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Absence of topology in Gaussian mixed states of bosons
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In a recent paper [Bardyn et al., Phys. Rev. X 8, 011035 (2018)], it was shown that the generalization of
many-body polarization to mixed states can be used to construct a topological invariant that is also applicable to
finite-temperature and nonequilibrium Gaussian states of lattice fermions. The many-body polarization defines
an ensemble geometric phase that is identical to the Zak phase of a fictitious Hamiltonian, whose symmetries
determine the topological classification. Here we show that in the case of Gaussian states of bosons, the
corresponding topological invariant is always trivial. This also applies to finite-temperature states of bosons
in lattices with a topologically nontrivial band structure. As a consequence, there is no quantized topological
charge pumping for translationally invariant bulk states of noninteracting bosons.
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I. INTRODUCTION

Topological states of matter have fascinated physicists for
many decades as they can give rise to interesting phenomena
such as protected edge states and edge currents [1], quantized
bulk transport in insulating states [2–7], and exotic elementary
excitations [8–10]. Recently, several attempts were made to
generalize the concept of topology to finite temperatures and
to nonequilibrium steady states of noninteracting fermion sys-
tems [11–18]. This has been done for fundamental reasons and
because of the intrinsic robustness of steady states of driven,
dissipative systems. These systems are characterized by inte-
ger quantized topological invariants such as the winding of the
Berry or Zak phase [19–22] or the Chern number leading to
quantized observables in insulating states. Famous examples
for this are the charge transport in a Thouless pump [4,6,23]
or the Hall conductivity in Chern insulators [2,3,7,8]. For
finite temperatures or under nonequilibrium conditions, these
quantities are no longer quantized [24]. Furthermore, defining
single-particle invariants becomes difficult as the system is in
general in a mixed state. While for one-dimensional systems
generalizations of geometric phases to density matrices based
on the Uhlmann construction [25] can be used [13,15], their
application to higher dimensions [14] is faced with difficulties
[26].

In a recent paper [18], it was shown that the winding of
the many-body polarization introduced by Resta [27] upon
a closed path in parameter space is an alternative and use-
ful many-body topological invariant for Gaussian states of
fermions. The polarization of a nondegenerate ground state
|ψ⟩ corresponding to a filled band of a lattice Hamiltonian
with periodic boundary conditions is the phase (in units of
2π ) induced by a momentum shift T̂ ,

P = 1
2π

Im ln⟨ψ |T̂ |ψ⟩. (1)

T̂ shifts the lattice momentum pk = 2πk/L of all particles
by one unit, T̂ −1ĉα,kT̂ = ĉα,k+1, where L is the number of
unit cells and α is a band index. As shown by King-Smith

and Vanderbilt [28], expression (1) for a filled Bloch band
is identical to the geometric Zak phase φZak of this band.
The amplitude of z = ⟨ψ |T̂ |ψ⟩, called the polarization ampli-
tude, has been used as an indicator for particle localization
[27,29,30]. For an insulating many-body state, |z| remains
finite in the thermodynamic limit of infinite particle number
N → ∞, while it vanishes in a gapless state [31,32].

P can straightforwardly be generalized to mixed states ρ
and defines the ensemble geometric phase (EGP) φEGP:

φEGP = Im ln Tr{ρT̂ }. (2)

Since mixed states are in general not gapped, |Tr{ρT̂ }| is
expected to vanish in the thermodynamic limit. However, φEGP
remains well defined and meaningful for arbitrarily large but
finite systems [18] as long as the so-called purity gap of
ρ does not close. Furthermore, as shown in [18], the EGP
of a Gaussian density matrix is reduced to the ground-state
Zak phase of a fictitious Hamiltonian in the thermodynamic
limit L → ∞. The symmetries of this fictitious Hamiltonian
determine the topological classification [12] following the
scheme of Altland and Zirnbauer [33–35]. A phase transition
between different topological phases occurs when the gap
of the fictitious Hamiltonian closes for any finite system,
i.e., when |Tr{ρT̂ }| = 0. The many-body polarization is a
measurable physical quantity [18] and its quantized winding
has direct physical consequences. For example, it can induce
quantized transport in an auxiliary system weakly coupled to
a finite-temperature or nonequilibrium system [36]. It should
be noted, however, that due to the absence of a many-body
gap, there is in general no adiabatic following in time, and the
notion of adiabaticity has to be adapted [18].

