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Finite-size corrections to quantized particle transport in topological charge pumps
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We investigate the quantization of adiabatic charge transport in the insulating ground state of finite systems.
Topological charge pumps are used in experiments as an indicator of topological order. In the thermodynamic
limit, the transport can be related to a topological Berry phase and is thus strictly quantized. This is no longer
true for finite systems. We derive finite-size corrections to the transport for both noninteracting and interacting
systems and relate them to analytic properties of the single- and many-body Berry curvature. We find that they
depend on the details of experimental realizations of the pumps. While they can be non-negligible even in large
systems, a proper choice of the pumping protocol can suppress these corrections.
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I. INTRODUCTION

Charge transport in electronic devices is usually associated
with dissipation and heat production. Topological pumping,
first introduced by Thouless [1], provides a robust and con-
trollable alternative for mesoscopic electronics with minimal
dissipation [2–4]. In such a topological or Thouless pump,
an adiabatic cyclic variation of parameters leads to a strictly
quantized transport in an insulating state of noninteracting
fermions, which is related to an integer topological invariant,
the Chern number. The concept can be generalized to interact-
ing systems and the quantized transport survives moderate
disorder [5,6]. It is also closely related to the theory of
polarization developed in the early 1990s [7–10]. Topological
pumping does not rely on interaction effects, such as the
Coulomb blockade, and can be observed for neutral particles as
recently demonstrated with ultracold atoms [11,12]. Imposing
further symmetries, such as time-reversal symmetry, it is also
possible to construct topological pumps for spins without a net
transport of charge [13–16], which has interesting applications
in spintronics.

Charge or spin transport in an adiabatic Thouless pump
is quantized, however, only in the thermodynamic limit of
infinite system size [1]. The demand for size reduction in
information technology (IT) makes it necessary to understand
and minimize size-related deviations from quantized transport
in topological pumps. This is the aim of the present paper.
Corrections to quantization of topological transport had been
discussed before, e.g., in [17], and were attributed to the
finiteness of the critical gap when the system size is finite.
Since there is a critical gap-closing in finite systems with
periodic boundary conditions, this argument does not generally
apply. The origin of these deviations is rather the discreteness
of the momentum eigenmodes associated with finite systems.
We show that the corrections decrease, first, polynomially,
and then exponentially with system size L. The corresponding
characteristic length scale ξ can be related to analytic proper-
ties of the single- or many-body energy spectrum. In the case
of noninteracting fermions, ξ is determined by the width of the
instantaneous single-particle band structure, and the transport
properties can be optimized by a proper choice of the path of
the Thouless pump in parameter space keeping this width as
small as possible at all times.

As a specific example, we first discuss the simplest
noninteracting topological charge pump, the Rice-Mele model

at half filling. It describes fermions hopping on a one-
dimensional lattice with staggered onsite energies and al-
ternating hopping amplitudes [18–20]. We determine the
characteristic length scale ξ analytically and verify it with
numerical results. We then consider one-dimensional models
with interactions. Specifically, we discuss the superlattice
Bose-Hubbard model (SLBHM) [21,22] at half filling which
is a bosonic analog of the Rice-Mele model and possesses a
nondegenerate many-body ground state, but generalizations
to other models including those with artificial dimensions are
possible [23,24]. Finally, we discuss the extended superlattice
Bose-Hubbard model (E-SLBHM) at quarter filling, which
has a twofold degenerate ground state and a fractional
topological charge [25,26]. As a consequence, a single cycle
of the adiabatic pump leads to a transport of only half
a particle. Using time-evolving block decimation (TEBD)
simulations [27], we show the exponential scaling of the
corrections to the quantization of the particle transport.
Although the present discussion is focusing on charge pumps,
it can be straightforwardly generalized to spin pumps.

II. NONINTERACTING FERMIONS

We first discuss one-dimensional topological insulators of
noninteracting fermions on a lattice with period a = 1 and
finite number L of unit cells, which is described by a single-
particle Hamiltonian H . For simplicity, we restrict ourselves
to one-dimensional band insulators, but the generalization to
higher spatial dimensions is straightforward. Due to discrete
translational invariance, the crystal momentum is conserved
and can be restricted to the first Brillouin zone q ∈ {−π,π}
(h̄ = 1). In a finite system with periodic boundary conditions,
the crystal momentum takes on discrete values qj = 2πj/L −
π , for j = 1,2, . . . ,L. It is convenient to introduce the
momentum-shifted Hamiltonian H (q) = e−iqx̂ H eiqx̂ . The
eigenfunctions of H (q) are cell-periodic Bloch functions
unq(x) = e−iqxψnq(x), where the index n denotes the nth
Bloch band.

