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Adiabatic flux insertion and growing of Laughlin states of cavity Rydberg polaritons
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Recently, the creation of a strong magnetic field in a photonic cavity system has been demonstrated [N. Schine
et al., Nature (London) 534, 671 (2016).]. Using this setup, we propose a scheme to adiabatically transfer flux
quanta simultaneously to all cavity photons. The flux transfer is achieved using external light fields with orbital
angular momentum and a near-resonant dense atomic medium as a mediator. Furthermore, by coupling the cavity
fields to a Rydberg state, strong photon-photon interactions can be realized and fractional quantum Hall states
can be prepared. To this end, a growing protocol is discussed consisting of a sequence of flux insertion and
subsequent single-photon insertion. Specifically, we discuss the growing of the ν = 1/2 bosonic Laughlin state.
First we adiabatically insert two photonic flux quanta, creating a two-quasihole excitation, and second we refill
the hole with a single photon using the strong photon-photon interactions.
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I. INTRODUCTION

Over the last few years, there has been a remarkable progress
in the experimental realization and study of topological models
for photons [1,2]. Prominent examples are the creation of
topological band structures in systems of coupled optical
waveguides [3–5] and resonators [6]. Photonic systems have a
number of potential advantages for spatially and time-resolved
manipulation and detection of topological states. The ability
to create strong interactions by coupling photons to Rydberg
states [7–9], furthermore, offers the possibility to study many-
body topological effects such as fractional quantum Hall
physics or fractional Chern insulators [10–13]. As discussed
in Refs. [12,13], lattice-free systems are preferable to obtain
large interaction gaps. One way to realize an artificial magnetic
field in a continuous system is to use the analogy between
the Lorentz force of a magnetic field and a Coriolis force.
This has been shown for ultracold neutral atoms by inducing
a rotation of the atomic ensemble [14–17]. To transfer this
idea to photons, however, requires either to make use of the
drag effect of a rotating dispersive medium [18,19] or to
enforce an effective rotation using nonplanar ring resonators.
In the latter case, the nonplanar geometry induces a rotation
of light rays about the optical axis on each round trip, as is
shown in Fig. 1(a). This idea has recently been experimentally
implemented and has led to the first demonstration of synthetic
Landau levels (LLs) for photons [20,21]. Photons in such
optical cavities provide an excellent experimental platform
for the realization and observation of fractional quantum Hall
physics due to the effective two-dimensional motion, the
large intrinsic length scales, as well as the enhanced optical
nonlinearity caused by mode confinement and cavity-enhanced
interaction time [22].

In this paper, we discuss the preparation of the ground state
of the photonic fractional quantum Hall (FQH) system, i.e., a
photonic Laughlin (LN)-type state in the setup of Ref. [20],

using the sequential growing technique suggested in [23,24].
The key ingredients of the scheme are the controlled insertion
of single photons and the subsequent adiabatic insertion of
an integer amount of magnetic flux quanta. Starting with a
LN state, the flux insertion creates a quasihole excitation in
the center of the system by transferring the right amount of
angular momentum to the cavity photons. Subsequently, the
hole is refilled by a single photon using a coherent laser
field. Repeating the protocol, LN-type ground states can be
prepared with high fidelity. Compared to the growing protocol
presented in Ref. [25], our scheme has the advantage that
quasiholes created by photon decay are continuously pumped
to the periphery of the LN droplet. This allows one to prepare
an almost defect-free quantum Hall liquid in the center.

To insert an integer number of flux quanta in a cavity
setup, we propose an adiabatic method for transferring external
orbital angular momentum (OAM) from classical light beams
to the cavity photons by using an atomic ensemble as a
mediator. Specifically, we show that an adiabatic transfer
of OAM to the cavity photons can be achieved by using
a stimulated Raman adiabatic passage (STIRAP) [26]. The
transfer is facilitated by an infinite set of cavity dark states.

In order to realize a single-photon pump, the photonic
cavity modes are coupled to a high-lying Rydberg state of
an atomic medium under conditions of electromagnetically
induced transparency (EIT) [7,27,28]. This results in a strong
photon nonlinearity. Employing the resulting photon blockade,
a single photon can be inserted into the system with high
fidelity. Repeating a sequence of magnetic flux and subsequent
single-photon insertion allows one to a grow the LN-type
ground state.