Since the gapfulness of the many-body state is no longer
given at finite temperatures, the question arises of whether
the fermionic character of particles is of any relevance and
if bosonic Gaussian systems can show nontrivial topological
properties as well. In the present paper, we show rigorously
that topological invariants based on many-body polarization
are always trivial for Gaussian states of bosons. As a con-
sequence, there is, e.g., no protected quantized charge pump
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FIG. 1. Net particle transport as a function of the rescaled cycle
time AT . Inset: Bosonic analog of the Rice-Mele model. Noninter-
acting bosons hop between neighboring lattice sites with alternating
hopping rates w1 and w2. The on-site energies are shifted by ±& in
an alternating fashion.

for bosons under periodic, adiabatic variations of system
parameters.

II. THE BOSONIC RICE-MELE MODEL

Bloch Hamiltonians with a topologically nontrivial band
structure can lead to nontrivial many-body invariants of non-
interacting fermions if all single-particle states of the corre-
sponding band(s) are filled. In such states, the many-body
polarization can show, e.g., a nontrivial winding under cyclic
parameter variations. Surprisingly, the latter property survives
at finite temperatures, i.e., even if the considered band is no
longer fully occupied. Therefore, one may ask whether the
many-body polarization can also show nontrivial behavior in
the case of noninteracting bosons.

To illustrate what happens in such a case, let us consider
one of the simplest 1D lattice models with single-particle
topological properties, namely the Rice-Mele model (RMM)
[23]. It has a unit cell consisting of two lattice sites with
different on-site energies ±&, and it describes the hopping
of particles with alternating hopping amplitudes w1/2 (see the
inset of Fig. 1). The Hamiltonian reads

H = −w1

∑

j

â†
j b̂ j − w2

∑

j

â†
j+1b̂ j + h.a.

+&
∑

j

(â†
j â j − b̂†

j b̂ j ), (3)

where â j, b̂ j are particle annihilation operators at the two
sites of the jth unit cell, and we assume periodic boundary
conditions. This model is well-known to have a nontrivial
winding of the Zak phase [21],

φZak =
∫

BZ
dk ⟨un(k)|∂k|un(k)⟩, (4)

of any one of the two subbands n = 1, 2 upon cyclic vari-
ations of the parameters &,w1 − w2 encircling the origin
(& = 0,w1 = w2) where the band gap closes. Here |un(k)⟩
are the single-particle Bloch states of the nth band at lattice
momentum k2π/L. Performing such a loop adiabatically,
one can induce bulk transport if one subband is filled with
fermions. At the same time, the many-body polarization also
shows a nontrivial winding that, as shown by King-Smith and
Vanderbilt, is strictly connected to the winding of φZak [28].

Let us now consider the bosonic analog of the RMM. If
initially only one unit cell is occupied, the center of mass of
the wave packet moves by exactly one unit cell after a full
cycle. This is because this particular initial state has equal
amplitudes in all momentum eigenmodes of the band. The
situation is very different, however, when we consider a trans-
lationally invariant, periodic system, where the many-body
state returns to itself after a full cycle modulo a phase factor.
Due to translational invariance, the Hamiltonian factorizes in
momentum modes âk, b̂k ,

H =
∑

k

(â†
k, b̂†

k )hk (t )

(
âk

b̂k

)

, (5)

where hk (t ) = Qk (t ) · σ is a 2 × 2 matrix describing a spin- 1
2

particle in a magnetic field,

Qk (t ) =

⎛

⎜⎝
w1(t ) + w2(t ) cos

( 2πk
L

)

w2(t ) sin
( 2πk

L

)

&(t )

⎞

⎟⎠. (6)

The spectrum of hk (t ) has two bands, ϵ±(k, t ) = ±ϵk (t ),

where ϵk (t ) = [&2(t ) + |w1(t ) + w2(t ) exp ( 2iπk
L )|2]

1/2
. The

system is assumed to start its evolution at t = 0, initially
being in a (multimode) coherent state. Since the Hamiltonian
is quadratic, the state remains a coherent state at all times.
Specifically, we consider the initial state

|)(0)⟩ = |α⟩|β⟩︸ ︷︷ ︸
Cell 1

⊗ · · · ⊗ |α⟩|β⟩︸ ︷︷ ︸
Cell L

, (7)

with |α|2 + |β|2 = 1, i.e., all cells are occupied equally with
an average occupation of one per unit cell. We note that for co-
herent states, the particle number does not have a well-defined
value. Furthermore, in contrast to the case of noninteracting
fermions, this state corresponds to an initial occupation of
only the k = 0 mode. Since the bosons are noninteracting, all
initially empty modes (k ̸= 0) remain empty during the time
evolution. Thus, to describe the dynamics of the system, it is
sufficient to consider only the k = 0 mode.