We now assume that the parameters of the Hamiltonian
are varied in time with period T , i.e., H (t) = H (t + T ), and
that the system remains in a gapped state at all times. If the
parameter variation is sufficiently slow and encircles a gap-
closing point, there can be an adiabatic charge (spin) transport.
As shown by Thouless et al. [1,28], this transport is strictly
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quantized in the thermodynamic limit L → ∞, and can be
related to an integer topological invariant. We will now revisit
this derivation.

The instantaneous (adiabatic) eigenstates of H (q,t) are
e−iqx̂ |un(q,t)〉. In order to determine the adiabatic current
and the transported charge, we need to consider corrections
to theses states up to the first order in the rate of change
of the Hamiltonian. Assuming a nondegenerate ground state
|u0(q,t)〉 with a finite energy gap, we find in the lowest order
of time-dependent perturbation theory

|ψ0(q)〉 = |u0(q)〉 + i
∑
n�=0

|un(q)〉〈un(q)|∂tu0(q)〉
εn(q) − ε0(q)

. (1)

Here, εn(q) are the instantaneous eigenenergies and we
dropped the overall dynamical phase factor which will be
canceled later on as well as the dependence on t for
notational convenience. The single-particle velocity operator
v̂ = −i[x̂,H ] reads in the momentum-shifted frame v̂(q) =
e−iqx̂ v̂eiqx̂ = ∂H (q)/∂q, which yields in the state |ψ0(q)〉:
v0(q) = 〈ψ0(q)| v̂ |ψ0(q)〉

= ∂ε0(q)

∂q
+ i

∑
n�=0

( 〈u0|∂qH (q)|un〉〈un|∂tu0〉
εn(q) − ε0(q)

− c.c.

)

= ∂ε0(q)

∂q
+ i

(〈
∂u0

∂t

∣∣∣∂u0

∂q

〉
−

〈
∂u0

∂q

∣∣∣∂u0

∂t

〉)
. (2)

In the last step we have used that 〈u0(q)|∂qH (q)|un(q)〉 =
〈∂qu0(q)|un(q)〉(ε0(q) − εn(q)), which follows directly from
the eigenvalue equation of the momentum-shifted Hamilto-
nian.

In an insulating state, we have to add the contributions
of all occupied momentum modes to obtain the total current.
In particular, for systems with only the lowest Bloch band
occupied, JL = 1

L

∑L
j=1 v0(qj ). The total charge (particle

number) QL, transported in a period T , is then given by
the integral of the current. Taking into account that the
time-independent Hamiltonian does not support a current
when summing over all quasimomenta of a band, one finds

QL =
∫ T

0
dt JL ≡

∫ T

0
dt

1

L

L∑
j=1

�0(qj ,t)

=
∫ T

0
dt

1

L

L∑
j=1

i

(〈
∂u0

∂t

∣∣∣∣∂u0

∂q

〉
−

〈
∂u0

∂q

∣∣∣∣∂u0

∂t

〉)∣∣∣∣
q=qj

. (3)

where |u0〉 ≡ |u0(q)〉 and �0(qj ,t) is the Berry curvature of
the n = 0 Bloch band. In the thermodynamic limit, L → ∞,
the sum in Eq. (3) can be replaced by an integral 1

L

∑L
j=1 fj =∫ π

−π

dq

2π
f (q), and one obtains an integral over a closed surface

of a torus

QL = −i

∫ T

0
dt

∫ π

−π

dq

2π

(〈
∂u0

∂q

∣∣∣∣∂u0

∂t

〉
−

〈
∂u0

∂t

∣∣∣∣∂u0

∂q

〉)
, (4)

which is an integer number [1].
For a finite system, however, the sum over lattice momenta

can not be replaced by an integral. As a consequence, the
transported charge is no longer quantized. In the following, we
will discuss the deviation of the transported charge Q from its

thermodynamic limit QL: �QL = QL − Q. In most relevant
cases, the Berry curvature �0(q) is analytic in the whole
Brillouin zone, i.e., there exists a strip (−π,π ) × (−c,c) in the
extension of the Brillouin zone to the complex q plane where
�0(q,t) is analytic and its derivatives exist to all orders and they
are periodic in q. While generically the difference between an
integral and its approximation by a finite sum decreases only
polynomially in 1/L, it has been shown in [29] that it can
scale exponentially for integrals of periodic functions and is
determined by the value of c = c(t):

|�QL| �
∫ T

0
dt

2Me−c(t)L

1 − e−c(t)L
. (5)

Here M is a bound on |�0(q,t)| within the first Brillouin
zone. For small systems, |�QL| scales polynomially as 1/L

and turns over to an exponential scaling for large L. The
characteristic length ξ beyond which the charge transport is
approximately quantized is determined by the values of 1/c(t)
along the parameter path of the pump. If the parameter path is
chosen such that c(t) = c = ξ−1 is constant in time, a simple
exponential scaling emerges. For systems sizes L smaller than
ξ the transport is no longer integer quantized.

