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The Fröhlich model describes the interaction of a mobile impurity with a surrounding bath of phonons which
leads to the formation of a quasiparticle, the polaron. In this paper an efficient renormalization group approach
is presented which provides a description of Fröhlich polarons in all regimes ranging from weak to strong
coupling. The extended renormalization group approach introduced here is capable of predicting ground state
properties for arbitrarily small impurity masses. This allows us to obtain the full phase diagram of the Fröhlich
Hamiltonian, which we present concretely for the Bogoliubov-Fröhlich model originally introduced to describe
ultracold impurities in a Bose-Einstein condensate. For this model, whose regime of validity in ultracold quantum
gases is the subject of debate, we benchmark our method by comparison of the ground state energy to recent
diagrammatic quantum Monte Carlo calculations.
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I. INTRODUCTION

When an electron moves through a metal, it interacts
with the phonons of the host lattice. Such electron-phonon
interactions were first described by Fröhlich who introduced
a model where the electron emits and reabsorbs phonons [1].
When a single electron is considered as a mobile impurity in
the crystal, as noted by Landau and Pekar [2,3], it becomes
dressed by a cloud of phonons which it carries along. The
resulting quasiparticle is called a polaron, and compared to
the bare electron it has an enhanced mass. Such polaronic
mass enhancement is not limited to electrons in solids but is
now understood as a generic effect that can be observed in
much broader classes of systems, including magnets [4,5] or
ultracold atoms [6–10].

Polarons are mostly considered in one out of two physical
regimes. For weak couplings the mobile impurity retains
its character, and its mass is slightly increased because of
the dressing with virtual phonons. For strong couplings, on
the other hand, the impurity becomes self-trapped inside a
sizable potential created by the phonons making up the polaron
cloud. Such strong-coupling polarons are extremely heavy and
loose their character as mobile impurities almost entirely. The
most interesting physics takes place at intermediate couplings,
however, where the impurity acts as an exchange particle
mediating interactions between phonons. As a result the
phonons become correlated in this regime, and a nontrivial
polaronic state is expected [11–13]. In this paper we introduce
a theoretical method, valid for arbitrary couplings, to describe
such correlations quantitatively.

In both regimes of weak and strong coupling efficient
theories exist for describing polarons, see Refs. [10,14] for
reviews. At strong couplings Landau and Pekar [2,3] used
the adiabatic principle and assumed that phonons can follow
the impurity instantly. At weak couplings, on the other hand,
simple perturbation theory or the more advanced mean-field
(MF) approach developed by Lee, Low, and Pines [15] can
be used. Although the theory of polarons is now more than
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eighty years old, the regime of intermediate couplings is
still poorly understood and efficient methods for describing
polarons at such couplings are lacking. The most accurate
method is the diagrammatic Monte Carlo approach [16] but it
only provides limited physical insights. The most successful
semianalytical all-coupling theory in cases where optical
phonons are involved [17] was developed by Feynman [18].
He introduced a variational theory, formulated in terms of path
integrals, allowing us to extrapolate between the weak and
strong coupling limits where the Lee-Low-Pines and Landau-
Pekar theories are asymptotically recovered, respectively. Due
to its restriction to a set of only two variational parameters
it is unable to capture all the quantum correlations between
phonons which are present at intermediate couplings however.
This was recently demonstrated using diagrammatic Monte
Carlo calculations of the energy of an impurity atom inside
an atomic Bose-Einstein condensate (BEC), modeled by a
Fröhlich Hamiltonian [19]. Large discrepancies were found to
predictions by Feynman’s variational method applied to the
same model [20].

Recently a new theoretical method was introduced, based
on the use of renormalization group (RG) techniques, to
include phonon-phonon correlations in the description of
the polaron cloud [10,12]. It was employed to explain the
discrepancies between Feynman path integral calculations and
numerically exact diagrammatic Monte Carlo results [20] by
predicting the existence of a peculiar logarithmic divergence
of the BEC-polaron energy (within the Fröhlich model)
with the ultraviolet (UV) momentum cutoff. It was shown
that Feynman’s method as well as the celebrated strong-
coupling theory of Landau and Pekar are unable to capture
the effects of quantum fluctuations in the UV which lead
to the log divergence [10]. The RG technique developed
in Ref. [12] not only yields analytical insights to the po-
laron problem, but it also provides an accurate quantitative
description of the ground state from weak to intermediate
couplings.