Let us now consider the number of particles transported
after a full period T . The transport can be characterized in
terms of the integrated particle flux, e.g., between the nth and
n + 1st unit cell,

+n = i
∫ T

0
dt w2(t )⟨)(t )|(ân+1b̂†

n − â†
n+1b̂n)|)(t )⟩. (8)

Due to the translational symmetry of the flux, +n does not
depend on n. Assuming that the initial amplitudes α and
β coincide with an eigenstate of the Hamiltonian h0, and
slowly varying the Hamiltonian parameters in time compared

014305-2



ABSENCE OF TOPOLOGY IN GAUSSIAN MIXED STATES … PHYSICAL REVIEW B 100, 014305 (2019)

to the inverse energy gap 1/[2εk=0(t )], leads to an adiabatic
following of the many-body state. Making use of the adiabatic
approximation, after a straightforward calculation, we find for
the integrated particle flux

+n = 1
2

∮

C

w1 + w2

&2
√

&2 + (w1 + w2)2
(&dw2 − w2d&), (9)

where C is a closed path in the parameter space (w1,w2,&).
One recognizes that the flux +n can also be evaluated using
Stokes’ theorem by expressing it as an integral of a vector B =
(w1,w2,&)/[(w1 + w2)2 + &2]3/2 through an area element
dS in this parameter space +n = 1

2

∫
S B·dS, where S is a

surface with boundary C. Hence, after an integer number of
cycles there is a net particle geometric transport, which is,
however, not quantized (topological).

To be specific, we have shown in Fig. 1 the integrated
particle current as a function of the rescaled cycle time AT
with hopping rates w1(t ) = A cos2 ( πt

T ), w2(t ) = A sin2 ( πt
T ),

and &(t ) = A sin ( 2πt
T ). The horizontal dashed line shows the

adiabatic value

+n = 1
2

∫ π

0

cos2 (t )

[sin2 (t ) + 1]3/2
dt =

-
( 3

4

)
√

2π
≈ 0.6 (10)

of the net particle transport.
While the particle transport is in general not quantized,

the polarization (1) can only change by an integer-valued
amount upon a full cycle of evolution, since it is the phase
of a complex function (modulo 2π ), provided there are no
transitions to other states. The latter is guaranteed by the
adiabatic evolution. In the above case, one finds that the po-
larization winding of the bosonic Rice-Mele model vanishes.
In fact, one can easily calculate the polarization at any time t
exactly. Fixing the gauge, i.e., fixing the origin of the spatial
coordinate on the circle of length L, one obtains

P = 1
2π

arg[exp{−L[|α(t )|2 + |β(t )|2]}] = 0, (11)

where we have evaluated the unitary operator T̂ using its
normally ordered form

T̂ =:
∏

r,s

exp
{(

e
2π i
L (r+s/n) − 1

)
â†

r,sâr,s
}

: . (12)

The polarization is therefore constant in time. Clearly, there
is no connection between the net particle transport and
the change of the many-body polarization. But it is even more
surprising that the latter does not wind irrespective of the
path taken in parameter space. We will show in the following
that the absence of polarization winding is a generic feature
of Gaussian bosonic systems that is in sharp contrast to the
fermionic analog.

III. POLARIZATION FOR BOSONS

The goal of this section is to calculate the expectation value
of the unitary operator

T̂ = exp

(
2π i
L

∑

r,s

(
r + s

n

)
â†

r,sâr,s

)

. (13)

Here â†
r,s, âr,s are bosonic creation and annihilation operators,

respectively, where r = 0, . . . , L − 1 labels unit cells and s =
0, . . . , n − 1 denotes internal sites in the unit cell. 0 ! s

n < 1
and we have set the lattice constant equal to unity. The results
of the following discussion also do not depend on the dimen-
sion of the system nor the total number of particles. We note
that the operator T̂ is not gauge invariant because it changes
under an arbitrary shift of the origin of the spatial coordinate
system. Throughout this paper, we choose a coordinate system
in which exp ( 2π i

L (r + s
n )) ̸= 1 for any r, s.