The paper is organized as follows: In Sec. II, we briefly
review the experimental setup of a photonic twisted cavity. In
Sec. III, we discuss the adiabatic flux insertion technique in
detail. Furthermore, we study imperfections which limit the
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FIG. 1. (a) Nonplanar resonator consisting of four mirrors creat-
ing an artificial magnetic field for cavity photons. Two clouds of atoms
are used for adiabatic flux insertion and strong interactions mediated
by Rydberg atoms. (b) Structure of the photonic Landau levels labeled
by orbital angular quantum number l and radial quantum number
n. Here, �n,α is the frequency of the mode (n, α). The green box
indicates the lowest Landau level (LLL). Initially, photons are pumped
into the cavity mode with n = l = 0 (red arrow). Then, adiabatic flux
insertion transfers orbital angular momentum (OAM) from a classical
light beam to cavity photons, increasing the total angular momentum
(blue arrow). (c) The density plot of the first three cavity modes in
the LLL with angular momentum, from left to right, l = 0, l = 3, and
l = 6.

fidelity of our protocol. In Sec. IV, we discuss the insertion of
a single photon into the cavity and the strong photon-photon
interactions to prepare the LN state. Finally, in Sec. V, we
summarize our findings.

II. PHOTON CAVITY SETUP

The artificial magnetic field in the photonic cavity setup
of Ref. [20] is created by using the similarity between the
Lorentz force on a charged particle in a magnetic field and
the Coriolis force. Consider a ring resonator, as indicated in
Fig. 1(a), which confines the photon gas to a two-dimensional
plane and leads to an effective mass. The mirror curvature
modifies the mass and creates an additional harmonic potential
in the two-dimensional plane. Using a nonplanar geometry
leads to an image rotation of the transverse mode profile in a
single roundtrip. This is equivalent to the action of an effective
magnetic field pointing in the direction of propagation plus an
antibinding centrifugal potential [21]. For sufficiently strong
rotation the antibinding potential can compensate the harmonic
confinement and Landau levels emerge. Such a configuration
is, however, unstable and sensitive to astigmatism, which drives
transitions between angular momentum states with difference
�� = ±2. Increasing the effective rotation even further even-
tually leads to another configuration with large degeneracy
that is stable, containing angular momentum states which
differ by multiples of 3h̄—the photonic Landau levels. The
corresponding spectrum is illustrated in Fig. 1(b). Now, within
each photonic Landau level with frequency �n,α labeled by
the radial quantum number n and a fixed value of α = 0, 1, 2,
the photon angular momentum �h̄ = (3m + α)h̄ increases in
multiples of 3h̄. The corresponding Hamiltonian is

H0 = h̄

2∑
α=0

∞∑
n=0

�n,α

∞∑
m=0

a
†
n,3m+αan,3m+α. (1)

Here, a
†
n,l and an,l are the creation and annihilation operators

of a cavity photon in spatial mode fn,l (r, φ), described by the
Laguerre-Gauss (LG) eigenmodes,

fn,l (r, φ) =
√

2|l|+1n!

π (|l| + n)!w2
0

x|l|eilφe−x2
L|l|

n (2x2). (2)

Here we defined x = r/w0, with w0 being the cavity waist
and L

|l|
n (x) are the LG polynomials. We use the term lowest

Landau level (LLL) referring to the degenerate modes with
radial quantum number n = 0 and α = 0 (i.e., l = 0, 3, 6, . . .).

It is convenient to express the cavity-field operator E =∑2
α=0

∑
n En,α according to the photonic Landau-level struc-

ture as

En,α (r, φ) =
∞∑

m=0

fn,3m+α (r, φ)an,3m+α. (3)

We note that all modes except l = 0 have a vanishing amplitude
at the origin r = 0 and thus do not couple to atoms in the center
of the transverse mode profile. More details of the experimental
setup and mode functions can be found in Refs. [20,21] and in
Appendix A.

The frequencies of all cavity modes with n �= 0 [see
Fig. 1(b)] are assumed to be far away from all atomic res-
onances, and coupling to them is thus disregarded in what
follows and we use the shorthand notation a0,3m → a3m, etc.

