ ¼
2j’ð0Þj2=%ð0Þ2. As the density % is 2=L everywhere, this

results in gð2Þb ð0; 0Þ ! ~�=4 ¼ ��=2.
We denote the lowest lying gaslike states ’� for � !

�1. From the Bethe equation we see that a real solution �
will be close to 2�. Expanding the tangent around its
singularity at �=2 we get � ¼ 2�ð1� 2

�Þ. For the normal-

ization this means A� ! 1=L
ffiffiffi
2

p
, such that

’�ðx1 � x2 ¼ 0Þ ¼ 2A�eði�=4Þ cos
�

4
���!�!�1

i
ffiffiffi
2

p �

�L
: (4)

The local two-particle correlation is in this case

gð2Þ� ð0; 0Þ ¼ �2=�2. The ��2 scaling is well known [26]
and is the same as in the many-particle case.
The overlap between the initial TG gas’0 ¼ lim�!1’þ

and the bound state can easily be calculated for large j�j.
One finds � � h’0j’bi ! �2

ffiffiffi
2

p
���3=2.

We now want to calculate the dynamics of the local
correlation in the two-particle case. This can be done in
many different ways. We used discretization [12] and exact
diagonalization to find the solution shown in Fig. 4 as a
black solid curve. From the above calculations we can
derive simple approximations which are very good in the
strongly interacting regime. We can decompose the initial
state j’0i according to

j’0i ¼ �j’bi þ ðj’0i � �j’biÞ ¼ �j’bi þ j �’0i: (5)

Note that for large j�j, j �’0i is approximately normalized.
Since the initial state is the TG gas with ’0ðx1 � x2 ¼
0Þ ¼ 0 one finds from (5) and (3) for t ¼ 0:

�’ 0ðx1 � x2 ¼ 0; t ¼ 0Þ ���!�!�1
i2

ffiffiffi
2

p �

�L
: (6)

Note the factor of 2 as compared to Eq. (4) which is
physically due to the very small admixture of the bound
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FIG. 4 (color online). Comparison of the many-body results
with the results from the two-particle system with PBC in the
case � ¼ �89:0355. The thick black line corresponds to the
two-particle case, the thin green one shows the N ¼ 9 particle
case (calculated via TEBD), and the blue dashed one is the
beating approximation (8).
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state. �’0 is not an eigenstate, but is composed of low-lying
gaslike states, that have an energy spread much smaller
than the pair binding energy. For small times one can
ignore the energy differences and thus the time dependence
of �’0. This results in

gð2ÞðtÞ ���!�!�1
8
�2

�2
½1� cosð!2tÞ�: (7)

This expression describes the initial increase of gð2Þ as ob-
served in the many-particle calculation (and in the numerical
solution of the N ¼ 2 case) very well. It does predict, how-
ever, oscillations with unity modulation depth, which is not
true. The reason for this is that �’0 contains in addition to the
dominant, lowest gaslike state (i.e., the sTG state) ’� also
small admixtures of higher lying gas states which oscillate in
time all with slightly different frequencies. For larger times
these oscillations lead to an effective dephasing in the inter-

ference part of gð2Þ. Note that the direct contribution of the

excited gas states to gð2Þ is negligible. An approximation
which is much better suited to describe the large time behav-
ior is j’0i��j’biþj’�i. Comparing (4) and (6) shows,
that we have only changed a factor of 2 such that

gð2ÞðtÞ ���!�!�1f5� 4 cos½ð!2 þ �2=t0Þt�g�
2

�2
; (8)

where we used that the sTG gas energy is @�2=t0 for strong
interaction, giving a minor correction to the frequency. On
short time scales this expression is invalid, but for t > t0=�

2

it becomes amuch better approximation than (7), as shown in

Fig. 4. It is interesting to note that gð2Þ scales as 1=�2, while
the pair fraction, i.e., the probability to find particles in a
paired state, � ¼ j"j2 ¼ 8�2=j�j3 scales as j�j�3 and is
thus more difficult to observe for large j�j.

In summary, we have shown by numerical TEBD simu-
lations that an interaction quench of a 1D Bose gas from
strong repulsive to strong attractive interactions puts the
gas predominantly into the lowest gaslike state, the sTG
gas. There is, however, a small coherent admixture of two-
particle bound states that results in a large-amplitude os-
cillation of the local density correlation with a frequency
corresponding to the energy difference between sTG gas
and bound pair state. At the same time higher-order corre-
lations remain extremely small showing that more deeply
bound, multiparticle cluster states are not formed.
Analytical calculations of the N ¼ 2 case were found to
reproduce the many-particle results with high accuracy.
This indicates that the many-body state can be well ap-
proximated by a Jastrow-Bijl type pair product wave func-
tion, where each term is a coherent superposition of a
gaslike state with a very small component of a two-particle

bound state. The peculiar oscillations of gð2Þ show further-
more that despite their small weight, the two-particle clus-
ter states are accessible to experimental probes. For strong
interactions, the bound pairs are highly colocalized. Since
in all physical realizations of the LL model, the true
interparticle potential is of finite range, details of the
potential will show up in the binding energy. In this way,

the two-particle correlation dynamics can be used to mea-
sure details of the underlying true potential. In order to
assess whether the effect predicted is accessible in current
experiments let us compare the beat frequency !2 ¼
�2

@%2=4m to the transverse trap frequency !?.
Introducing the longitudinal trap frequency !k one finds

!2 ¼ �2N!k=4. For �≈ 10 and 10 particles per tube this

gives !2 ≈ 250!k. For the experiment of [9] this corre-

sponds to about 3 kHz which is only a factor of 4 smaller
than !?. Using larger laser beam diameters this factor can
be increased, however, to 1 order of magnitude, such that
the 1D approximation remains valid [27]. Furthermore, our
numerics showed that the oscillations with a single domi-
nant frequency !2 prevail even for values of � as low as
�1, which would result in a reduction of !2 by 2 orders of
magnitude. Finally, our Letter shows that the TEBD algo-
rithm is suitable for the simulation of dynamical processes
in strongly interacting, continuous quantum gases.
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