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When a quantum system is quenched from its ground state, the time evolution can lead to nonanalytic behavior
in the return rate at critical times tc. Such dynamical phase transitions (DPTs) can occur, in particular, for quenches
between phases with different topological properties in Gaussian models. In this paper we discuss Loschmidt echos
generalized to density matrices and obtain results for quenches in closed Gaussian models at finite temperatures
as well as for open-system dynamics described by a Lindblad master equation. While cusps in the return rate are
always smoothed out by finite temperatures we show that dissipative dynamics can be fine-tuned such that DPTs
persist.
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I. INTRODUCTION

The macroscopic properties of a quantum system in equilib-
rium can be understood from the appropriate thermodynamic
potential. Studies of Lee-Yang zeros of the grand-canonical
potential as a function of a complex fugacity or of Fisher
zeros of the canonical potential as a function of complex
temperature, in particular, have significantly contributed to our
understanding of equilibrium phase transitions [1–4]. In recent
years, there have been attempts to follow a similar approach
to nonequilibrium dynamics. For quench dynamics in closed
quantum systems it has been suggested that dynamical phase
transitions (DPTs) can be defined based on the Loschmidt
echo [5]

L0(t) = 〈�0|e−iH1t |�0〉. (1.1)

Here |�0〉 is the pure quantum state before the quench and H1

the time-independent Hamiltonian responsible for the unitary
time evolution. The Loschmidt echo has the form of a partition
function with boundaries fixed by the initial state. In analogy
to the Fisher zeros in equilibrium one can thus study the zeros
of the Loschmidt echo for complex time t . In Ref. [5] it has
been shown that for the specific case of the transverse Ising
model these zeros form lines in the complex plane which cross
the real axis only for a quench across the equilibrium critical
point.

In a many-body system one expects that the overlap between
the time-evolved and the initial state is in general exponentially
small in system size in analogy to the Anderson orthogonality
catastrophe in equilibrium [6]. To obtain a nonzero and well-
defined quantity in the thermodynamic limit it is thus useful to
consider the return rate

l0(t) = − lim
L→∞

1

L
ln |L0(t)|, (1.2)
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where L is the system size. Zeros in L0(t) at critical times
tc then correspond to nonanalyticities (cusps or divergencies)
in l0(t) [5,7–11]. It is, however, important to stress that in
contrast to the particularly simple case of the transverse
Ising model there is in general no one-to-one correspondence
between dynamical and equilibrium phase transitions [8,12].
It is possible to find nonanalytical behavior of the return rate
without crossing an equilibrium critical point in the quench,
and one can cross a critical line without nonanalyticities in
l0(t) being present. For one-dimensional topological systems
it has been shown, in particular, that crossing a topological
phase transition in the quench always leads to a DPT but the
opposite does not have to be true [13]. Thus there are still
some issues about the appropriateness of the Loschmidt echo
as a useful indicator. Nevertheless the notion of a dynamical
phase transition is an exciting concept extending key elements
of many-body physics to nonequilibrium.

Lately, DPTs have also been studied experimentally. In
Ref. [14] vortices in a gas of ultracold fermions in an op-
tical lattice were studied and their number interpreted as a
dynamical order parameter which changes at a DPT. Even more
closely related to the described formalism to classify DPTs is
an experiment where a long-range transverse Ising model was
realized with trapped ions. In this case the time-evolved state
was projected onto the initial state which allowed access to the
Loschmidt echo (1.1) directly [15].

While these experiments are an exciting first step to test
these far-from-equilibrium theoretical concepts, they also lead
to a number of new questions. Chief among them is the question
of how experimental imperfections affect the Loschmidt echo
and DPTs. On the one hand, the initial state is typically not a
pure state but rather is a mixed state at a certain temperature
T . This raises the question how the Loschmidt echo can be
generalized to thermal states. On the other hand, the dynamics
is also typically not purely unitary. Decoherence and particle
loss processes do affect the dynamics as well, requiring a
generalization of (1.1) to density matrices. Finally dynamical
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processes and phase transitions can be induced entirely by
coupling to reservoirs in which case no pure-state or T = 0
limit exists [16].

In this paper we address these questions. In Sec. II we
discuss various different ways to generalize the Loschmidt
echo to finite temperatures. We concentrate, in particular,
on projective measurements of time-evolved density matrices
relevant, for example, for trapped ion experiments, as well
as on a proper distance measure between the initial and the
time-evolved density matrix following Refs. [17,18]. We study
both of these generalized Loschmidt echos for the case of
unitary dynamics of Gaussian fermionic models in Sec. III. As
examples, we present results for the transverse Ising and for
the Su-Schrieffer-Heeger (SSH) model. In Sec. IV we consider
the generalized Loschmidt echo for open-system dynamics of
Gaussian fermionic models described by a Lindblad master
equation (LME). A short summary and conclusions are pre-
sented in Sec. V.