III. ADIABATIC FLUX INSERTION
WITHOUT INTERACTION

A. Principle

The idea of adiabatically inserting flux quanta was in-
troduced by Laughlin and provides an explanation of the
quantized Hall current [29]. In the case of the photonic Landau
levels, we insert photonic flux quanta in multiples of 3h̄. This
leads to a controlled parallel transfer of photons from modes
a3m to a3m+3 within the LLL. To avoid any direct coupling
between these two modes, which would lead to errors, we split
the process into two successive steps:

(i) a3m → a3m+1, (ii) a3m+1 → a3m+3. (4)

Light beams with OAM have already been successfully used
to transfer angular momentum to an atomic medium [30].
Here we transfer OAM from an external light beam to the
cavity photons utilizing an atomic medium as a mediator.
We consider atoms with four relevant states, as depicted in
Fig. 2(a). The atomic states are coupled via the cavity fields
and external coherent driving fields carrying OAM l and with
Rabi frequencies �̄l . In order to be able to switch on and off
the coupling of the cavity modes to the atomic medium, we
assume that these transitions are sufficiently far away from
single-photon resonance, but that all Raman transitions are in
two-photon resonance. In this way, there is no interaction of
the cavity field with the atomic medium in the absence of the
classical driving fields.

In the first step (i), two classical laser fields, �̄1(r, φ, t )
and �̄0(r, t ), which carry a net OAM of 1h̄ are applied to
the atomic system. As a result, a set of dark states is created
in the subspace of states with n = 0 which are mixtures
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FIG. 2. (a) The atomic level structure consists of two metastable
levels |g〉, |s〉 and two excited levels |e〉 and |r〉. (b) System initially
prepared in state with l = 0. In the first stage of the protocol, the cavity
modes l = 0 and l = 1 drive the transitions |g〉 ↔ |e〉, |g〉 ↔ |r〉 with
coupling strength g0 and g1, while the laser fields �1(t ), �0(t ) couple
the transitions |e〉 ↔ |s〉, |s〉 ↔ |r〉. We assume that the laser field �1

has an OAM −1h̄. As a consequence of this, the initial photon in
the l = 0 mode is transferred to the l = 1 mode using the STIRAP
technique. In the second step, the photon in the l = 1 mode is
transferred to the l = 3 mode which belongs to the LLL manifold. This
transition is performed by using the same atomic level structure, but
with new Rabi frequency �2 which carriers OAM 2h̄. (c) Density plots
of the classical driving fields. We assume that the �0 Rabi frequency
has a Gaussian shape with l = 0. The other two classical laser fields
carry OAM and thus have vanishing intensity at the center.

essentially between the cavity-field operators a3m and a3m+1;
see Fig. 2(b). By using time-varying laser fields in a STIRAP
counterintuitive pulse order, photons are absorbed from modes
a3m and successively created in modes a3m+1. In this step, an
OAM of 1h̄ is transferred to each cavity photon in parallel.

In the second step (ii), classical light fields �̄0(r, t ) and
�̄2(r, φ, t ) with net OAM of 2h̄ are used. This leads to the
formation of a new set of dark states now involving photonic
modes a3m+1 and a3m+3; see Fig. 2(b). In this step, adiabatic
following of the dark state transfers OAM of 2h̄ to each
cavity photon. By successively repeating the processes, one can
increase the angular momentum of all occupied cavity modes
in the LLL in parallel by multiples of 3h̄.

B. Atom-field interaction

Consider a dense ensemble of atoms with a four-level
atomic structure as shown in Fig. 2(a). Besides a ground
state |g〉 and a metastable state |s〉, we consider two excited
states |e〉, |r〉 with finite lifetime. The atoms interact with the
cavity field as well as with an external classical light beam
with OAM. Here the transitions |g〉 ↔ |e〉 and |g〉 ↔ |r〉 are
coupled to the cavity fields E0,0 and E0,1, while the atomic
transitions |s〉 ↔ |e〉 and |s〉 ↔ |r〉 are driven by classical
light fields with time-dependent Rabi frequencies �̄l (r, φ, t )
and �̄0(r, t ) = �0(t ). We assume an almost constant atomic
density n(r ) in the central region of the light-matter interaction.
As mentioned above, all transitions are assumed to be away
from single-photon resonance with detuning δ but in respective
two-photon resonance. In this case, turning off the classical
light fields amounts to switching off the interaction of the cavity
modes with the atoms altogether. The atom-light coupling

Hamiltonian is given by

Hφ = h̄δ

∫
d2r (σee + σrr )

− h̄

∫
d2r

[ ∞∑
m=0

g3mf0,3m(r, φ)a3mσeg+�̄lσes + �̄0σsr

+
∞∑

m=0

g3m+1f0,3m+1(r, φ)a3m+1σrg + H.c.