We have identified two main shortcomings of the pertur-
bative RG described in Ref. [12], which will be overcome
by the extended RG approach introduced in this paper. First,
for strong couplings α � 1 (where α is the dimensionless
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FIG. 1. To investigate polarons at arbitrary couplings, we extend
the perturbative RG approach introduced in Ref. [12]. Here we
compare polaron energies Ep of an impurity atom in a three-
dimensional BEC, calculated using different techniques within the
approximate Fröhlich model. Ep = E0 − gIBn0 is defined by the
ground state energy E0 from which the mean-field contribution gIBn0

is subtracted. As explained in Refs. [10,12,20] the mean field needs
to be properly regularized. The extended RG scheme reproduces
accurately the energy predicted by numerical diagrammatic Monte
Carlo calculations by Vlietinck et al. [20] for arbitrary couplings.
The simpler perturbative RG approach [12] agrees with these results
only for moderate values of α � 4. Parameters are M/m = 0.26316,
�0 = 3000/ξ , and P = 0 for all curves.

coupling constant) the ground state energies obtained from the
perturbative RG compare poorly with diagrammatic Monte
Carlo results, see Fig. 1. Second, in the regime of light
impurities at strong couplings, where quantum fluctuations are
dominant, the perturbative RG predicts an unphysical diver-
gence of the effective polaron mass, similar to the prediction of
a simple perturbation theory in the impurity-phonon coupling.
In this article we show that both these problems originate
from the insufficiency of using only perturbation theory in the
derivation of the RG flow.

We extended the RG by going beyond perturbation theory
in every RG step, each time effectively summing up an infinite
number of diagrams. As a result we obtain an efficient semi-
analytical theory for the polaron which provides an accurate
quantitative description of the ground state for arbitrary
coupling strengths, see Fig. 1. The key insight is to expand
the renormalized Hamiltonian around its new MF ground state
after every RG step. This approach is not restricted to Fröhlich
Hamiltonians, but may be applied to much broader classes
of systems to obtain a quantitative description of correlated
ground states from the renormalization group approach in
general.

The paper is organized as follows. In Sec. II we introduce
the Bogoliubov-Fröhlich model describing polarons in a
weakly interacting BEC which we will use to benchmark
the extended RG approach. We emphasize however that our
method is applicable to a much broader class of systems.
In Sec. III we provide an overview of our method and
introduce the coupling constants flowing in the RG protocol. In
Sec. IV we discuss concrete results for impurity atoms inside

a BEC (described by the approximate Fröhlich Hamiltonian)
which we compare to quantum Monte Carlo calculations
and results obtained using Feynman’s variational method
within the same model. We calculate the phase diagram of
the Bogoliubov-Fröhlich model for all values of the two
dimensionless coupling constants in two spatial dimensions.
Its qualitative shape in the regime where the impurity is
much lighter than host bosons is explained in Sec. V. In
Sec. VI we present the detailed derivation of the extended RG
method. We close with a summary and by giving an outlook in
Sec. VII.

II. MODEL

Traditionally the polaron problem was investigated in the
context of solid state physics, however recently impurity
atoms immersed in ultracold quantum gases have become an
increasingly important model system for studying polaronic
effects [6–10]. These ultra clean systems are ideally suited for
an investigation of polaron physics because of the powerful
experimental tools available and the tunability of many
model parameters over a wide range. The impurity phonon
interactions can be controlled using Feshbach resonances [21]
and the effective impurity mass can be tuned almost at will
by coupling to light fields [22]. This motivates us to study
a model relevant to ultracold atoms in the following. The
main objective of our work, however, is to understand the
physics of the Fröhlich Hamiltonian in general, and our
method can be applied to much more general classes of
systems.

It was suggested in Ref. [19] that a single impurity atom in-
teracting with a surrounding Bose-Einstein condensate (BEC)
can be described by the Bogoliubov-Fröhlich Hamiltonian

Ĥ = gIBn0 + p̂2

2M
+

∫ �0

dd k[Vke
ik·r̂ (âk + â

†
−k) + ωkâ

†
kâk]

(1)

in d spatial dimensions, under conditions where the con-
densate depletion in the vicinity of the impurity remains
small [7,10,23]. Here p̂ (r̂) denote the impurity momentum
(position) operators respectively, and âk annihilates a Bogoli-
ubov excitation of the BEC. The mass of the impurity is M and
�0 is a UV momentum cutoff required for regularization [10].
The scattering amplitude is defined by

Vk = √
α

c
√

ξ

2π
√

2

(
1 + mB

M

)(
k2ξ 2

2 + k2ξ 2

)1/4

(2)

where α = a2
IB/(aBBξ ) is the 3d dimensionless coupling

constant [19], aIB (aBB) is the impurity-boson (boson-boson)
scattering length, ξ and c denote the healing length and
the speed of sound in the BEC, and mB = 1/(

√
2cξ ) is the

mass of bosons in the BEC. n0 is the density of the BEC
and gIB = aIB2π (1/mB + 1/M) is the effective interaction
strength (note that gIB needs to be regularized by the UV
cutoff in 3d, see, e.g., Refs. [19,24,25]).