We consider a general bosonic Gaussian state [37,38] ρ,
which can be formally expressed in diagonal form (Glauber-
Sudarshan representation [39,40]) in terms of multimode co-
herent states,

ρ =
∫

d2α P (α) |α⟩⟨α|, (14)

where d2α = dαrdαi, with αr = (α + α∗)/2 and αi = (α −
α∗)/(2i) being the real and imaginary parts of the coherent
amplitude,

P (α) = N
∫

d2η exp
(

−1
2
ηT (V − 11)η − i(2α + α0)T η

)
.

(15)

Here 11, α = ((α1,r,α1,i ), (α2,r,α2,i ), . . . ), and η =
((η1,r, η1,i ), (η2,r, η2,i ), . . . ) represent the identity matrix
and real vectors, respectively, with dimension 2nL (note
that nL is the number of bosonic modes of the problem). N
is a normalization constant ensuring that

∫
d2α P (α) = 1.

The explicit form of N is not relevant for our purposes.
α0 = (⟨â + â†⟩,−i⟨â − â†⟩)T encodes the expectation values
of the mode operators, and V is the 2nL × 2nL covariance
matrix of the system, which for a single mode and n = 1
reads

V =
(

⟨⟨q̂q̂⟩⟩ 1
2 ⟨⟨p̂q̂ + q̂ p̂⟩⟩

1
2 ⟨⟨p̂q̂ + q̂ p̂⟩⟩ ⟨⟨p̂p̂⟩⟩

)

. (16)

Here q̂ = â + â† and p̂ = −i(â − â†), and ⟨⟨xy⟩⟩ = ⟨xy⟩ −
⟨x⟩⟨y⟩. V is a real and symmetric matrix by construction
and is also positive-definite due to the Heisenberg uncertainty
principle. P is positive and well defined if furthermore V > 11.
In this case, the state is a statistical mixture of coherent states,
i.e., a classical state. A quantum state is considered to be
nonclassical if it cannot be written as a statistical mixture
of coherent states. In this paper, we consider more general
bosonic Gaussian states. (A good introduction to bosonic
Gaussian states can be found, for example, in [37].)

P (α) can be used to evaluate the expectation value of
any normally ordered operator function : f ({â†

µ, âµ}) : by the
replacement (â† → α∗) and (â → α) and integration. The P
function may be singular and can attain negative values. All
integration with P (α) must therefore be understood in the
distributional sense.

Using Eq. (12), we find

⟨T̂ ⟩ = N1

∫
d2η

∫
d2α exp

{
−1

2
ηT (V − 11)η − iαT

0 η

}

× exp{−2iαηT − αT (11 − U)α}, (17)
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where U is a unitary operator

(U)r1,s1;r2,s2
= exp

(
2π i
L

(
r1 + s1

n

))
δr1r2δs1,s2 . (18)

According to our assumption [exp ( 2π i
L (r + s

n )) ̸= 1], 11−U is
an invertible symmetric complex matrix. In addition, its real
part 11−U+U†

2 is positive-definite. In this case, the Gaussian
integral (17) over α is well-defined and is proportional to
[det (11−U)]−1/2. We note that when the matrix is complex,
the calculation of the square root requires some special care.
However, one can show that any symmetric complex matrix
has a unique symmetric square root whose real part is positive-
definite [41]. After successive integration over α and then over
η we eventually obtain

⟨T̂ ⟩ = N2

[
det (V + 11) det

(
11 − V − 11

V + 11
U

)]−1/2

× exp
(

−1
2
αT

0 M−1α0

)
, (19)

where N2 = 2nL and

M = V − 11 + 2(11 − U)−1. (20)

Substituting this expectation value into the expression of the
many-body polarization (1), one obtains

P = − 1
4π

Im ln
[

det (V + 11) det
(

11 − V − 11
V + 11

U
)]

− 1
4π

Im
(

−1
2
αT

0 M−1α0

)

= − 1
4π

Im ln[det
(
11 − W

)
] − 1

4π
Im

(
−1

2
αT

0 M−1α0

)
,

(21)

where

W = V − 11
V + 11

U. (22)

One can show that the second term in Eq. (21) is a single-
valued function of system parameters and therefore does not
contribute to the change of polarization. In the next section,
we will show that the first term in Eq. (21) vanishes in the
thermodynamic limit of infinite system size L → ∞.