We will now show that ξ is determined by the curvature
of the band structure εn(q). To see this we write the Berry
curvature in the form

�0(q) = i
∑
n�=0

( 〈u0|∂qH (q)|un〉〈un|∂tu0〉
εn(q) − ε0(q)

− c.c.

)
. (6)

Equation (6) shows that �0(q) attains a pole in the complex
q plane when the energy gap closes for a complex value
q = q ′ + iq ′′. Most importantly, in the flat-band limit where
ε(q) = const, the Berry curvature is analytic in the whole
complex plane, and thus the adiabatic charge transport is
strictly quantized irrespective of system size. Thus choosing
a topological pump which operates as close as possible to the
flat-band limit will support strictly quantized charge transport
even for very small systems.

It is interesting to note at this point that while the transported
charge is strictly quantized only in the thermodynamic limit,
a related quantity, the winding of the (electric) polarization,
is quantized for arbitrary system size. Within the theory of
polarization, King-Smith and Vanderbilt [7] and Resta [10]
showed that in the thermodynamic limit L → ∞, the adiabatic
particle (charge) current JL coincides with the time derivative
of the many-body polarization

JL→∞ = ∂

∂t
P, P = 1

2π
Im ln〈ei 2π

L
X̂〉, (7)

where X̂ = ∑N
j=1 x̂j is the total position operator of all N

particles. The polarization winding after a full period of an
adiabatic charge pump, �P = ∫ T

0 dt ∂tP , is given by the
Chern number of the pump and is thus integer quantized (for
lattice constant a = 1). (Note that 2πP , Eq. (7), is the phase
of a complex exponential. As such, its winding after going
through a full cyclic variation in parameter space is trivially
integer-quantized modulo 2π .)

In the following, we will illustrate our findings for a simple
topological model of noninteracting fermions, the Rice-Mele
model [18], shown in Fig. 1(a). Here, fermions move along a
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FIG. 1. (a) Rice-Mele model. (b) Sketch of the protocol for
charge pumping in the parameter space of the Rice-Mele model.
(c) Transported charge as a function of angle φ in the � − (t1 − t2)
plane for different values of L. The path for the pump is parameterized
as t1 = 1 − 0.5 cos φ, t2 = 1 + 0.5 cos φ, and � = 2/

√
3 sin φ. (d)

The same for the polarization. One recognizes the strictly integer-
valued winding of P for all values of L, while the particle transport
is only quantized in the thermodynamic limit L → ∞.

one-dimensional lattice with alternating hopping amplitudes
t1,t2 � 0 and a staggered onsite energy offset �. In second
quantization, the Hamiltonian reads

H = −t1
∑
j,even

c
†
j cj+1 − t2

∑
j,odd

c
†
j cj+1 + H.a.

−�
∑

j

(−1)j c†j cj , (8)

where cj ,c
†
j are fermionic annihilation and creation operators

at lattice site j . Since the unit cell consists of two sites, the
single-particle energy spectrum has two bands ε±(q) = ±ε(q)

ε(q) =
√

�2 + (t1 + t2eiq)(t1 + t2e−iq). (9)

The band gap closes for � = 0 and t1 = t2. For � = 0,
the Rice-Mele model reduces to the Su-Schrieffer-Heeger
model [30]. At half filling, the latter possesses two different
topological phases protected by inversion symmetry, which
differ in their Zak (or Berry) phase by π . The two phases
cannot be smoothly connected without closing the energy gap
or breaking the inversion symmetry. However, introducing the
staggered potential allows one to adiabatically connect the two
phases. Performing a closed loop in the parameter space of �

and t1 − t2 encircling the origin leads to a quantized transport
of a single charge (in the thermodynamic limit). The charge
transport can be related to an effective Chern number.