The Bogoliubov dispersion is given by ωk =
ck

√
1 + k2ξ 2/2. The dependence of Vk and ωk on the

momentum k is specific for the BEC polaron, but our
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theoretical analysis below applies to any Hamiltonian of the
type in Eq. (1), in any spatial dimension d.

The healing length ξ defines the natural length scale of the
Bogoliubov-Fröhlich Hamiltonian and c/ξ the characteristic
energy scale. This leaves only two independent dimensionless
coupling constants α and mB/M which fully characterize the
model for a given UV cutoff �0.

A. Validity of the Fröhlich model in a BEC

As mentioned above, the Fröhlich model is valid only when
the condensate depletion in the vicinity of the impurity remains
small, see Refs. [7,10,23] for a discussion when this is justified.
If this is not the case, additional two-phonon scattering terms
need to be taken into account. In the weak coupling regime
the Fröhlich model is typically found to describe correctly the
BEC polaron [26,27].

At strong couplings, however, severe doubts remain
whether the Fröhlich Hamiltonian is adequate. In Ref. [26]
it was shown that deviations from the Fröhlich model become
sizable close to a Feshbach resonance. In this regime the
spectral function was analyzed in Ref. [25], and around
unitarity its behavior is markedly different from predictions by
the Fröhlich model [24]. In particular, two-phonon scatterings
lead to the existence of bound states [25,28], and interesting
few-body physics related to the Efimov effect have also been
discussed [26,29]. These findings go beyond the effective
Fröhlich model.

We emphasize again that the main objective of the present
paper is not to provide an accurate description of impurity
atoms interacting with a BEC, but to provide an efficient
theoretical method for analyzing the Fröhlich Hamiltonian.
In a forthcoming publication we apply the theoretical method
introduced in this work to the full Hamiltonian including
two-phonon scattering terms. There we show that key features
found for the Fröhlich Hamiltonian here can be recognized,
even at strong couplings, although quantitative deviations are
sizable.

III. METHOD–AN OVERVIEW

In this section we provide a brief overview of our theoretical
treatment of the Fröhlich polaron problem. We start from the
general Fröhlich Hamiltonian (1) and apply the unitary Lee-
Low-Pines transformation [15]

ÛLLP = eiŜ , Ŝ = r̂ · P̂ph, (3)

where the total phonon momentum is given by P̂ph =∫
ddkkâ

†
kâk. We thus switch into the polaron frame where

the impurity is localized in the origin. In the new basis
the Hamiltonian commutes with p̂ = P , which becomes a
C-number and corresponds to the total momentum P of the
polaron. It is conserved because of the translational invariance
of the system. For more details, see, e.g., Ref. [10].

Then, as in the perturbative RG [12], we expand around
the MF saddle-point solution of the resulting Hamiltonian
ĤP = Û

†
LLPĤÛLLP. The MF solution corresponds to a wave

function where the phonons are in coherent states |αMF
k 〉. The

MF amplitude is given by [24] αMF
k = −Vk/�MF

k where the

phonon dispersion in the new frame is

�MF
k = ωk + k2

2M
− 1

M
k · (

P − PMF
ph

)
; (4)

PMF
ph =

∫
dd kk

∣∣αMF
k

∣∣2
(5)

denotes the MF phonon momentum. We change into the frame
of quantum fluctuations by applying the unitary MF shift
ÛMF = exp (

∫
dd kαMF

k â
†
k − H.c.) and end up with the follow-

ing equivalent representation of the Fröhlich Hamiltonian (1)

H̃ = Û
†
MFÛ

†
LLPĤÛLLPÛMF = EMF

0 +
∫ �0

dd kâ
†
kâk�

MF
k

+
∫ �0

dd kdd k′ k · k′

2M
: �̂k�̂k′ : . (6)

Here EMF
0 denotes the variational MF ground state energy and

we defined the operators �̂k := αMF
k (âk + â

†
k) + â

†
kâk. With

: . . . : we denote normal ordering of phonon operators, e.g.,
: âkâ

†
k′ := â

†
k′ âk and : â

†
kâk′ := â

†
kâk′ .