II. THE LOSCHMIDT ECHO

We first review some properties of the standard Loschmidt
echo for unitary dynamics of pure states in Sec. II A before
discussing several possible generalizations to mixed states in
Sec. II B.

A. Pure states

The Loschmidt echo for unitary dynamics of a pure state is
defined by Eq. (1.1). Its absolute value can be used to define a
metric in Hilbert space φ = arccos |L0(t)|, with 0 � |L0(t)| �
1, which characterizes the distance between the initial state
|�0〉 and the time-evolved state |�(t)〉 = e−iH1t |�0〉 [19].
From this point of view the Loschmidt echo is a time-dependent
version of the fidelity F = |〈�0|�1〉| which has been widely
used to study equilibrium phase transitions [17,20–33]. Be-
cause of the Anderson orthogonality catastrophe one has to
consider the fidelity density f = − limL→∞ ln |F |/L for a
many-body system in the thermodynamic limit L → ∞ in
analogy to the Loschmidt return rate defined in Eq. (1.2).
If |�0〉 and |�1〉 are both ground states of a Hamiltonian
H (λ) for different parameters λ then the fidelity susceptibility
χf = (∂2f )/(∂λ)2|λ=λc

will typically diverge at an equilibrium
phase transition. Similarly, one might expect that a quench can
lead to states |�(tc)〉 at critical times tc which are orthogonal
to the initial state implying L0(tc) = 0 and resulting in a
nonanalyticity in the return rate l0(tc). A peculiarity of the
return rate is that its nonanalyticity depends not only on the
properties of the initial and final Hamiltonian before and after
the quench but also on time. For a quench from H0 to H1, in
particular, the critical time tc will in general depend upon if
one starts with the ground state of the initial Hamiltonian or
some excited eigenstate.

B. Mixed states

1. Loschmidt echo as a metric

If the Loschmidt echo is primarily seen as defining a metric
in Hilbert space, then it is natural to ask if a similar metric
can also be defined for density matrices ρ(t). In order for the

generalized Loschmidt echo |Lρ[ρ(0),ρ(t)]| to give rise to a
proper measure of distance in the space of density matrices we
want the following relations to hold:

(i) 0 � |Lρ[ρ(0),ρ(t)]| � 1 and |Lρ[ρ(0),ρ(0)]| = 1,
(ii) |Lρ[ρ(0),ρ(t)]| = 1 iff ρ(0) = ρ(t), and
(iii) |Lρ[ρ(0),ρ(t)]| = |Lρ[ρ(t),ρ(0)]|.
Without time dependence, this problem reduces again to the

definition of a fidelity for density matrices [34–36]. A direct
generalization of this fidelity leads to [17,18]

Lρ(t) ≡ |Lρ[ρ(0),ρ(t)]| = Tr
√√

ρ(0)ρ(t)
√

ρ(0). (2.1)

Note that this definition satisfies limβ→∞ Lρ(t) = |L0(t)| if
ρ(0) is a thermal density matrix and the time evolution is
unitary. β = T −1 is the inverse temperature with kB = 1.Lρ(t)
is symmetric between ρ(0) and ρ(t) and also satisfies the other
conditions above. The induced metric φ = arccos[Lρ(t)] also
fulfills the triangle inequality [19]. From this point of view,
Eq. (2.1) is thus the proper generalization of the Loschmidt
echo to density matrices. Despite its relatively complicated ap-
pearance, |Lρ(ρ1,ρ2)| has a straightforward physical meaning
[36]. If we understand ρ1 and ρ2 as reduced density matrices
obtained by a partial trace over a larger system which is in a pure
state |φ1,2〉, respectively, then |Lρ(ρ1,ρ2)| = max |〈φ1|φ2〉|
where the maximum is taken over all purifications of ρ1 and ρ2,
respectively. That is, Lρ provides the purification to the states
in the enlarged Hilbert space which are as parallel as possible
and consistent with the mixed states of the subsystem.

