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We introduce a classification of symmetry-protected topological phases applicable to stationary states of open
systems based on a generalization of the many-body polarization. The polarization can be used to probe topological
properties of noninteracting and interacting closed and open systems and remains a meaningful quantity even in
the presence of moderate particle-number fluctuations. As examples, we discuss two open-system versions of a
topological Thouless pump in the steady state of one-dimensional lattices driven by Markovian reservoirs. In an
analogous unitary system, the Su-Shrieffer-Heeger model, symmetries enforce a quantization of the geometric
Zak phase, which acts as a topological invariant. Introducing a further degree of freedom, a nontrivial winding
of the phase can be observed upon cyclic variations of parameters. Associated with this is a quantization or,
respectively, a winding of the polarization corresponding to a quantized transport (Thouless pump). We here
show that in the open system, where the Zak phase loses its meaning, the same symmetries enforce a quantization
and more generally a winding of the generalized many-body polarization. These features are shown to be robust
against Hamiltonian perturbations as well as homogeneous dephasing and particle losses.
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Introduction. Since the discovery of the quantum Hall effect
[1] topological states of matter have fascinated scientists in
all fields of physics. Topological phases can be characterized
by nonlocal integer invariants [2], whose existence leads
to a number of fascinating properties including protected
edge states [3] and anyonic excitations [4]. Their robustness
against disorder has made topological systems important tools
in metrology and promising candidates for future quantum
information platforms [5]. However, topological protection is
typically destroyed by dissipation, e.g., decoherence or particle
losses [6]. It would thus be highly desirable to extend the
notion of topological order to open systems coupled to external
reservoirs. This could even substantially extend topological
protection since steady states are attractors of the dynamics
and thus have an intrinsic robustness.

By now there is a rather good understanding of topological
order in noninteracting closed systems. An exhaustive classifi-
cation of gapped topological states of noninteracting fermions
(the “tenfold way” [7]) has been given solely on the basis of
general symmetry properties. In contrast, the understanding of
topological order in interacting systems [8] is limited and the
extension to open systems is entirely in its infancy. Recently
there have been some attempts to generalize the concept of
topological order to steady states of open systems [9–12]. This
includes proposals to extend Berry phases [13–15] to mixed
states [16–19], e.g., using the Uhlmann phase [20], whose
suitability has, however, been questioned [21]. Alternatives
suggested for one-dimensional systems are based on projective
symmetry group representations [22]. For Gaussian density
matrices describing steady states of noninteracting fermionic
systems with linear reservoir couplings, a classification of
topological order can be made [23] employing a scheme
similar to the unitary case [7].

Here we pursue a different and more general approach,
applicable also to interacting open systems. We consider
the case where topology is protected by certain symmetries
(symmetry-protected topological order, SPT). A prime exam-

ple of a unitary system with SPT is the Su-Shrieffer-Heeger
(SSH) model [24]. Here chiral symmetry enforces a quantized
value of the geometric Berry (or Zak) phase [13,14], which
allows one to distinguish two topologically different phases
which can be connected only by going through a phase
transition. Extending the model by a symmetry breaking
term, corresponding to the Rice-Mele model [25], allows one
to smoothly connect the phases avoiding the critical point.
Cyclic variations of the parameters enclosing the critical
point enforce a nontrivial winding of the Zak phase, which
defines a topological invariant, the Chern number. As shown
in [15,26,27] the Zak phase can be related to the polarization
and the winding of the Zak phase is equivalent to a winding
of the polarization, giving rise to a quantized particle transport
known as Thouless pump [2,28–30]. Such topological pumps
are of special interest as they allow for studying the topological
structure of parameter spaces [31] and have been used to
understand Z2 topological insulators [32]. Here we show
that topological pumps can be used to classify SPT in the
steady state of open, one-dimensional models. Specifically we
consider open chains of fermions and spins with a Liouvillian
dynamics obeying the same symmetries as the SSH and
Rice-Mele models. We show that they enforce a nontrivial
winding of the many-body polarization [33], characterizing
a Thouless pump. While the Zak phase is no longer suitable
to characterize topology, the polarization generalized to open
systems with moderate particle number fluctuations and its
winding allow one to define a quantized topological invariant.

Classification scheme of SPT. In the following we want
to introduce our classification scheme, which generalizes
the notion of SPT to open systems. It is motivated by
the equivalence between the Zak phase and the many-body
polarization [26] formulated for periodic systems by Resta
[33] as

P = 1
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with X̂ being the center-of-mass operator. This quantity has
already been successfully applied to characterize quantized
topological transport and SPT in one-dimensional L-periodic
closed systems [15]. We here argue that this concept can be
further generalized to periodic systems subject to dissipation.