Extending lattice momenta to the complex q plane, i.e.,
q = q ′ + iq ′′, one finds that there is a closing of the energy

gap for q ′ = π and cosh (q ′′) = A = �2+t2
1 +t2

2
2t1t2

. This yields for
the characteristic length

ξ−1 � ln
(
A +

√
A2 − 1

)
= ln

(
1 + �ε

1 − �ε

)
. (10)

Here �ε = ε(q)min/ε(q)max is the energy gap relative to the to-
tal energy width. One recognizes that in the limit of flat bands,
where t1t2 = 0 at all times and consequently ε(q) = constq ,
the characteristic length vanishes, ξ = 0. In this limit the

FIG. 2. (a) Transported charge as a function of L. Shown are
numerical results obtained from Eq. (3) (dots) and exponential fits
(full lines) for parameter paths t1,2 = 1 ∓ √

(A − 1)/(A + 1) cos φ,
and � = √

2(A − 1) sin φ, and A = 1.1,1.2,1.5 (from the top).
The fitted length scales fit to the bounds obtained from Eq. (10).
(b) Contour plot of the characteristic length scale of finite-size
corrections for the Rice-Mele model as a function of �t = t1 − t2
and �, Eq. (10), cut at ξ = 10. (The octagonal shape of the inner part
is due to finite numerical precision.)

adiabatic charge transport is strictly quantized for any system
size L. Away from this limit there are exponential corrections
to the transported charge, see Fig. 1(c), while the polarization
winding �P always attains an integer value, see Fig. 1(d). For
small relative energy gaps the characteristic length can become
rather large (ξ ∼ 1/�ε) leading to substantial corrections even
for rather large systems.

We have verified the system-size dependence according to
Eq. (5) numerically, see Fig. 2(a). There we have plotted the
transported charge as a function of system size obtained from
evaluating the finite sum, Eq. (3), for a larger range of system
sizes (L = 2, . . . ,30). The parameter path of the pump has
been chosen in such a way that c(t) = constt . One clearly
recognizes the predicted exponential scaling and the extracted
characteristic length fit to the estimates given in Eq. (10).
Figure 2(b) shows the characteristic length ξ as function of
�t = t1 − t2 and �. The closer the parameter path encircles the
critical point, the larger value ξ takes. In this regime, finite-size
corrections to the particle transport can become non-negligible
even for rather large systems.

III. INTERACTING SYSTEMS

A. Thouless pump for nondegenerate ground states

The above discussion can be extended to interacting many-
body systems or systems with disorder. Let us first consider
the case of an interacting lattice model with a nondegenerate
ground state. The transport in a system of size L upon time-
periodic changes of the Hamiltonian can be calculated in a
similar way as in Sec. II, replacing the single-particle wave
functions by the many-body eigenstates |
n〉. Assuming a
finite energy gap between the many-body ground state |
0〉
and the excited states, the transported charge in a period T can
be expressed as

QL = − i

L

∫ T

0
dt

∑
n�=0

〈
0|P |
n〉〈
n|∂t
0〉
E0 − En

+ c.c. (11)

Here P = ∑N
i=1 pi = −i

∑N
i=1 ∂/∂xi denotes the total mo-

mentum of all N particles.

085444-3



RUI LI AND MICHAEL FLEISCHHAUER PHYSICAL REVIEW B 96, 085444 (2017)

Niu and Thouless have shown that in the thermodynamic
limit N,L → ∞ with N/L = const., the transported charge in
an insulating state can be related to an integral of an appropriate
Berry curvature over a closed surface and thus is integer quan-
tized [5]. To see this they considered the ground state of the
N -particle Hamiltonian with twisted boundary conditions, i.e.,


(x1, . . . ,xj + L, . . . ,xN ) = eiβ
(x1, . . . ,xj , . . . ,xN ) (12)

for all j ∈ {1, . . . ,N}. Here β = αL is a continuous
parameter that can be varied from −π and π . A canonical
transformation |〉 = exp{−iα

∑
j xj }|
〉 transforms the

problem to one with periodic boundary conditions and
new Hamiltonian H (α) = e−iαX̂HeiαX̂. H (α) contains a
gauge potential α, i.e., all particle momenta pj = −i∂/∂xj

are replaced by p̃j = −i∂/∂xj + α, i.e., P → P̃ . The
corresponding many-body eigenstates and eigenenergies
become α dependent, i.e., |n(α)〉 and En(α).