A. Extended RG method

The Hamiltonian (6) is the starting point for all further anal-
ysis. In Refs. [10,12] a RG approach based on phonon wave
functions, related to Wegner’s method [30], was introduced to
describe the ground state of this Hamiltonian. The key idea is
to distinguish between fast phonons with momenta k form a
thin momentum shell � − δ� < |k| < � and slow phonons
with momenta | p| < � − δ�. The typical frequency �k of
fast phonons sets the largest energy scale, and the goal is to
decouple fast and slow degrees of freedom perturbatively in
�−1

k . This generates an RG flow of the Hamiltonian.
In practice the decoupling can be performed by applying a

series of unitary transformations Û� at each momentum shell.
This was done already in the perturbative RG of Ref. [12], and
it was found that additional terms are generated in the Hamilto-
nian (6) which are of the type Wk(âk + â

†
k) with some function

Wk. As a consequence the interactions between phonons,
described by the last term in Eq. (6), no longer involve
small fluctuations around the MF saddle point solution of the
new Hamiltonian. Instead they involve phonons âk which are
subject to the displacement Wk growing during the RG flow.

To ensure that the perturbative decoupling of fast and slow
phonons involves the smallest possible fluctuations, we apply
a second unitary transformation

V̂MF(�) = exp

(∫ �

dd pδα̃ pâ
†
p − H.c.

)
(7)

after every RG step, by which we change into the basis of
fluctuations around the saddle point. This is done by properly
choosing δα̃ p. Hence we displace the slow phonons by an
amount δα̃ p, which effectively renormalizes the MF amplitude
in very RG step. This is how the extended RG differs from its
purely perturbative cousin.

1. Universal Hamiltonian

As a result of the extended RG, the universal Hamiltonian
takes a simpler form than in the perturbative case [12]. Below
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in Sec.VI we will derive RG flow equations for the coupling
constants of the following universal Hamiltonian at UV
cutoff �,

H̃P (�) = E0(�) +
∫ �

dd kâ
†
kâk�̃k

+
∫ �

dd kdd k′ 1
2
kμM−1

μν k
′
ν : ˆ̃�k

ˆ̃�k′ : . (8)

Here μ,ν = x,y,... denote spatial coordinates which are
summed over using Einstein convention. We defined the
operators ˆ̃�k := α̃k(âk + â

†
k) + â

†
kâk, where the MF amplitude

α̃k is flowing in the RG. The solution α̃k = −Vk/�̃k is
reminiscent of the MF expression, but the renormalized
frequency is given by

�̃k = ωk + 1
2kμM−1

μν kν + kμM−1
μν κν. (9)

The two coupling constants of the RG are given by the
momentum κμ and the impurity mass tensorMμν . Comparison
to Eq. (6) shows that the initial conditions for the RG
are

κμ(�0) = δμx

(
P MF

ph − P
)
, (10)

Mμν(�0) = δμνM
−1, (11)

E0(�0) = E0|MF. (12)

Here we found it convenient to assume that the total system
momentum P = P ex points along the x direction. For sym-
metry reasons also the MF momentum has to point in this
direction, PMF

ph = exP
MF
ph .

2. RG flow equations

In Sec. VI we will derive the following RG flow equations,

∂M−1
μν

∂�
= 2M−1

μλ

∫
f
dd−1k

V 2
k

�̃3
k

kλkσM−1
σν (13)

for the mass (where
∫

f d
d−1k denotes the integral over the

d − 1-dimensional momentum shell with radius �), and for
the momentum

∂κx

∂�
= −∂M−1

μν

∂�

I (3)
μν

1 + 2M−1
‖ I (2)

− ∂M−1
‖

∂�
M‖κx. (14)

HereM‖ = Mxx denotes the component of the tensorial mass
along the direction of the total polaron momentum P = P ex .
Furthermore we defined the following integrals,

I (2)(�) =
∫ �

dd kk2
x

V 2
k

�̃3
k

, (15)

I (3)
μν (�) =

∫ �

dd kkxkμkν

V 2
k

�̃3
k

. (16)

For the ground state energy we derive the following RG
flow equation,

∂E0

∂�
= 1

2

∂M−1
μν

∂�

∫
s
dd ppμpν(α̃ p)2. (17)

This expression was used to calculate the polaron energies
shown in Fig. 1.