In fact for this quantity to be meaningful the only restriction
to be made is to fix the mean particle number 〈N̂〉 = L with
nonextensive fluctuations, i.e., 〈�N̂〉/〈N̂〉 → 0 for all relevant
states when L → ∞. Under these conditions P , which is
defined mod 1, is invariant under trivial changes of the particle
coordinates by one unit cell in the limit L → ∞. For half filling
the system has furthermore particle-hole symmetry (PHS). We
note that P contains genuine many-particle contributions and
is in general not determined by single-particle correlations
alone.

We can now use Eq. (1) to study systems with additional
symmetries and a unique stationary state. Focusing concretely
on spatial inversion (IS), we consider two inversion symmetric
systems with polarizations P1 and P2. Because under inversion
the difference of their polarizations �P = P1 − P2 changes its
sign �P → −�P , but at the same time has to remain invariant
because of IS, it follows that �P = −�P mod 1. Therefore
the difference �P can only take two quantized values �P =
0, ± 1/2 [14]. This quantization of the polarization has been
heavily used in the context of closed periodic systems, e.g.,
in the SSH model [24], where the polarization can be directly
related to the Zak phase [26] and underlies the “tenfold way”
[7]. We stress that this already makes it possible to classify
SPT phases in noninteracting and interacting closed and open
systems as well.

In the following we demonstrate our method with two
toy models. We further prove that by introducing a second
parameter, these systems can show a nontrivial winding
number on closed loops in parameter space, extending the
concept of topological pumps to open systems.

Model. We investigate driven-dissipative analogs of the
translationally invariant Rice-Mele model [25]. As indicated in
Fig. 1(a) we consider one-dimensional lattices of fermions or
spins coupled to Markovian reservoirs described by Lindblad
operators

LA
j =

√
�(1 + ε)[(1 − λ)(Â†

L,j + ÂR,j )

+ (1 + λ)(ÂL,j ∓ Â
†
R,j )], (2)

LB
j =

√
�(1 − ε)[(1 − λ)(Â†

L,j+1 + ÂR,j )

+ (1 + λ)(ÂL,j+1 ∓ Â
†
R,j )]. (3)

Each unit cell is defined and numbered by the index “j” and
consists of two sites, “L” and “R”. Â and Â† denote fermion
annihilation and creation operators, ĉ,ĉ† (minus sign), or spin
operators σ̂−,σ̂+ (plus sign), respectively. � is the coupling
strength to the reservoirs and determines the overall time scale.
Our model is characterized by two parameters λ ∈ [−1,1] and
ε ∈ [−1,1], where ε describes the relative strength of reservoir
couplings across inequivalent links in the lattice and λ controls
the distribution of particles inside a unit cell. For λ = 1 (λ =
−1) both Lindblad operators localize particles on the L sites (R
sites). Despite their model character, there have been proposals

FIG. 1. (a) Open-system analog of the Rice-Mele model: One-
dimensional fermion or spin chain with alternating pairwise coupling
to two different Markovian reservoirs (Lindblad generators LA

j and
LB

j ). The unit cell labeled by “j” contains a left “L” (blue) and a
right “R” (green) lattice site. (b) The many-body polarization shows
a nontrivial winding, here in the fermionic model (see text), upon
cyclic variations of parameters of the Liouvillian. On the axes with
inversion symmetry (blue and green) the change in polarization is
strictly quantized �P = 0, ± 1/2. On the special path along the
periphery (red), the steady state is pure.

for experimental realizations of reservoirs of similar structure
using cold atoms [9,23,34].

We study the steady state ρss of the systems density matrix,
which obeys the master equation in Lindblad form (� = 1)
∂tρss = Lρss = 0, with

Lρ = −i[H,ρ]+ 1
2

∑
μ

(2LμρL†
μ − L†

μLμρ − ρL†
μLμ),

(4)

where Lμ ∈ (LA
j ,LB

j ). We consider periodic boundary condi-
tions with j = 1, . . . ,L. To ensure a unique steady state for all
parameters we introduce a potential, H = U

∑
j (Â†

L,j ÂL,j ±
Â

†
R,j ÂR,j ), for fermions (+) or spins (−), respectively, and

set U = � for convenience. We further have to add nonlinear
modifications in the case of spins

LA
j → LA

j +
√

�(1 + ε)(σ̂+
L,j σ̂

+
R,j − σ̂−

L,j σ̂
−
R,j ), (5)

LB
j → LB

j +
√

�(1 − ε)(σ̂+
R,j σ̂

+
L,j+1 − σ̂−

R,j σ̂
−
L,j+1), (6)

in order to prevent the steady state from becoming completely
mixed on the λ = 0 axis (see Supplemental Material for details
[35]). We note that while the fermionic chain is Gaussian, the
spin chain is an example for a non-Gaussian, i.e., an interacting
system.