Let us now consider the pumped charge in the ground state
of H (α). Making use of 〈
n|P̃ |
0〉 = 〈
n|∂α|
0〉(E0 − En),
one finds

Q(α) = − i

L

∫ T

0
dt

⎛
⎝∑

n�=0

〈∂α
0|
n〉〈
n|∂t
0〉 − c.c.

⎞
⎠

= − i

L

∫ T

0
dt

(〈
∂
0

∂α

∣∣∣∣∂
0

∂t

〉
−

〈
∂
0

∂t

∣∣∣∣∂
0

∂α

〉)
. (13)

Averaging over all values of α in {−π/L,π/L} yields

Q̄ =
∫ π

−π

dβ

2π
QL = L

2π

∫ π/L

−π/L

dα QL(α)

= − i

2π

∫ T

0
dt

∫ π/L

−π/L

dα

(〈
∂
0

∂α

∣∣∣∣∂
0

∂t

〉
−

〈
∂
0

∂t

∣∣∣∣∂
0

∂α

〉)
.

(14)

Q̄ is an integral of the many-body Berry curvature �0(α,t)
over a closed surface and is thus integer quantized. Niu and
Thouless argued that for L → ∞,

QL ≡ Q(α = 0) = Q̄, (15)

and the transported charge becomes integer quantized.
To obtain the finite-size corrections we note that the

difference between Q̄ and QL = Q(0) is just the error of the
midpoint approximation of the integral, which is given by a
similar expression as in Eq. (5) [29]:

|QL − Q̄| �
∫ T

0
dt

2Me−1/ζ

1 − e−1/ζ
=

∫ T

0
dt

2Me−L/ξ

1 − e−L/ξ
. (16)

Here �0(β) is analytic in β ∈ {−π,π} × {−ζ−1,ζ−1} or equiv-
alently in α ∈ {−π/L,π/L} × {−ξ−1,ξ−1}. Thus the finite-
size corrections to adiabatic charge transport are determined
by the analytic properties of the many-body Berry curvature
corresponding to the Hamiltonian H (α) in a complex-valued
gauge field α = α′ + iα′′. The characteristic length ξ of
finite-size corrections can be obtained from the closure of
the many-body gap �E(α) for a complex α.

Estimating ξ requires analytic knowledge of the many-body
gap which is in general rather involved. We will thus restrict
ourselves in the following to verifying the exponential size-
scaling numerically. To this end we use TEBD simulations [27]

FIG. 3. Transported charge in the superlattice Bose-Hubbard
model at half filling as function of φ for different numbers of sites N .
The path for the pump is parameterized as t1,2 = 1 ± 0.5345 cos φ,
� = 1.2649 sin φ, and onsite interaction U = 153.4508. The inset
shows the deviation of the transported charge after one cycle from
unity.

with periodic boundary conditions. Specifically we consider
the bosonic analog of the Rice-Mele model, the superlattice
Bose-Hubbard model [21]. The Hamiltonian is identical to (8),
with bosonic rather than fermionic operators and with an
additional term H1 = ∑

j (U/2)nj (nj − 1) describing onsite
repulsion with strength U > 0. In the hard-core limit, realized
for U � t1,t2,|�|, the model can be mapped to the Rice-Mele
model. In Fig. 3 we show the dependence of the transported
charge on the number of sites N . The results verify the
exponential scaling.

B. Thouless pump for degenerate ground states
and U(n) Berry phase

Due to interactions, the ground state can spontaneously
break the discrete translational symmetry of the underlying
model and multiple degenerate ground states can exist. In such
a case a topological pump can transfer one of the ground states
into the other states, and multiple pump cycles are required
to return to the original bulk state. The topological invariant
describing such a quantized charge pump in the thermody-
namic limit is then a U (n) Berry phase, where n is the degree
of degeneracy. The above discussion can straightforwardly be
generalized to this case. The only difference is that the Berry
curvature is integrated over the time of a cycle returning the
broken-symmetry bulk state to itself, which is a multiple of
the time period of the underlying many-body Hamiltonian.

We will now illustrate this for the example of the extended
SLBHM [25,31]. This model is similar to the SLBHM
but contains in addition nearest and next-nearest neighbor
interactions V1 and V2, respectively:

H = −t1
∑
even

a
†
j aj+1 − t2

∑
odd

a
†
j aj+1 − �

∑
j

(−1)j nj

+
∑

j

(
U

2
nj (nj − 1) + V1njnj+1 + V2njnj+2

)
. (17)
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FIG. 4. Schematics of the Thouless pump for ρ = 1/4. The
ground state is twofold degenerate and two pump cycles are needed
to return to the initial bulk state.