]
. (5)

The coupling strengthgl is given by the atomic transition dipole
matrix elements deg and drg of the E0,0 and E0,1 transitions,
respectively, and overlap integrals with the mode functions

g3m ∼ deg

∫ 2π

0
dφ

∫ ∞

0
dr rfn,3m(r, φ) n(r ),

g3m+1 ∼ drg

∫ 2π

0
dφ

∫ ∞

0
dr rfn,3m+1(r, φ) n(r ). (6)

In Eq. (5), we have introduced the standard continuous
atomic flip operators σμ,ν (�r, t ) = 1

�V

∑
j∈�V |μj 〉〈νj | defined

on a small volume �V centered around position �r contain-
ing �N � 1 atoms, which fulfill the commutation relations
[σα,β (�r ), σμ,ν (�r ′)] = δ(�r − �r ′)[δβ,μσα,ν (�r ) − δα,νσμ,β (�r )].

Initially, all atoms are in the ground state. We assume
weak cavity fields and discuss the linear response regime.
Then, we can approximately set σgg ≈ 1 [31]. Thus, the only
relevant operators for our discussion are the coherences of
excited and ground states, P = σge and R = σgr , and the
coherence between the ground state and metastable state, S =
σgs . Within this approximation, the operators A = P,R, S

fulfill the commutation relation [A(�r ), A†(�r ′)] = δ(�r − �r ′). It
is convenient to decompose them also into the LG basis (2),

A(r, φ) =
∞∑

n,l=0

An,l fn,l (r, φ). (7)

C. First step

In the first step of the flux insertion scheme, we assume that
the laser field �̄l (r, φ, t ) in Eq. (5) has l = 1, i.e., carries an
OAM of −1h̄ such that

�̄1(r, φ, t ) = �1(t ) κ1(x) e−iφ. (8)

Now, using the decomposition of the atomic modes (7) and
the photonic cavity modes (3), we can easily evaluate the
Hamiltonian given by Eq. (5). Including the photonic Landau-
level Hamiltonian (1), we derive the Heisenberg-Langevin
equations in the linear response regime,

d

dt
Pn,3m = −(iδ + γ )Pn,3m + i�1

∞∑
n′=0

χ
n,n′
3m Sn′,3m+1

+ ig3ma3mδn,0,

d

dt
Sn,3m+1 = i�∗

1

∞∑
n′=0

(
χ

n′,n
3m

)∗
Pn′,3m + i�0Rn,3m+1,

d

dt
Rn,3m+1 = −(iδ + γ )Rn,3m+1 + i�∗

0Sn,3m+1

+ ig3m+1a3m+1δn,0,
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d

dt
a3m = ig3mP0,3m,

d

dt
a3m+1 = ig3m+1R0,3m+1, (9)

with coupling coefficients determined by

χ
n,n′
3m =

∫ 2π

0
dφ

∫ ∞

0
dr rκ1(r )e−iφf ∗

n,3m(r, φ) fn′,3m+1(r, φ).

(10)

Here, γ is the spontaneous decay rate from the excited states |e〉
and |r〉, which we assume for simplicity to be equal. Note that in
the linear response regime, the population of the excited states
is negligible, which allows us to neglect Langevin noise terms
here. We also disregard the cavity decay in our description for
now, but include it later in Sec. IV.

One recognizes from Eqs. (9) that there is in general a
coupling between modes with different radial index n, which
is a problem. For that reason, we now choose the spatial profile
κ1(x) in such a way that couplings from the n = 0 spin modes
S0,3m+1 to higher modes with n′ > 0 are highly suppressed, i.e.,
such that χ

n′,0
3m ∼ δn′,0. This can be achieved for κ1(x) = 1/x

with χ
0,0
3m =

√
2

3m+1 ; see Eq. (10). Then, one can directly
construct a dark state for an OAM transfer of �� = 1,

� (1)
m = 1

Nm

{
g3m+1

√
2

3m + 1
�1 a3m + g3m�0a3m+1

− g3mg3m+1S0,3m+1

}
, (11)

which is a superposition of cavity-field operators a3m, a3m+1

and the corresponding collective ground-state coherences. It
is straightforward to show that the dark state is a constant of
motion in the adiabatic limit, i.e., ∂t�

(1)
m = 0. Here, Nm(t ) is a

normalization factor. We note that there is no choice of spatial
profile κ1(x) that also simultaneously and perfectly suppresses
the couplings χ

0,n′
3m of the n = 0 optical polarization modes

P0,3m to modes with n′ > 0. However, this is not a necessary
condition to construct a dark state. Indeed, the couplings χ

0,n′
3m

between the LLL (n = 0) with higher Landau level (n′ � 1)
are all of the order of unity for κ1(x) ∼ 1/x, i.e., χ0,n′

3m = O(1).
The ideal spatial profile κ1 ∼ 1/x cannot be realized exper-

imentally, however, since �̄1 carries a nonvanishing OAM and
thus must vanish for r → 0. Instead, we choose

κ1(x) = x2

a3 + x3
, (12)

where a = r0/w0 and r0 � w0 is some cutoff length. In the
limiting case a → 0, this approaches the ideal profile. For a �
1, the couplings |χn′,0

3m | ∼ a2 � χ
0,0
3m are strongly suppressed

(see Appendix A) and we approximately obtain the dark state
given by Eq. (11). The small residual couplings to collective
atomic modes with higher radial index n′ > 0 will lead to some
losses, which will be discussed in Sec. III E.

Now a fully adiabatic transfer of excitations can be
performed using a STIRAP protocol. As long as �1 �
{�0(ti )

√
3m+1

2
g3m

g3m+1
, g3m}, the dark states coincide with the

initial state, � (1)
m � a3m. Adiabatic following transfers the dark

states into � (1)
m � a3m+1 if �0 � {�1

√
2

3m+1
g3m+1

g3m
, g3m+1},

which concludes the first step of the protocol at time t1, and
the population from all modes a3m of the LLL is transferred in
parallel to modes a3m+1 which belong to an excited Landau-
level manifold with α = 1.

In order to return the population back to the LLL manifold,
we repeat the same procedure as above using the same atomic
structure but with new Rabi frequency �̄2, as we explain in the
following.

D. Second step

The goal of the second step is to increase the angular
momentum of all photons by 2h̄. In order to perform this,
we assume that the transition |e〉 ↔ |s〉 is driven with Rabi
frequency

�̄2(r, φ, t ) = �2(t )κ2(x)e2iφ, (13)

which carriers OAM 2h̄. Consequently, we obtain a similar
Heisenberg-Langevin equation to Eq. (9),

d

dt
Pn,3m+3 = −(iδ + γ )Pn,3m+3 + i�2

∞∑
n′=0

χ̃
n,n′
3m+3Sn′,3m+1

+ ig3m+3a3m+3δn,0,

d

dt
Sn,3m+1 = i�∗

2

∞∑
n′=0

(
χ̃

n′,n
3m+3

)∗
Pn′,3m+3 + i�0Rn,3m+1,

d

dt
Rn,3m+1 = −(iδ + γ )Rn,3m+1 + i�∗

0Sn,3m+1

(14)
+ ig3m+1a3m+1δn,0+,

d

dt
a3m+3 = ig3m+3P0,3m+3,

d

dt
a3m+1 = ig3m+1R0,3m+1,

with new coupling coefficients,

χ̃
n,n′
3m =

∫ 2π

0
dφ

∫ ∞

0
dr rκ2(x)e2iφ f ∗

n,3m(r, φ) fn′,3m−2(r, φ).

(15)

We now choose the spatial profile of κ2(x) in such a way that
couplings from the n = 0 spin modes S0,3m+1 to higher modes
with n′ > 0 are highly suppressed, i.e., that χ̃n′,0

3m+3 ∼ δn′,0. This

can be achieved for κ2(x) = x2 with χ̃
0,0
3m+3 = 1

2

√
(3m+3)!
(3m+1)! . Note

that with this experimentally feasible choice of the spatial
profile, all couplings of spin coherences S0,3m+1 to higher
states with n′ > 0 are exactly canceled such that there are no
undesired residual couplings.
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Similarly, we can directly construct an infinite set of dark
states,

� (2)
m = 1

Ñm

{
g3m+1

�2

2

√
(3m + 3)!

(3m + 1)!
a3m+3 + g3m+3�0a3m+1

− g3m+3g3m+1S0,3m+1

}
, (16)

which are a constant of motion in the adiabatic limit, i.e.,
∂t�

(2)
m = 0.