The following analysis relies on symmetries of the Li-
ouvillians. Besides translation invariance by one unit cell,
L is invariant under CIb, i.e., simultaneous particle-hole
exchange (C) and spatial inversion with respect to any lattice
bond (Ib). As a consequence one finds that the average
number of particles per unit cell is unity, 〈n̂L,j + n̂R,j 〉 = 1,
corresponding to half filling or PHS. For the discussion of
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symmetry-protected topological order we furthermore note
that the system is invariant with respect to an inversion at
a lattice site (Is) for ε = 0 and with respect to a bond (Ib) for
λ = 0.

SPT and winding of polarization. We now show that the
symmetries of the system give rise to two distinct SPT phases.
To see that we consider the axes with inversion symmetry
(λ,0) and (0,ε), where the parameter space is effectively one-
dimensional. Here by the same general argument introduced
in the beginning of this text the change in polarization can
only take quantized values �P = 0, ± 1/2 [see Fig. 1(b)].
Therefore a topological transition can only take place in the
center λ = ε = 0, where P is not defined and can change
discontinuously.

Moving away from the axes (λ,0) and (ε,0), which corre-
sponds to a breaking of inversion symmetry, the polarization
can change smoothly and shows a nontrivial winding upon a
closed loop in the two-dimensional parameter space (λ,ε). To
see this we note that λ → −λ is equivalent to the action of
C, and ε → −ε to Is . The most important consequence is that
simultaneous transformation (λ,ε) → (−λ, − ε) is equivalent
to a translation by one lattice site, i.e., (L,j ) → (R,j ) and
(R,j ) → (L,j + 1). Thus performing a point inversion in
parameter space, i.e., (λ,ε) → (−λ, − ε), leaves L invariant
up to a translation by one lattice site and if the polarization is
well defined we find

P (−λ,−ε) = P (λ,ε) ± 1/2. (7)

As the steady state is unique, the change in polarization
after one cycle has to be integer quantized, which together
with Eq. (7) fixes the winding number of the polarization
to ν = ±1, ± 3, . . .. This is confirmed by semianalytical and
numerical time-evolving block decimation (TEBD) [36,37]
calculations for both types of chains [see Fig. 1(b)].

Pure steady states. It is interesting to consider the steady
state for parameters along the special path in parame-
ter space indicated in Fig. 1(b): (i) ε = 1, λ = 1 → −1,
(ii) λ = −1, ε = 1 → −1, (iii) ε = −1, λ = −1 → +1, and
finally (iv) λ = +1, ε = −1 → 1. Here a pure steady state
ρss = |�〉〈�| exists. On (i) and (ii) it factorizes in unit cells
|�(λ)〉 = ∏

j |φ(λ)〉j , where up to normalization |φ(λ)〉j =
(1 − λ)Â†

L,j |0〉 − (1 + λ)Â†
R,j |0〉. Here |0〉 denotes | ↓L,j↓R,j

〉 for spins and the vacuum for fermions. On parts (iii) and (iv)
the steady state factorizes in new unit cells that are shifted by
one site with respect to the old ones.

Because |�〉 is a pure steady state (dark state), it is the
ground state of the parent Hamiltonian Hpar = ∑

μ L†
μLμ � 0

which encodes all properties of the steady state. For our
models with periodic boundary conditions the parent Hamil-
tonian reads Hpar = HRM + H1, where HRM is the Rice-Mele
Hamiltonian, describing the dynamics of fermions or spin
excitations in a superlattice with alternating hopping matrix
elements t1 = 2�(1 + ε)(1 − λ2) and t2 = 2�(1 − ε)(1 − λ2)
and a staggered potential ±� with � = 8λ�. This model is a
paradigmatic example for a topological Thouless pump [28].
When following the systems ground state adiabatically while
t1 − t2 and � encircle the topological singularity at t1 = t2,
� = 0, a quantized current is induced in the bulk. It can
be associated with a quantized winding of the many-body