A seemingly simpler and more straightforward generaliza-
tion such as

|L̃ρ(t)| =
√

Tr{ρ(0)ρ(t)}
Tr ρ2(0)

(2.2)

does, in general, not fulfill the conditions above. If we start, for
example, in a completely mixed state ρ(0) = ∑

n
1
N

|�n〉〈�n|
and evolve under dissipative dynamics to a pure state ρ(t →
∞) = |�0〉〈�0|, then |L̃ρ(0)| = |L̃ρ(∞)| = 1, which clearly
is not a desirable property. Using a spectral representa-
tion in a basis where ρ(0) = ∑

n pn|�0
n〉〈�0

n | is diagonal,
Eq. (2.2) for the special case of unitary time evolution can be
represented as

|L̃ρ(t)|2 =
∑

m,n pmpn

∣∣〈�0
m

∣∣e−iH t
∣∣�0

n

〉∣∣2∑
n p2

n

, (2.3)

where pn are weights with
∑

n pn = 1.
In Sec. III we investigate Lρ(t) for unitary dynamics in

Gaussian models with ρ(0) being a canonical density matrix at
a given finite temperature T . At the same time, we also briefly
discuss the result for L̃ρ(t) which—for unitary dynamics—in
this specific case does fulfill 0 � |L̃ρ(t)| � 1. This is no longer
the case for open-system dynamics described by an LME and
we therefore exclusively discuss Lρ(t) in Sec. IV.

2. Projection onto a pure state

While (2.1) allows one to generalize the properties of the
Loschmidt echo as a metric to density matrices, Lρ(t) might
not necessarily be the quantity measured experimentally. In
Ref. [15], for example, DPTs in the transverse Ising model
have been investigated using a system of trapped ions. In this
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experiment the system is prepared in an initial configuration;
the system is then time evolved and the Loschmidt echo
measured by a projection. If the system is prepared in a pure
state and the projection is onto the same pure state, then the
Loschmidt echo (1.1) is measured. Here we want to consider
the case that the preparation of the system is not ideal—leading
to a mixed instead of a pure state—while the projection is still
onto the ground state of the initial Hamiltonian. That is, we
consider the case that only one of the states is impure. In this
case we can define a generalized Loschmidt echo by replacing
ρ(0) → |�0

0 〉〈�0
0 | in Eq. (2.1), leading to

|Lp(t)|2 = 〈
�0

0

∣∣ρ(t)
∣∣�0

0

〉
/
〈
�0

0

∣∣ρ(0)
∣∣�0

0

〉
=

∑
n

pn

p0

∣∣〈�0
0

∣∣e−iH t
∣∣�0

n

〉∣∣2
. (2.4)

The second line is a spectral representation in the eigenbasis
of ρ(0) and we have introduced a normalization factor such
that Lp(0) = 1. Note that for a thermal initial density matrix
limβ→∞ |Lp(t)|2 = |L0(t)|2. In Sec. III we also investigate this
generalization of the Loschmidt echo for unitary dynamics and
present results for experimentally relevant cases such as the
transverse Ising model and the SSH model.

3. Alternative generalizations

The definition of a generalized Loschmidt echo for mixed
states is not unique and several other possible generaliza-
tions have been discussed previously in the literature. In
Refs. [37,38] the quantity

Lav = Tr{ρ(0)U (t)} =
∑

n

pn

〈
�0

n

∣∣e−iH1t
∣∣�0

n

〉
(2.5)

is considered where U (t) is the time-evolution operator. From
the spectral representation for unitary time evolution with a
time-independent Hamiltonian shown in the second line of
Eq. (2.5) it is clear that this generalization measures an average
over pure-state Loschmidt echos rather than the “overlap”
between mixed states as defined in Eq. (2.1). Also in contrast
to (2.3) only diagonal terms enter; Eq. (2.5) cannot be used
to define a measure of distance between two density matrices.
For a generic Gibbs ensemble one expects, in general, that
Lav = 0 is only possible if p0 = 1, since even if the Loschmidt
echos of different states |�0

n〉 will vanish at some time, the
corresponding critcial times will in general be different. For a
Gaussian model in a generalized Gibbs ensemble, where the
occupation of each k mode is individually conserved, zeros are
however also possible at finite temperatures [38].

A similar approach—motivated by the characteristic func-
tion of work [39]—was also used in Ref. [40] where the specific
case of a canonical density matrix as the initial condition was
considered and a generalized Loschmidt echo was defined by

L̃av = 1

Z
Tr{eiH1t e−iH0t e−βH0}

= 1

Z

∑
n

e−(β+it)E0
n

〈
�0

n

∣∣eiH1t
∣∣�0

n

〉
. (2.6)

The result is a thermal average over the Loschmidt echo of
pure states and thus is very different from the overlap between
density matrices defined in Eq. (2.1).

For all generalized Loschmidt echos discussed here an
appropriate return rate (1.2) can be defined. It is the return
rate in the thermodynamic limit which we want to study in the
following.