B. Effective polaron mass

Next we explain how to calculate the effective polaron mass
Mp form the extended RG approach. It is defined by expanding
the ground state energy E0(P ) with respect to the polaron
moment, E0(P ) = E0(0) + P 2/2Mp + O(P 4). In Ref. [12]
we showed using Ehrenfest’s theorem that the polaron mass
can be related to the total phonon momentum in the ground
state Pph = ∫

dd kkx〈â†
kâk〉,

Mp = M lim
P→0

(1 − Pph/P )−1. (18)

The total polaron momentum P can be partitioned into
a part PI carried by the impurity and a part Pph carried by
the phonon cloud, P = PI + Pph. Intuitively one expects that
both contributions are positive, PI,Pph > 0, which leads to a
positive polaron mass Mp > 0. Indeed, within the fully self-
consistent MF theory one can proof that this is always the
case, see, e.g., Ref. [24]. However in the perturbative RG
of Ref. [12] the phonon momentum Pph is calculated non-
self-consistently. We found that small systematic errors δPph

lead to slightly negative impurity momenta PI = P − Pph < 0
for light impurities in the strong-coupling regime. These, in
turn, may have the dramatic effect of predicting a large but
negative mass for what should be a very heavy polaron but
with a positive mass. In the extended RG approach, on the
other hand, the phonon momentum is treated self-consistently
because in every RG step the MF amplitude is readjusted, see
Eq. (7).

The RG flow equation for the phonon momentum can be
derived using the techniques introduced in Ref. [10]. Using
the self-consistent RG scheme we obtain

∂Pph

∂�
= −∂M−1

μν

∂�

I (3)
μν

1 + 2M−1
‖ I (2)

M

M‖
, (19)

Pph(�0) = P MF
ph . (20)

This differential equation can readily be solved by noting the
close relation to the RG flow equation (14). The solution is
Pph(�) = κx(�)M/M‖(�) + P . From the last result we can
now derive for the polaron mass,

Mp = − lim
P→0

P

κx

M‖ > 0. (21)

Notably, from this expression it follows analytically that the
polaron mass is always positive. To see this, note that both P

and M‖ are always positive. κx , on the other hand, starts out
negative. It stays negative during the entire RG flow, because
for κx = 0 we obtain I (3)

μν = 0 and thus there is no RG flow
which could make κx become positive, see Eq. (14).

IV. RESULTS

Now we apply the extended RG method to the Bose polaron
problem of an ultracold impurity inside a BEC, modeled by an
approximate Fröhlich Hamiltonian. To benchmark our method
we compare ground state energies obtained by the RG to
recent diagrammatic quantum Monte Carlo calculations [20].
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FIG. 2. We show the dependence of the effective polaron mass
Mp on the coupling constant α in d = 3 dimensions. The extended RG
reproduces correctly the asymptotically exact results of MF (weak-
coupling) and Landau-Pekar theory (strong coupling). Parameters are
�0 = 200/ξ , P = 0.01Mc, M/m = 0.26 as in Refs. [12,19].

The results are shown in Fig. 1, where the polaron energy
Ep = E0 − gIBn0 is plotted. The extended RG is in excellent
agreement with numerically exact Monte Carlo predictions,
where deviations are within the error bars. This is the
case for all values of the coupling constant ranging well
into the strong coupling regime. For comparison, Feynman’s
variational approach predicts a transition from weak to strong
coupling around α ≈ 3 for the parameters used in the figure,
see Ref. [19]. Around this point we also start to observe
deviations of the perturbative RG scheme [12] from the
extended RG.

In Fig. 2 we show the effective polaron mass as a
function of α. We observe that the extended RG scheme
reproduces correctly the polaron mass at large couplings,
where Landau and Pekar’s strong-coupling approach becomes
accurate [2,3,31]. This is remarkable because the RG is con-
structed as an expansion around the weak coupling solution,
where correspondingly the MF prediction is asymptotically
approached. The perturbative RG [12], on the other hand, failed
to reproduce the polaron mass correctly at large couplings.
Unlike in the extended RG the flow of the phonon momentum
was treated perturbatively, leading to a divergence of the
polaron mass for light impurities. For heavy impurities the
perturbative RG did however capture correctly the qualitative
dependence of Mp on α, see Ref. [12].

Unlike Feynman’s variational method, which predicts a
sharp transition from weak to strong couplings (note the
double-logarithmic scale in Fig. 2), we find a smooth crossover
with an extended regime of intermediate couplings. The same
behavior was predicted by the perturbative RG in Ref. [12].
Both for weak and strong couplings the polaron mass depends
linearly on α. Loosely we define the intermediate coupling
regime by regions where the dependence of the polaron mass
on α is nonlinear.