FIG. 2. Many-body polarization under slow variation of the pa-
rameters evaluated along a circular path (red) as indicated in (a) with
radius R = √

ε2 + λ2 = 1. Different perturbations are considered
numerically, using TEBD (solid) for the spin chain (L = 16 unit
cells) or exact diagonalization for the four-site periodic fermionic
chain (L = 2 unit cells) (dashed): (b) spatially random magnetic field
in z direction V/� = 1 (disorder average consisting of 50 samples).
(c) local dephasing with homogeneous losses and pumping both with
rates γ⊥/� = 0.5, where γ‖ = γ⊥.

polarization, corresponding to an integer topological Chern
number (C = 1). The second term H1 has no effect on the
dark state since H1|�(λ)〉 = 0.

Robustness. In closed systems topological properties are
known to be robust against perturbations that do not close
the energy gap. This makes it interesting to ask whether the
winding of the polarization in an open system can be robust
against Hamiltonian and Liouvillian perturbations.

For the spin chain we evolved the stationary state nu-
merically, employing the TEBD to investigate robustness in
sufficiently large systems (L = 16) along a circular path as
indicated in Fig. 2(a).

For the fermionic chain, which is linear in fermionic
operators, we can calculate the polarization of its steady state
semianalytically [38]. However, because we add perturbations
that are nonlinear in fermionic operators like dephasing or
spatial randomness, we can only check for robustness in
small periodic systems of four sites. This is sufficient because
topological effects should not depend on system size.

Specifically we analyzed three different types of pertur-
bations which preserve the PHS of the steady state: (i) a
spatially random magnetic field in the z direction with uniform
distribution, (ii) dephasing, and (iii) additional local losses
compensated by local pumps with equal rates. In the first
case we add a Hamiltonian Hpert = ∑

μ V wμ(1 − 2Â†
μÂμ),

where μ denotes a lattice site and wμ ∈ [−1,1] are independent
random magnetic field strengths. As can be seen from Fig. 2(b),
this perturbation has negligible influence on the polarization
and does not affect its winding. In the second case we
add an additional Lindblad term with L

R/L,μ

deph = √
γ⊥ (1 −

2Â
†
L/R,μÂL/R,μ), where γ⊥ is the dephasing rate. This term,

too, has almost no effect on P and does not change its
winding. The same is true for homogeneous losses and gains.
These have to be added with equal rates γ‖, however, in
order to maintain the PHS of the system, i.e., 〈n̂L + n̂R〉 = 1:
L

R/L,μ

↑ = √
γ‖ Â

†
R/L,μ, and L

R/L,μ

↓ = √
γ‖ ÂR/L,μ. The small
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FIG. 3. (a) purity spectrum of fermionic model. (b) Dominant
values of the spectrum σ (ρss) of the steady-state density matrix of
the spin model for additional homogeneous dephasing γ⊥ = 0.5� at
ε = 0 obtained from exact diagonalization of a four-site problem.

effects of these non-Hermitian perturbations are shown in
Fig. 2(c).

Most interestingly, �P = ±1/2 between two inversion-
symmetric points on the λ = 0 axis remains intact even in
the presence of spatially homogeneous losses [see Fig. 2(c)].
These findings are important, because they show that in an open
system topological properties such as the quantized charge
pump can be maintained even in the presence of unwanted
losses, if the system remains PHS.

Topological singularity. For open Gaussian systems it has
been argued in [23] that a topological singularity, at which a
topological phase transition takes place, is connected to the
closing of at least one of the two, the damping gap or the
so-called purity gap. The damping gap is determined by the real
part of the eigenvalues of L, Lρε = ερε , which characterize
the relaxation rate of the system. The steady state is a right
eigenstate of L with eigenvalue ε = 0 and the damping gap
�d is the distance to the next larger value of Re[ε]. The purity
gap of fermionic systems is determined by the eigenvalue
spectrum of the positive semidefinite matrix (iγ )2, where
γ is the antisymmetric and real steady state single-particle
correlation matrix [23].

The damping gap is difficult to obtain from TEBD
simulations and we have performed exact simulations for a
four-site problem for the fermionic and nonlinear spin chains.
While even for such small system sizes we can already
observe a quantized winding of the polarization, the damping
gap is sizable everywhere (see Supplemental Material for
details).