III. UNITARY DYNAMICS IN GAUSSIAN MODELS

We consider free fermion models described by the Hamil-
tonian

H =
∑
k�0

�
†
kHk�k, (3.1)

with �k = (ck,c
†
−k)T . Here ck is an annihilation operator

of spinless fermions with momentum k. This Hamiltonian
describes models with a single-site unit cell which are bilinear
in the creation and annihilation operators and can contain
pairing terms as in the transverse Ising and Kitaev chains [see
Sec. III B 1]. If we identify dk ≡ c

†
−k then the Hamiltonian

(3.1) can also describe models with a two-site unit cell which
contain only hopping terms and no pairing terms such as in the
SSH and Rice-Mele models [see Sec. III B 2]. The momentum
summation in both cases runs over the first Brillouin zone. It is
often convenient to write the 2 × 2 matrix Hk as Hk = dk · σ ,
where dk is a three-component parameter vector and σ the
vector of Pauli matrices. During the quench the parameter
vector dk is changed, leading to an initial Hamiltonian H0 and
a final Hamiltonian H1. In the two different bases in which the
Hamiltonians are diagonal we have

Hi =
∑
k�0

εi
k(c†kicki + c

†
−kic−ki − 1), (3.2)

with energies εi
k > 0 and i = 0,1. The operators in which the

two Hamiltonians are diagonal are related by a Bogoliubov
transform:

ck0 = ukck1 + vkc
†
−k1; ck1 = ukck0 − vkc

†
−k0. (3.3)

The Bogoliubov variables can be parametrized by an angle θk

as uk = cos θk and vk = sin θk . For each k mode there are four
basis states. We can either work in the eigenbasis |�0

j 〉 of H0

or the eigenbasis |�1
j 〉 of H1, which can be expressed as∣∣�0

0

〉 = |0〉0 = (uk − vkc
†
k1c

†
−k1)|0〉1,∣∣�0

1

〉 = c
†
k0|0〉0 = c

†
k1|0〉1,

(3.4)∣∣�0
2

〉 = c
†
−k0|0〉0 = c

†
−k1|0〉1,∣∣�0

3

〉 = c
†
k0c

†
−k0|0〉0 = (vk + ukc

†
k1c

†
−k1)|0〉1,

or vice versa∣∣�1
0

〉 = |0〉1 = (uk + vkc
†
k0c

†
−k0)|0〉0,∣∣�1

1

〉 = c
†
k1|0〉1 = c

†
k0|0〉0,

(3.5)∣∣�1
2

〉 = c
†
−k1|0〉1 = c

†
−k0|0〉0,∣∣�1

3

〉 = c
†
k1c

†
−k1|0〉1 = (−vk + ukc

†
k0c

†
−k0)|0〉0.

Here |0〉0,1 are the ground states of H0,1. The Loschmidt
echo at zero temperature can be easily calculated using the
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transformation (3.4), leading to

L0(t) =
∏
k

[
u2

ke
iε1

k t + v2
k e

−iε1
k t
]

=
∏
k

[
cos

(
ε1
k t

) + i sin(2θk) sin
(
ε1
k t

)]
(3.6)

and |L0(t)|2 = ∏
k |Lk

0(t)|2, with∣∣Lk
0(t)

∣∣2 = [
1 − sin2(2θk) sin2 (

ε1
k t

)]
. (3.7)

Here cos(2θk) = d̂0
k · d̂1

k with d̂i
k being the normalized parame-

ter vector. Note that the result (3.6) is also valid for free fermion
models with a two-site unit cell but without pairing terms,
although the ground state is different. From (3.7) it is evident
thatL0(tc) = 0 if a momentum kc exists with d̂0

kc
· d̂1

kc
= 0, i.e.,

sin(2θk) = 1. The critical times are then given by

tc = π

2ε1
kc

(2n + 1). (3.8)

For any of the generalized Loschmidt echos defined before we
can write the return rate as

l(t) = − 1

2π

∫
ln |Lk(t)|dk. (3.9)

In the following we explicitly calculate l(t) for the different
generalized Loschmidt echos.

A. Projection onto a pure state

We want to first investigate the case where only one of
the states is impure. A natural generalization is then the
Loschmidt echo defined in Eq. (2.4). For the considered Gaus-
sian models (3.1) the Loschmidt echo separates into the product
|Lp(t)|2 = ∏

k |Lk
p(t)|2. If we, furthermore, assume that our

initial mixed state is described by a canonical ensemble then
we obtain∣∣Lk

p(t)
∣∣2 = 〈

�0
0

∣∣ρk(t)
∣∣�0

0

〉
/
〈
�0

0

∣∣ρk(0)
∣∣�0

0

〉
=

3∑
n=0

e−β(E0
kn−E0

k0)
∣∣〈�0

0

∣∣e−iH1t |�0
n〉

∣∣2
, (3.10)

where we have used the spectral representation of the density
matrix ρk(t) in terms of the eigenstates of H0

k and β is the
inverse temperature. The eigenenergies of the four eigenstates
for each k mode are denoted by E0

kn = (−ε0
k ,0,0,ε0

k ). Using the
representation (3.4) of the eigenstates in terms of the operators
of the final Hamiltonian H1 one finds

|Lp(t)|2 =
∏
k

[
1 − (

1 − e−2βε0
k

)
sin2(2θk) sin2

(
ε1
k t

)]
.