In this way we can obtain the phase diagram of the
Fröhlich Hamiltonian. In Fig. 3 we present our results for the
two-dimensional Bogoliubov Fröhlich model relevant, e.g., for
photonic polarons inside a quasi-two-dimensional BEC [22].
The qualitative shape of the phase diagram is the same in three
dimensions. For sufficiently light impurities we find a large

100 102 104 106 108
10−1

100

101

102

103

 strong
coupling

 interm.
coupling weak

coupling

FIG. 3. Full phase diagram of Bogoliubov-Fröhlich model in two
dimensions. A similar result was also presented in Ref. [22].

regime of intermediate couplings. It is located at increasingly
larger α as the impurity mass M is decreased. Indeed, we will
show in the next section by an exact calculation that MF theory
becomes exact in the limit M → 0 and for any fixed α. For
heavy impurities the impurity becomes localized and weak and
strong coupling theories are equivalent.

In two dimensions the coupling constant α defines the
scattering amplitude as Vk = c

√
α

2
√

π
(k2ξ 2/(2 + k2ξ 2))

1/4
. The

data points in Fig. 3 correspond to the estimated positions of the
crossovers between weak, strong, and intermediate couplings,
from plots as the one presented in Fig. 2.

V. EXACT TREATMENT OF LIGHT IMPURITIES

In this section we develop a perturbation theory valid for
small impurity masses M → 0 and show that Lee-Low-Pines
MF theory (see, e.g., Refs. [14,15,24,32]) becomes exact in
this limit. We provide leading-order expressions for various
quantities characterizing the small-mass polaron, which we
derive in two spatial dimensions for concreteness (as relevant
for photonic polarons [22]). The generalization to arbitrary
dimensions is straightforward.

To avoid approaching the subsonic to supersonic transition,
we keep the ratio β := P/Mc of the conserved polaron
momentum P to the critical momentum Mc of a noninteracting
impurity fixed. The MF polaron is characterized by the
coherent amplitude αMF

k and the phonon momentum P MF
ph , for

which we find the following expansions,

αMF
k = −M

Vk

k2/2
+ O(M2), (22)

P MF
ph = 4M3

∫
d2k

k2
xV

2
k

k4
βc + O(M4). (23)

The starting point for our analysis is the exact representation
of the Fröhlich Hamiltonian in Eq. (6), based on an exact
expansion around Lee-Low-Pines MF theory. We expand it
in orders of M now using Eq. (23) and find H̃ = EMF

0 +∑∞
n=−1 H̃(n), where H̃(n) = O(Mn). The leading order results
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are

H̃(−1) = 1

2M

(∫
d2kkâ

†
kâk

)2

≡ Q̂
2

2M
, (24)

H̃(0) =
∫

d2k(ωk − kxβc)â†
kâk

+
∫

d2kd2k′ α
MF
k

M
k · k′(â†

kâ
†
k′ âk′ + â

†
k′ âk′ âk), (25)

H̃(1) = 1

2M

∫
d2kd2k′αMF

k αMF
k′ k · k′(â†

kâ
†
k′ + 2â

†
kâk′ + âkâk′).

(26)

We can readily solve the leading order correction H̃(−1),
which is diagonal in the phonon Fock basis |nk〉. Because
it depends only on the total phonon momentum Q̂, it
produces highly degenerate sets of (excited) eigenstates. This
degeneracy is broken by the first term in H̃(0), which is still
diagonal in the Fock basis. Therefore to order M0 the polaron
ground state corresponds to the phonon vacuum |0〉 (after
expanding around the MF polaron). Thus the second term in
Eq. (25) has no effect on the ground state, because it vanishes
when acting on |0〉.

The leading order corrections to the ground state are derived
from H̃(1). For the ground state energy we find

Ẽ = EMF
0 − 1

2M

∫
d2kd2k′

× (k · k′)2
∣∣αMF

k

∣∣2∣∣αMF
k′

∣∣2

2M[ωk − kxβc + ωk′ − k′
xβc] + (k + k′)2

= EMF
0 + O(M3). (27)

By expanding the ground state energy around P = 0 we derive
the leading order correction to the polaron mass,

1

Mp
= 1

MMF
p

− 27M3
∫

d2kd2k′ (k · k′)2V 2
k V 2

k′

k4k
′4

×
[

(kx + k′
x)

(
kx

k2 + k′
x

k
′2
)

(k + k′)4 + 2
kxk

′
x

k2k
′2(k + k′)2

]
. (28)

They contribute to order M3 only, whereas the MF polaron
mass obeys 1/MMF

p = 1/M + O(M). Thus MF theory also
provides the correct leading order result for the polaron mass
in the limit M → 0.