For the fermion model, which is Gaussian, the purity gap
is shown in Fig. 3(a). One recognizes a closing of the purity
gap at the origin (λ = ε = 0) consistent with the behavior

of the polarization. This suggests that our classification is
in agreement with previous schemes for Gaussian systems
such as in [23]. Since the spin system cannot be mapped to
a free fermionic model the concept of the purity gap cannot
be applied here. However, for small systems with four sites
we can evaluate the eigenvalue spectrum of the full density
matrix. We find that the two dominant eigenvalues of ρss never
become equal [see Fig. 3(b)]. Although these calculations can
only be done for finite systems, this indicates that there is no
closing of a “generalized” purity gap since an indicator of a
topological transition is expected to be independent of system
size. Thus the conditions for a topological singularity and its
nature in a dissipative system remain open questions devoted
to further studies.

Summary. To summarize, we have generalized the notion
of SPT to steady states of one-dimensional interacting open
systems. While topological invariants based on geometric
phases such as the Zak phase known from closed systems
are no longer applicable here, the quantized bulk transport of
the Thouless pump remains a suitable indicator of topology
in more general one-dimensional open systems and the
winding of the polarization defines a topological invariant.
The polarization is a measurable quantity even in an open
system and specific detection protocols will be discussed in
detail elsewhere [39].

As specific examples we investigated an open fermion and
spin chain with reservoir couplings that lead to particle-hole
symmetric steady states. We showed that the symmetries
of the models enforce a nontrivial quantized winding of
the many-body polarization upon cyclic parameter variations
which characterizes a topological Thouless pump. In the
presence of inversion symmetry distinct phases with quantized
values of the many-body polarization emerge which defines
symmetry-protected topological order. We have shown that
the polarization winding is robust to Hamiltonian disorder
as well as to additional dephasing or moderate particle
losses.

The conditions for a topological singularity remain an open
question which requires further investigation. An interesting
future avenue is the extension to higher spatial dimensions
which may provide a way to realize topologically protected
transport in an open system that is robust against particle
losses.
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[34] M. Höning, M. Moos, and M. Fleischhauer, Critical exponents

of steady-state phase transitions in fermionic lattice models,
Phys. Rev. A 86, 013606 (2012).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.94.201105 for details on numerical methods
and the damping gap as well as a discussion of the nonlinear
term in the spin model.

[36] M. Zwolak, and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93,
207205 (2004).

[37] G. Vidal, Efficient Classical Simulation of Slightly Entangled
Quantum Computations, Phys. Rev. Lett. 91, 147902 (2003).

[38] J. Eisert and T. Prosen, Noise-driven quantum criticality,
arXiv:1012.5013.

[39] D. Linzner and M. Fleischhauer (unpublished).

201105-5

https://doi.org/10.1103/PhysRevB.85.121405
https://doi.org/10.1103/PhysRevB.85.121405
https://doi.org/10.1103/PhysRevB.85.121405
https://doi.org/10.1103/PhysRevB.85.121405
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys2106
https://doi.org/10.1038/nphys2106
https://doi.org/10.1038/nphys2106
https://doi.org/10.1038/nphys2106
http://arxiv.org/abs/arXiv:1512.08079
http://arxiv.org/abs/arXiv:1609.02432
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1103/PhysRevB.88.155141
https://doi.org/10.1103/PhysRevB.88.155141
https://doi.org/10.1103/PhysRevB.88.155141
https://doi.org/10.1103/PhysRevB.88.155141
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1103/PhysRevB.91.165140
https://doi.org/10.1103/PhysRevB.91.165140
https://doi.org/10.1103/PhysRevB.91.165140
https://doi.org/10.1103/PhysRevB.91.165140
https://doi.org/10.1103/PhysRevB.90.075141
https://doi.org/10.1103/PhysRevB.90.075141
https://doi.org/10.1103/PhysRevB.90.075141
https://doi.org/10.1103/PhysRevB.90.075141
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3622
https://doi.org/10.1103/PhysRevLett.106.110405
https://doi.org/10.1103/PhysRevLett.106.110405
https://doi.org/10.1103/PhysRevLett.106.110405
https://doi.org/10.1103/PhysRevLett.106.110405
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevA.86.013606
https://doi.org/10.1103/PhysRevA.86.013606
https://doi.org/10.1103/PhysRevA.86.013606
https://doi.org/10.1103/PhysRevA.86.013606
http://link.aps.org/supplemental/10.1103/PhysRevB.94.201105
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
http://arxiv.org/abs/arXiv:1012.5013