(3.11)

It is obvious thatLp(t) = 0 is only possible at zero temperature,
in which case |Lp(t)| ≡ |L0(t)| [see Eq. (3.7)]. If one starts
from a mixed state then the DPTs are washed out even if one
projects onto the ground state. With the appropriately chosen
ground state and the associated energies E0

kn, the result (3.11)
also holds for the models with a two-site unit cell such as in
the SSH and Rice-Mele models.

B. Thermal density matrices

The calculation of (2.1) for the case that ρ(0) is a thermal
density matrix is instructive for the dissipative case discussed
in Sec. IV so we briefly rederive the known result [17,18] for
Lρ(t) here. It is most convenient to perform the calculation in
the eigenbasis of the time-evolving Hamiltonian H1 using the
transformation (3.5). Because only the states |�i

0〉 and |�i
3〉 are

mixed by the transformation, the initial unnormalized density
matrix ρk(0) can be rearranged into two 2 × 2 block matrices
I2 (identity matrix) and rk(0), with

rk(0) =
(

cosh
(
βε0

k

) + sinh
(
βε0

k

)
cos(2θk) − sinh

(
βε0

k

)
sin(2θk)

− sinh
(
βε0

k

)
sin(2θk) cosh

(
βε0

k

) − sinh
(
βε0

k

)
cos(2θk)

)
. (3.12)

√
rk(0) is obtained from (3.12) by replacing β → β/2 and

rk(t) by replacing r
(12)
k → e2iε1

k t r
(12)
k and r

(21)
k → e−2iε1

k t r
(21)
k .

The partition function is given by Zk = Tr ρk = Tr(I2) +
Tr rk(0) = 2 + 2 cosh(βε0

k ). We can now simplify the general-
ized Loschmidt echo (2.1) in this case to

Lρ(t) =
∏
k

2 + λk1(t) + λk2(t)

2 + 2 cosh
(
βε0

k

) , (3.13)

where λ2
ki(t) are the eigenvalues of

√
rk(0)rk(t)

√
rk(0), which

are given by

λk1,2(t) =
√

1 + ∣∣Lk
0(t)

∣∣2
sinh2

[
βε0

k

] ± ∣∣Lk
0(t)

∣∣ sinh
[
βε0

k

]
,

(3.14)

with Lk
0(t) defined in Eq. (3.7). As a final result we thus obtain

[17,18]

Lρ(t) =
∏
k

1 +
√

1 + ∣∣Lk
0(t)

∣∣2
sinh2

(
βε0

k

)
1 + cosh

(
βε0

k

) . (3.15)

For any finite temperature this means that Lρ(t) > 0 for all
times; i.e., there are no DPTs. For β → ∞ the result reduces
to the zero-temperature result, Eq. (3.7). The result (3.15) also
holds for Gaussian models with a two-site unit cell such as in
the SSH and Rice-Mele models.

We now also briefly discuss the possible generalization
L̃ρ(t) defined in Eq. (2.2). While this function, in general,
does not fulfill the requirements listed in Sec. II B, it turns
out that for the case considered here at least 0 � |L̃ρ(t)| � 1
is fulfilled. We start again from a thermal density matrix.
The spectral representation using the eigenstates of H1
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then reads

∣∣L̃ρ(t)
∣∣2 =

∑
n,m ei(E1

m−E1
n)t

∣∣〈�1
n

∣∣e−βH0
∣∣�1

m

〉∣∣2∑
n e−2βE0

n

. (3.16)

Only the eigenstates |�1
0 〉 and |�1

3 〉 mix and it is easy to check
the final result:∣∣L̃ρ(t)

∣∣2 =
∏
k

[
cosh−2 (

βε0
k

) + tanh2 (
βε0

k

)∣∣Lk
0(t)

∣∣2]

=
∏
k

[
1 − tanh2

(
βε0

k

)
sin2(2θk) sin2

(
ε1
k t

)]
.

(3.17)

L̃ρ(t) = 0 is again only possible if T = 0.