IV. POLARIZATION IN THE THERMODYNAMIC LIMIT

A. Polarization scaling: Bosons versus fermions

In Ref. [18] it was shown that the polarization of a general
Gaussian mixed state ρ of lattice fermions at commensurate
filling can be written as a sum of the polarization of a pure
state |ψ⟩ plus a term that vanishes in the thermodynamic limit
of infinite system size L → ∞,

P(ρ) = P(|ψ⟩⟨ψ |) + O(L−α ), α > 0. (23)

Here |ψ⟩ is the many-body ground state of the so-called
fictitious Hamiltonian. In the following, we will assume that
the second term in Eq. (21) vanishes, and we show that the
remaining term in the bosonic case yields

P(ρ) = 0 + O(e−αL ), α > 0. (24)

For the sake of simplicity, we restrict ourselves to the simplest
nontrivial case of a two-band model, e.g., resulting from a
tight-binding Hamiltonian with a unit cell of two lattice sites.
The generalization to the case of multiple bands is, however,
straightforward.

We introduce the Fourier transform given by the unitary
block matrix UFT,

(UFT) jk ≡ 1√
L

exp
(

2π i
L

jk
)

114. (25)

As a consequence of the periodic boundary conditions, the
covariance matrix V is block-circulant. Since the model has
lattice translational invariance, the covariance matrix is diag-
onalized by the Fourier transform, and we can write

UFT
V − 114L

V + 114L
U†

FT =
L−1⊕

k=0

vk − 114

vk + 114
, (26)

where ⊕ denotes the direct sum, which constructs a block-
diagonal matrix. The transformed unitary matrix U, given by
Eq. (18), is

(UFT U U†
FT) j,s1;k,s2 = δ j,k+1δs1s2 exp

(
2π i
L

s1

n

)
114. (27)

To make the following expressions more compact, we further-
more introduce mk ≡ vk−114

vk+114
[112 ⊕ exp ( iπ

L )112]. The determi-
nant in Eq. (21) can thus be written as

det
(

11 − V − 11
V + 11

U
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

114 0 −mL−1

−m0 114 0
0 −m1 114 0

. . .
. . .

. . .
. . .

0 −mL−3 114 0
0 0 −mL−2 114

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(28)

This block determinant can be reduced by applying Schur’s
identity iteratively. This yields a determinant of dimension
4 × 4:

det
(

11 − V − 11
V + 11

U
)

= det

(

114 −
L−1∏

k=0

mk

)

. (29)

We note that up to this point there is a formal analogy of
the polarization for Gaussian states of bosons and that of
fermions, as discussed in Ref. [18]. There the matrices mk ∼
e−BkU †

k+1Uk contained unitary matrices Uk and weighting
factors e−Bk = diags(e

−βk,s ). To be specific, let us consider a
grand-canonical thermal state of a fermionic insulator with
a chemical potential µ within a band gap. Then all bands
s with energies below µ lead to a negative exponent βk,s =
β(ϵk,s − µ) and thus to weighting factors bigger than unity.
This results in an amplification of contributions from occupied
bands, which is the essence of the gauge-reduction mechanism
for Gaussian states of fermions found in [18].
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The situation is completely different, however, in the case
of bosons. Since the covariance matrix V of Gaussian states
of bosons is positive-definite, the resulting k-dependent 4 × 4
blocks have eigenvalues λ(mk ) with absolute values obeying

|λ(mk )| < 1, ∀ k = 0, . . . , L − 1. (30)

We define the corresponding maximum absolute eigenvalue:

λmax ≡ max
i

∣∣∣∣λi

(
V − 11
V + 11

)∣∣∣∣. (31)

According to Eq. (31), a single matrix mk is bounded and
thus the product of matrices must be bounded as well, i.e.,
∥
∏

k mk∥ = O((λmax)L ). If λmax = 0, the polarization van-
ishes trivially, otherwise we split off the maximum absolute
eigenvalues A ≡ (λmax)−L ∏

k mk such that |Tr(A)| ! 4 and
we define a small parameter ϵ ≡ 4(λmax)L. We can then
express the polarization P by expanding the determinant and
logarithm in this small parameter:

ln det

(

114 −
∏

k

mk

)