VI. EXTENDED ALL-COUPLING RG APPROACH

In this section we formulate the extended RG in detail and
derive the flow equations introduced in Sec. III A. In parts the
derivation is identical to the perturbative RG of Ref. [12]. The
starting point is the universal polaron Hamiltonian in d spatial
dimensions, see Eq. (8).

First we apply the same RG step as described in Ref. [12].
Here we only give a brief summary and introduce our notations.
The following infinitesimal unitary transformation,

Û� = exp

(∫
f
dd k[F̂ †

k âk − F̂kâ
†
k]

)
, (29)

is used to decouple fast from slow phonon degrees of freedom
perturbatively in �̃−1

k . As shown in Ref. [12], the choice F̂k =
α̃k

�̃k
kμM−1

μν

∫
s dd ppν

ˆ̃� p + O(�̃−2
k ) achieves this goal. It leads

to the following transformation of the Hamiltonian,

Û
†
�H̃P Û� =

∫
f
dd kâ

†
kâk(�̃k + �̂s(k)) + Ĥs + δĤs, (30)

up to corrections of order O(�̃k)−2. Here we introduced
�̂s(k) = kμM−1

μν

∫
dd ppν

ˆ̃� p. Most importantly, the slow
phonon Hamiltonian is renormalized by

δĤs = −
∫

f
dd k

1

�̃k

[
α̃kkμM−1

μν

∫
s

dd ppν
ˆ̃� p

]2

+
∫

f
dd k

kμM−1
μν kν

2
α̃2

k + O(�̃k)−2. (31)

Comparison to the universal Hamiltonian (8) shows that the
first term in Eq. (31) gives rise to mass renormalization. The
renormalized mass after the RG step reads

M̃−1
μν = M−1

μν − 2M−1
μλ

∫
f
dd k

α̃2
k

�̃k
kλkσM−1

σν , (32)

leading to the RG flow equation (13) for the tensorial mass. The
second term in Eq. (31) gives rise to an RG flow of the ground

state energy, δE
(1)
0 = − ∫

s dd p
pμM−1

μν pν

2 α̃2
p. Here we made use

of the relation : ˆ̃�k
ˆ̃�k′ := ˆ̃�k

ˆ̃�k′ − δ(k − k′)[ ˆ̃�k + |α̃k|2] to
write the initial Hamiltonian H̃P (�) in a non-normal ordered
form.

Using these identifications we can bring the renormalized
Hamiltonian Ĥ′

s = Ĥs + δĤs into the following form,

Ĥ′
s = E0(�) + δE

(1)
0 +

∫
s
dd pdd p′ 1

2
pμM̃−1

μνp
′
ν

ˆ̃� p
ˆ̃� p′

+
∫

s
dd p

[
â†

pâ p�̃ p − 1

2
pμM̃−1

μνpν
ˆ̃� p

]

+
∫

s
dd p

1

2
pμ

[
M̃−1

μν − M−1
μν

]
pν

ˆ̃� p. (33)

The first line is almost of the universal form (8) again, except
that the renormalization of �̃k is still missing and normal
ordering has not been performed. We will now show that it
is provided by the terms in the second line, which will also
lead to a renormalization of the MF amplitude α̃k entering the
definition of ˆ̃�k.

So far our analysis was completely equivalent to the RG
procedure of Ref. [12]. The crucial step now is to deal with the
terms in the last line of Eq. (33) by applying a MF shift which
treats fully self-consistently the coupling to all slow-phonon
modes. To carry out the MF shift, we write the renormalized
Hamiltonian (33) in normal-ordered form as

Ĥ′
s = E′

0(�) +
∫

s
dd pdd p′ 1

2
pμM̃−1

μνp
′
ν : ˆ̃� p

ˆ̃� p′ :

+
∫

s
dd p[â†

pâ p�̃ p + δW̃ p
ˆ̃� p]. (34)
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We find for the energy E′
0(�) = E0(�) + ∫

s dd pδW̃ p(α̃ p)2,
and we defined

δW̃ p = 1
2pμ

[
M̃−1

μν − M−1
μν

]
pν = O(δ�), (35)

which is related to the infinitesimal change of the renormalized
mass. Therefore in what follows we may restrict ourselves to
a perturbative treatment of such terms to first order in δ�.

The RG-MF shift will be defined through

V̂MF(�) = exp

(∫
s
dd pδα̃ pâ

†
p − H.c.