1. Ising and Kitaev models

The finite-temperature results can be directly applied
to concrete models. The Kitaev chain, for example, is
defined by

H =
∑

i

[�†
i (�iτ y − Jτ z)�i+1 + H.c. − �

†
i μτ z�i],

(3.18)

where �
†
i = (c†i ,ci) and c

(†)
i annihilates (creates) a spinless

particle at site i. The Kitaev chain is topologically nontrivial
when μ < 2|J | and � �= 0. Note that � = 0 is a phase
boundary between phases with winding numbers ±1. As a
special case the transverse Ising model

H (g) = −1

2

∑
i

σ z
i σ

z
i+1 + g

2

N∑
i=1

σ x
i (3.19)

is obtained if one sets μ = −g/2 and J = 1/4 = −� in (3.18).
After a Fourier transform, for a chain with periodic boundary
conditions, the Hamiltonian (3.18) is of the form of Eq. (3.1)
with the parameter vector

dk = (
0,2� sin k, − 2J cos k − μ

)
, (3.20)

and cos(2θk) = d̂0
k · d̂1

k . In Fig. 1 we plot the return rate in the
thermodynamic limit, Eq. (3.9), for a quench in the transverse
Ising model from g = 0.5 to g = 1.5.

While the cusp in the return rate at the critical time tc is
only slightly rounded off for temperatures up to T = 0.1 if we
project onto the ground state, Eq. (2.4), signatures of a DPT are
already almost lost at this temperature if we use the generalized
Loschmidt echo (2.1) which measures the distance between the
initial and the time-evolved thermal density matrix.

2. SSH and Rice-Mele models

The Rice-Mele and the SSH chains are models with a two-
site unit cell and alternating hoppings 1 ± δ and potentials ±V .
The Hamiltonian for the Rice-Mele model is given by

H =
∑

i

�
†
i [−(1 + δ)σ x + V σ z]�i

− (1 − δ)
∑

j

�
†
i

(
0 0
1 0

)
�i+1 + H.c., (3.21)

0 0.5 1 1.5 2t/tc
0

0.05
0.1

0.15
0.2

0.25
0.3

l(t
)

0 0.5 1 1.5 2t/tc
0

0.05
0.1

0.15
0.2

0.25

l(t
)

T=0.5, 0.2, 0.1, 0.05, 0(a)

(b) T=0.5, 0.2, 0.1, 0.05, 0

FIG. 1. The return rate l(t) for the Ising chain in the thermo-
dynamic limit for a quench from g = 0.5 to g = 1.5 at different
temperatures T . (a) Projection onto the ground state, Eq. (3.11) (note
that the curves for T = 0 and T = 0.05 are almost on top of each
other). (b) Generalized Loschmidt echo, Eqs. (2.1) and (3.15).

with�i = (ci,di). After a Fourier transform this model can also
be represented by the generic Hamiltonian (3.1) with the identi-
fication dk ≡ c

†
−k . The parameter vector in this case is given by

dk = (−2 cos k,2δ sin k,V ). (3.22)

The SSH model is a special case of the Rice-Mele model
obtained by setting the alternating potential V = 0.

In Fig. 2 the return rate for a symmetric quench from δ =
−0.5 to δ = 0.5 for V = 0 is shown. While the cusp in the
return rate at the critical time tc is washed out in this case as
well, a signature of the DPT at zero temperature is more clearly
visible also at finite temperatures as compared to the quench
in the Ising model shown in Fig. 1.

0 0.5 1 1.5 2t/tc
0

0.05
0.1

0.15
0.2

0.25

l(t
)

0 0.5 1 1.5 2t/tc
0

0.05
0.1

0.15
0.2

0.25
0.3

l(t
)

T=2, 1, 0.5, 0.2, 0
(a)

(b)
T=2, 1, 0.5, 0.2, 0

FIG. 2. The return rate l(t) for the SSH chain in the thermo-
dynamic limit for a quench from δ = −0.5 to δ = 0.5 at different
temperatures T . (a) Projection onto the ground state, Eq. (3.11).
(b) Generalized Loschmidt echo, Eq. (3.15). Note that the curves
for T = 0 and T = 0.2 are almost on top of each other.
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IV. OPEN SYSTEMS

In systems where the Loschmidt echo has been studied
experimentally, such as cold atomic gases and trapped ions
[14,15], interactions with electromagnetic fields are used to
control the particles. These systems are therefore intrinsically
open systems and decoherence and loss processes are un-
avoidable. Using the Born-Markov approximation such open
systems can be described by a Lindblad master equation:

ρ̇(t) = −i[H,ρ] +
∑

μ

(
LμρL†

μ − 1

2
{L†

μLμ,ρ}
)

. (4.1)