= ln det
(

114 − ϵ

4
A

)

= ln
(

1 − ϵ

4
Tr(A) + O(ϵ2)

)

= − ϵ

4
Tr(A) + O(ϵ2). (32)

With this we find the following system-size scaling of the
polarization for Gaussian bosonic states:

4π |P| !ϵ

4
|Tr(A)| + O(ϵ2)

!ϵ + O(ϵ2). (33)

Since we know that 0 ! λmax < 1, the small parameter ϵ
vanishes exponentially in L,

α ≡ − ln(λmax) > 0 ⇒ ϵ = 4e−αL.

Therefore, as the system approaches the thermodynamic limit,
the first term of the many-body polarization in Eq. (21) van-
ishes exponentially and only the trivial second term remains.
For equilibrium states at finite T this has a simple physical
interpretation: The chemical potential for (noninteracting)
bosons is always less than the smallest single-particle energy.
As a consequence, all weighting factors e−βk,s are strictly less
than unity and there is no amplification that leads to a gauge
reduction as in the case of fermions. Thus the absence of
the Pauli exclusion principle for (noninteracting) bosons also
leads to the absence of a gauge reduction mechanism as in
Ref. [18].

As an illustration of our results, we analyze the bosonic
Rice-Mele model with the initial state (7). The covariance
matrix of this state is just the identity [37], and therefore, as
was expected, the expression of P [Eq. (21)] coincides with
Eq. (11).

B. Polarization amplitude

Since the many-body polarization is defined as the complex
phase of the lattice momentum shift, it can only be defined if
the absolute value |⟨T̂ ⟩| does not vanish throughout the entire
adiabatic evolution. It turns out that this is always true for

finite system sizes. However, as noted by Resta and Sorella,
|⟨T̂ ⟩| is a measure for the localization of single-particle states
[29], which in the thermodynamic limit approaches unity for
an insulator and vanishes for a conductor. Thus for nonin-
teracting bosons we expect it to decay when L → ∞. Both
can be seen by inserting Eq. (29) into Eq. (19) and taking the
absolute value:

|⟨T̂ ⟩| = 2nL| det(112nL + V)|−1/2

×
∣∣∣∣∣det

(

112n −
L−1∏

k=0

mk

)∣∣∣∣∣

−1/2 ∣∣∣∣exp
(

−1
2
αT

0 M−1α0

)∣∣∣∣.

(34)

We proceed by finding upper and lower bounds. To this end,
we note that for the absolute value of the last exponential
term only the Hermitian part of the matrix contributes 1

2 (M +
M†) = V. Thus

0 <
∣∣ exp

(
− 1

2αT
0 M−1α0

)∣∣ < 1. (35)

From this one can see that |⟨T̂ ⟩| is always positive for finite
system sizes L. Denoting the minimum eigenvalue of V by
λV

min and assuming a classical state, i.e., λV
min > 1, one can

derive an upper bound that scales in the system size nL:

0 < |⟨T̂ ⟩| <

(
1 + λV

min

2

)−nL

< 1. (36)

From this we can see that the many-body polarization P
is well-defined for all system sizes L < ∞ and that clas-
sical states exhibit negligible single-particle localization for
large L.

V. POLARIZATION WINDING

In one-dimensional lattice systems with a Hamiltonian or
a Liouvillian, which depend on an external parameter λ in
a cyclic way, the winding of the EGP or the many-body
polarization with λ defines a topological invariant:

w = &P =
∮

dλ
∂P(λ)

∂λ
. (37)

In two-dimensional translationally invariant lattice models, a
similar construction defines a Chern number. For example,
introducing particle number operators in mixed real and mo-
mentum space by performing a discrete Fourier transforma-
tion in one direction (e.g., y), â j (ky) ∼

∑
l â j,l exp(2π ilky/L),

one can define a momentum-dependent polarization (where
we have suppressed band indices for simplicity)

Px(ky) = 1
2π

Im ln

˝

exp

⎛

⎝2π i
L

∑

j

jâ†
j (ky)â j (ky)

⎞

⎠

˛

. (38)

The winding of P(k) when going through the Brillouin zone
in k defines a Chern number,

C =
∫

BZ
dky

∂Px(ky)
∂ky

=
∫

BZ
dkx

∂Py(kx )
∂kx

. (39)

If we consider the polarization in a Gaussian mixed state
of bosons ρ(λ), which is uniquely defined along a closed
path of the parameter λ in parameter space, we can argue
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from Eq. (24) that the winding of the many-body polarization
vanishes for a sufficiently large but finite system size L. This is
because of the exponential bound that yields − 1

2 < P < + 1
2 if

the system is large enough. As a consequence, all many-body
topological invariants based on the winding of the polarization
are trivial for sufficiently large systems. In the following, we
will explicitly show that this holds true independently of the
system size.