Here nj = a
†
j aj . For sufficiently large values of U and V1,2 this

model has Mott-insulating (MI) ground states with fractional
filling, which spontaneously break the translational symmetry
of the superlattice. MI phases exist for fractional fillings
ρ = 1/4,1/3,1/2, . . .. In the following we will consider the
ρ = 1/4 MI state which is doubly degenerate. For � = 0
the Hamiltonian is inversion symmetric and possesses four
distinct ground-state phases illustrated in Fig. 4 for the atomic
limit (U � V1 > V2 � min[t1,t2]). These phases can be
distinguished by their behavior under inversion at a fixed
bond and by the Zak phase with respect to that bond, which
defines a topological quantum number [26]. A Thouless pump
transfers the bulk state into itself only after two cycles and
is associated with a U (2) Berry phase. As a consequence the
pumped charge in a single cycle averaged over all bonds and in
the thermodynamic limit is 1/2. This is illustrated in Fig. 5(a),

(a) (b)

FIG. 5. (a) Transported charge across successive bonds in the
unit cell of the E-SLBHM (see inset) as function of φ in the atomic
limit. The pump cycle is parameterized t1,2 = 1

2 (1 ∓ cos(φ)), � =
sin(φ). Here N = 18 lattice sites and open boundary conditions are
considered. Note that due to the twofold degeneracy, two pump cycles
are needed for an integer particle transport. (b) Averaged transported
charge �Q normalized to �Qideal in a system with open boundary
conditions. Dashed lines show results for N = 18 and N = 34
for t1,2 = 1

2 (1.1 ∓ 0.9 cos(φ)), � = 1.56 sin(φ). The deviations of
transported charges from their ideal values are |�Q − �Qideal| =
0.0067 and 0.001, respectively. Full lines correspond to N = 18
and N = 34 for t1,2 = 1

2 (1.05 ∓ 0.95 cos(φ)), � = 0.95 sin(φ). Here,
|�Q − �Qideal| = 0.0038 and 0.0012, respectively. �Qideal takes
into account the contributions of the edge states at the beginning and
the end of the pump cycle, with �Qideal = 0.5294 for N = 18 and
0.5151 for N = 34. Parameters for both figures are V1 = 4, V2 = 2,
and U = 40.

where we show numerical results obtained by TEBD. Since
TEBD simulations are very difficult for periodic boundary
conditions we here choose open boundary conditions. To avoid
the influence of the edges we calculate the transported charge
only at bonds in the center of the chain. We consider conditions
where the distance to the boundaries is much larger than the
localization length of the edge states and where this length
is smaller than the anticipated characteristic length scale of
the transport. We also make sure that the Thouless pump does
not lead to transitions into higher bands at the edges. Due to
the density-wave character of the ground state the transported
charge differs for different bonds but averages to about 0.5. In
Fig. 5(b) we illustrate the charge transport for different system
sizes normalized to the ideal values that take into account that
in a single pump cycle the occupied edge state moves from the
left to the right. As expected �Q/�Qideal approaches unity
with increasing system size and when the difference of the
tunneling rates is larger.

IV. SUMMARY AND OUTLOOK

Adiabatic topological transport of charge in insulating
ground states is in general not quantized in finite systems. We
derived an analytical upper bound to deviations from integer
values for both noninteracting and interacting systems, which
results from the discreteness of momentum space in finite
systems and is determined by analytic properties of the Berry
curvature. Specifically, we considered the Rice-Mele model as
an example of a noninteracting model exhibiting topological
order. Through dynamical simulations of a charge pump and
direct evaluation of the finite sum Eq. (5), we verified the
exponential scaling of the corrections to the quantized particle
transport, which agrees with analytic predictions. Furthermore,
we investigated the same effect for the superlattice Bose-
Hubbard model and the extended superlattice Bose-Hubbard
model as examples of interacting systems. A slightly modified
argument using the many-body wave function can be made
for the existence of exponential finite-size corrections in this
case. However, the evaluation for the explicit expression of
the characteristic length scale is only possible if analytic
knowledge of the many-body gap exists. We verified the
exponential scaling using TEBD. Our findings suggest that
deviations can become non-negligible even for larger systems,
which may explain small corrections on top of nonadiabatic
contributions observed in recent experiments [11]. On a more
conceptual level, our findings highlight the difference between
the winding of the Berry (Zak) phase (or polarization) and
quantized transport. While the former indicate the existence
of topological order in systems of any size, adiabatic transport
strictly shows topological order only for infinite systems.
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