Here Lμ are the Lindblad operators describing the dissipa-
tive, nonunitary dynamics induced by independent reservoirs
labeled by μ, and {·,·} is the anticommutator. In order to have
a bilinear LME which can be solved exactly, we continue to
consider Hamiltonians as defined in Eq. (3.1) with periodic
boundary conditions which can be diagonalized in Fourier
space. We consider Lindblad operators that are linear in cre-
ation and annihilation operators, leading to the linear dynamics

Lμ = √
γμcμ and Lμ = √

γ̄μc†μ (4.2)

describing particle loss and creation processes with amplitudes
γμ > 0 and γ̄μ > 0, respectively. This form ensures that the
dissipative terms in Eq. (4.1) are also bilinear. More specifically
we consider reservoirs that couple each to only one k mode:

Lk = √
γ±kc±k and Lk = √

γ̄±kc
†
±k. (4.3)

To solve the Lindblad equation we use the superoperator
formalism [41]. The n × n density matrix ρ is recast into an
n2-dimensional vector ||ρ〉〉 and the Hamiltonian and Lindblad
operators become superoperators acting on this vector. The
LME (4.1) and its solution can then be written as

||ρ̇〉〉 = L ||ρ〉〉; ||ρ〉〉(t) = exp(Lt) ||ρ(0)〉〉. (4.4)

For the purely unitary time evolution considered in the previous
section the Lindbladian L takes the form

L = −i(H ⊗ In + In ⊗ H †), (4.5)

where In is the n × n identity matrix. Similarly, the individual
Lindblad operators (4.3) can be written as superoperators
acting on ||ρ〉〉. The solution vector ||ρ〉〉(t) can then be
recast into a matrix allowing one to calculate the generalized
Loschmidt echos also for open systems.

A. Particle loss

We consider again free fermionic models of the type (3.1)
with the four basis states (3.4) for each k mode.

As a first example, we investigate the simple mixed
initial state ρk(0) = 1

2 (|�0
1 〉〈�0

1 | + |�0
2 〉〈�0

2 |) and a time
evolution under the Lindblad operators L1k = √

γkck and
L2k = √

γ−kc−k . In this case it is straightforward to show
that the density matrix takes the form ρk(t) = 1

2 diag(2 −
e−γkt − e−γ−k t ,e−γkt ,e−γ−k t ,0). The nonequilibrium steady
state (NESS) is thus the completely empty state for γ±k �= 0.
Since both ρ(0) and ρ(t) are diagonal it follows immediately

that the generalized Loschmidt echo is given by

Lρ(t) = 1

2

∏
k

(e−γkt/2 + e−γ−k t/2). (4.6)

As one might have expected,Lρ(t) shows an exponential decay
in this case. If γk = γ−k = γ = const then the return rate in the
thermodynamic limit (3.9) increases linearly, l(t) = γ t/2, and
thus diverges only at infinite time.

B. Quench in Kitaev-type models with particle loss

Next, we want to consider a quench for a Kitaev-type
model with Hamiltonian (3.2) with the basis states (3.5). As in
Sec. III B we start with the thermal density matrix ρ(0) but now
also allow for particle loss processes as in the example above.
Crucially, the matrix ρk(t) still can be decomposed into two 2 ×
2 block matrices. We can therefore write Lk

ρ(t) = Tr
√

M1 +
Tr

√
M2, with Mi =

√
ρi

k(0)ρi
k(t)

√
ρi

k(0) and ρ
1,2
k being the

two block matrices. With Tr
√

Mi =
√

λi
1 +

√
λi

2 > 0 we can
write (Tr

√
Mi)

2 = λi
1 + λi

2 + 2
√

λi
1λ

i
2 = Tr Mi + 2

√
det M1

[36]. For the Loschmidt echo we therefore find

Lρ(t) =
∏
k

∑
i=1,2

√
Tr Mi + 2

√
det Mi . (4.7)

Using this formula it is straightforward to obtain an explicit
result for Lρ(t) which, however, is quite lengthy for finite
temperatures. We therefore limit ourselves here to presenting
the result for T = 0 only. In this case one of the block matrices
is zero and we obtain the following closed-form expression

L2
ρ(t) =

∏
k

e−�+
k t

{
cos 2θk sinh(�+

k t) − sin2 2θk sin2
(
ε1
k t

)

+ 1

2
sin2 2θk

[
1 − cosh

(
�−

k t
)] + cosh(�+

k t)

}
.

(4.8)

Here we have defined �±
k = (γk ± γ−k)/2. It is easy to see that

this result reduces to Eq. (3.7) for γk = γ−k = 0. Furthermore,
there are no DPTs for finite loss rates.

As an example for the broadening of the cusps in the return
rate (3.9) we consider the same quench in the transverse Ising
model as before.