Let us assume that the polarization is a function of two real
parameters that change cyclically in time from 0 to T . Then
the change of the polarization between times t = 0 and t = T
can be described as a loop along a closed path C in parametric
space. The two parameters can be combined into a complex
variable χ . Thus the change of polarization can be written as

&P = − 1
4π

Im
∮

C
dχ

∂

∂χ
ln det[112nL − W(χ )]. (40)

Moreover, using

∂

∂χ
ln det [11−W(χ )] = Tr

[
[11−W(χ )]−1 ∂ (11 − W(χ ))

∂χ

]

(41)

we derive the following expression for &P:

&P = 1
4π

Im Tr
∮

C
dχ

[
[11 − W(χ )]−1 ∂ (11 − W(χ ))

∂χ

]
.

(42)
The expression (41) can be derived from the identity
ln(det (A(z))) = Tr( ln A(z)) [for a rigorous derivation of (41),
the reader is referred to [42]].

Now we are ready to prove that the change of polarization
vanishes for any bosonic Gaussian state. For that we first
review some facts about zeros of determinants of holomorphic
matrix-valued functions (for more details, see [43]).

Let F(χ ) be a matrix-valued function that is analytic in a
domain C. Under the assumption that all values of F(χ ) on
the boundary C of C are invertible operators, it is possible to
show [43] that

M = 1
2π i

Tr
∮

C
dχ

[
F(χ )−1 dF(χ )

dχ

]

is the number of zeros of det F(χ ) inside C (including their
multiplicities). Combining this with Eq. (42), we obtain

&P = 1
2M, (43)

where M is the number of solutions (zeros) of

det [11 − W(χ )] = 0

inside the closed path C in parametric space. To estimate M,
we use a generalization of Rouché’s theorem for the matrix
valued complex function [43], which states the following:

Rouché’s theorem: Let C be a closed contour bounding a
domain C. If ∥F(χ )∥ < 1 on C, then

1
2π i

Tr
∮

C

dχ

[
[11+F(χ )]−1 dF(χ )

dχ

]
= 0.

Applying Rouché’s theorem to our problem, where

∥F(χ )∥ = ∥W(χ )∥ =
∥∥∥∥

V − 11
V + 11

∥∥∥∥ < 1,

we see that for any V > 0, i.e., for any Gaussian bosonic state,

∥W(χ )∥ < 1.

Therefore, the change of polarization is equal to zero, irre-
spective of the system size,

&P = 0. (44)

We note that this result is again a direct consequence of the
positivity of the covariance matrix V for Gaussian states of
bosons. This proves that for any bosonic Gaussian state, the
total change of the many-body polarization along a closed
path in parametric space is zero. This is in sharp contrast to
free fermion systems in which the winding of the many-body
polarization is a topologically quantized observable and can
be nontrivial.

VI. CONCLUSION

We have shown that the many-body polarization of trans-
lationally invariant Gaussian states of bosons approaches
zero in the thermodynamic limit of infinite system size. Its
winding upon a cyclic change of the state, which in the
case of fermions defines a many-body topological invariant,
vanishes for any system size. Thus many-body topological
invariants based on the polarization are always trivial in finite-
temperature states or Gaussian nonequilibrium states of non-
interacting bosons. This is also the case if the band structure of
the underlying lattice Hamiltonian is topologically nontrivial,
i.e., it possesses bands with a nonvanishing Chern number. As
a consequence, there is no topologically protected quantized
charge transport of Gaussian states of bosons, and the latter
requires strong interactions [44]. This property of bosons is
in sharp contrast to fermions, which can be topologically
nontrivial even in many-body states that are not gapped,
such as high-temperature states of band insulators, and is a
consequence of the absence of a Pauli exclusion principle.
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