)
, (36)

V̂
†

MF(�)â pV̂MF(�) = â p + δα̃ p, (37)

where the renormalization of the MF amplitude δα̃ p = O(δ�)
is infinitesimal. This gives rise to renormalized �̂-operators,
≈̂
� p := (α̃ p + δα̃ p)(â p + â

†
p) + â

†
pâ p, which are related to the

initial operators by

V̂
†

MF(�) ˆ̃� pV̂MF(�) = ≈̂
� p + (2α̃ p + δα̃ p)δα̃ p. (38)

By canceling terms which are linear in â p in the resulting
Hamiltonian V̂

†
MFĤ′

sV̂MF (i.e., by minimizing the MF varia-
tional energy with respect to δα̃ p), we find

δα̃ p = − α̃ p

�̃ p

[
δW̃ p + 2pμM̃−1

μν

(∫
s
dd p′p′

να̃ p′δα̃ p′

)]
. (39)

The resulting Hamiltonian now reads

V̂
†

MFĤ′
sV̂MF = E′

0(�) +
∫

s
dd pdd p′ 1

2
pμM̃−1

μνp
′
ν :

≈̂
� p

≈̂
� p′ :

+
∫

s
dd pâ†

pâ p�̃ p

(
1 − δα̃ p

α̃ p

)
. (40)

From the last term we read off the renormalized frequency,
˜̃� p = �̃ p(1 − δα̃ p/α̃ p), from which we can readily conclude
that the renormalized MF amplitude after the complete RG
step is

˜̃α p := α̃ p + δα̃ p = − Vp

˜̃� p

. (41)

Notably all explicit energy corrections are of order δ�2

in Eq. (40) and have thus been omitted in this equation.
Nevertheless the RG-MF shift has an effect on the ground
state energy, because the MF amplitude α̃ p flows in the RG.
Since Eq. (40) is of the universal form (8), the corrections to
the ground state energy are given by δE0 = E′

0(�) − E0(�)
in every RG step.

Finally we need to derive the RG flow of the renormal-
ized dispersion �̃k. To this end we first solve the RG-MF
equation (39) by defining ζμ := 2

∫
s dd ppμα̃ pδα̃ p. Plugging

Eq. (39) back into this definition yields

ζμ = −2
∫

s
dd ppμ

α̃2
p

�̃ p
[δW̃ p + pμM−1

μν ζν]. (42)

This is a linear equation for ζν which we solve by assuming
that the total polaron momentum P = P ex points along the x

direction. In this case by symmetry considerations ζμ = δμxζx

and we obtain

ζx = −
∫

s dd ppx
α̃2

p

�̃ p
pμ

(
M̃−1

μν − M−1
μν

)
pν

1 + 2M−1
xx

∫
s dd pp2

x

α̃2
p

�̃ p

. (43)

Thus the renormalization of the dispersion is given by

˜̃� p − �̃ p = 1

2
pμ

(
M̃−1

μν − M−1
μν

)
pν + pxM−1

xx ζx. (44)

The first term on the right hand side describes the renormaliza-
tion of the effective mass in the dispersion. The second term
describes the RG flow of the coupling constant κν .

VII. SUMMARY AND OUTLOOK

In this paper we have extended the wave-function-based
renormalization group theory of Fröhlich polarons [12] by
including an RG flow of the MF solution. We demonstrated
that the extended RG provides an efficient all-coupling theory
of the polaron, describing correctly both limits of weak and
strong couplings. For sufficiently light impurities we find an
extended regime of intermediate couplings, where phonon
correlations in the polaron cloud become important. This
signals a breakdown of Feynman’s celebrated all-coupling
theory, which yields poorer variational energies and can not
capture the intermediate coupling regime. Using the extended
RG developed in this article we calculated the full phase
diagram of the Bogoliubov-Fröhlich Hamiltonian.

In our method we combined the use of lowest-order
perturbation theory and nonperturbative MF theory in every
single RG step for deriving RG flow equations. We start
from the MF solution, include quantum fluctuations and
take into account the renormalization of the MF solution
at lower energies. We expect that this approach is of much
wider applicability, beyond the Fröhlich Hamiltonian and even
beyond polaron problems. It should be a useful technique to
obtain not only universal properties of the effective low-energy
theory, but also quantitative results for the coupling constants
in the effective Hamiltonian.

In the extended RG we obtain a flow of the effective
Hamiltonian with the UV cutoff. After decoupling fast and
slow phonons, the fast phonons are described by a simple
quadratic Hamiltonian. In a forthcoming work we will show
how this allows to extend our RG scheme further to solve
nonequilibrium problems [33].
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