Figure 3 shows that small loss rates already lead to a
significant broadening of the first cusp at t = tc and completely
wash out the cusps at longer times. Furthermore, the NESS for
a nonzero loss rate is always the empty state, so that the return
rate at infinite times becomes independent of the loss rate and
is given by

l(t → ∞) = − 1

2π

∫ π

0
ln

(
1 + d̂0

k · d̂1
k

2

)
dk. (4.9)

C. Quench in Kitaev-type models with particle creation and loss

So far we have seen that both finite temperatures and particle
loss processes destroy DPTs. One can then ask if it is possible
to engineer dissipative processes in an open quantum system
in such a way that DPTs persist. By constructing a concrete
example we show that this is indeed possible.
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)

γ = 0, 0.01, 0.1, 1

FIG. 3. The return rate l(t) for the Ising chain in the thermo-
dynamic limit for a quench from g = 0.5 to g = 1.5 at T = 0 for
different particle loss rates γ = γk = γ−k . Inset: Broadening of the
first cusp at t = tc.

We consider the case that particles with momentum k are
annihilated with rate γk while particles with momentum −k

are created with rate γ̄−k . As in the case with particle loss
considered in Sec. IV B the density matrix ρk(t) still has block
structure, and a calculation along the same lines is possible. At
T = 0 we obtain a result which is very similar to Eq. (4.8) and
reads

L2
ρ(t) =

∏
k

e−�̃+
k t

{
cos 2θk sinh(�̃−

k t) − sin2 2θk sin2 (
ε1
k t

)

+ 1

2
sin2 2θk[1 − cosh(�̃−

k t)] + cosh(�̃−
k t)

}
.

(4.10)

The rates are now defined as �̃±
k = (γk ± γ̄−k)/2. The essential

difference when comparing Eq. (4.10) with the previous result
(4.8) is that inside the bracket only the rate �̃−

k is present. For
�̃−

k = 0, i.e., γk = γ̄−k , the Loschmidt echo becomes L2
ρ(t) =∏

k exp(−�̃+
k t)|Lk

0(t)|2, which is the zero-temperature result
(3.7) with an additional exponential decay. DPTs are thus still
present for this particular case at the same critical times tc
despite the dissipative processes.

As an example, we consider again the quench in the
transverse Ising chain. In Fig. 4 we show results for the fine-
tuned point γ = γk = γ̄−k . The cusps remain clearly visible for
finite dissipation rates. For the k-independent rate �̃+

k ≡ �̃+ as
chosen in Fig. 4 the result for the return rate is

l(t) = �̃+t

2
− 1

π

∫ π

0
ln

∣∣Lk
0(t)

∣∣dk. (4.11)

This is simply the zero-temperature return rate in the closed
system plus a linear increase with slope �̃+/2. In the NESS at
long times all particles will be in the −k states, leading to a
vanishing Loschmidt echo and a diverging return rate.

0 1 2 3 4t/tc
0

0.2

0.4

0.6

0.8

1

l(t
)

γ = 0, 0.01, 0.1

FIG. 4. The return rate l(t) for the Ising chain in the thermody-
namic limit for a quench from g = 0.5 to g = 1.5 at T = 0 for various
equal particle loss and creation rates γ = γk = γ̄−k .

V. CONCLUSIONS

We have studied a generalization of the Loschmidt echo to
density matrices which is applicable both to finite temperatures
and to open systems. It is based on a direct generalization
of the fidelity for mixed states to dynamical problems and
provides a measure of the distance between the initial and the
time-evolved density matrix. As such it is very different from
previous generalizations studied in the context of dynamical
phase transitions which are based on thermal averages over
the Loschmidt echos of pure states and are only applicable to
unitary dynamics.

For bilinear one-dimensional fermionic lattice models with
periodic boundary conditions we have shown that finite temper-
atures always wash out the nonanalyticities in the return rate of
the generalized Loschmidt echo. Dynamical phase transitions
only exist at zero temperature.

For open quantum systems described by a Lindblad master
equation we similarly find that particle loss processes smooth
out cusps in the return rate so that signatures of the dynamical
phase transition are hard to detect even if the loss rates are very
small.

Finally, we showed that it is possible to fine-tune particle
loss and creation processes in such a way that dynamical phase
transitions can be observed despite the dissipative dynamics.

The generalized Loschmidt considered in this paper can
be understood as a tool to measure distances between density
matrices. As such it might be helpful in engineering and
controlling specific states using dissipative dynamics. Zeros of
the Loschmidt echo signal, in particular, that a mixed state has
been reached such that all purifications to states in an enlarged
Hilbert space are orthogonal to purifications of the initial state.

Note added. Recently Ref. [42] became available, which is
on a related topic.
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