Starting at time t1, which is now the initial time for the
second step, the dark state (16) coincides with � (2)

m � a3m+1

as long as �0 � {�2
1
2

√
(3m+3)!
(3m+1)!

g3m+1

g3m+3
, g3m+1}. Adiabatically

increasing �2(t ) drives the system into � (2)
m (tf ) � a3m+3 if

at t = tf : �2 � {2
√

(3m+1)!
(3m+3)!�0

g3m+3

g3m+1
, g3m+3}, which concludes

the second step. In total, the flux insertion protocol transfers
OAM in multiples of 3h̄ to all cavity modes of the LLL in
parallel.

E. Imperfections

In the following, we discuss the corrections that limit the
fidelity of the adiabatic flux insertion. There are two main
sources of imperfections. The first one is the small residual
off-resonant couplings χ

n′,0
3m to cavity modes with n′ > 0. The

second one is the violation of adiabaticity, in particular in the
center of the atomic cloud, due to the vanishing amplitude of
the classical light fields �̄l with l �= 0.

1. Residual couplings to higher collective atomic levels with n > 0

In the first step of the scheme, we neglected residual
coupling S0,3m+1 ↔ Pn,3m with n �= 0. This would be correct
for the ideal spatial profile, κ1(x) ∼ 1/x. For the realistic
profile, given by Eq. (12), there is a residual coupling, however,
leading to excitations of state |e〉, which spoils the adiabatic
transition. We find that in the lowest order of a, the residual
coupling strengths scale as

χ
n′,0
0 � −8π

3

√
2

3
a2, (17)

for m = 0. For higher m, the χ
n′,0
3m become even smaller. Thus

the condition a � 1 ensures the suppression of the undesired
couplings to excited LL.

As an example, let us consider the following time-dependent
Rabi frequencies:

�̄1(r, τ ) = κ1(x)
�√

1 + eτ
, �̄0(τ ) = �√

1 + e−τ
, (18)

which can be used to drive the first stage of the scheme. Here,
� is the peak Rabi frequency and τ = t/T , where T is the
characteristic pulse length. Assume that the pulses are applied
in counterintuitive order in the time interval [−τ1, τ1] such that
�1(−τ1) � �0(−τ1) and, respectively, �1(τ1) � �0(τ1). For
the second stage, we use

�̄2(r, τ ) = κ2(x)
�√

1 + e2τ1−τ
, �̄0(τ ) = �√

1 + eτ−2τ1
,

(19)
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FIG. 3. (a) The expectation values of a0,l (l = 0, 1, 3) vs time.
The exact result for a0,0 (blue line) and a0,1 (dotted red line)
according the coupled system (9) including the residual couplings
for a = 10−2. The dashed black line shows the time evolution of a0,3

according to the coupled system (14). We choose time-dependent
Rabi frequencies (18) and (19) with � = (2π )12.4 MHz and cavity
couplings g = (2π )0.45 MHz. The other parameters are set to γ = 0,
δ = (2π )0.13 MHz and T = 1 μs. (b) The expectation value of a0,1

at time t1 against � for different cutoff length.

which guarantees that �2(τf ) � �0(τf ). In Fig. 3(a), we
plot the exact time evolution of the probabilities for adiabatic
transition. As can be seen, including small cutoff length a,
the respective residual couplings do not affect the adiabatic
flux insertion. Increasing the peak Rabi frequency � further
suppresses the nonadiabatic transition; see Fig. 3(b).

2. Nonadiabatic losses

The OAM transferred to the cavity photons in the flux
insertion is taken from the classical laser fields �̄l with l �= 0.
These fields necessarily have a vanishing intensity at the origin
r = 0 and thus adiabaticity is violated in the center of the
atom cloud. Instead of following adiabatically the dark state,
atoms close to the center will be excited into the intermediate
states due to absorbtion of cavity photons. As a consequence of
that, there is a leak of population from the dark-state subspace
during both steps of the protocol. In the following, we assume
a worst-case scenario where the optical fields are on resonance.
The finite detuning δ further suppresses these errors.

The total amount of nonadiabatic losses can be obtained
by calculating the number of atoms not returning to the initial
state after a full cycle of the protocol. The probability of an
atom at distance r from the center to remain in the adiabatic
state during the first stage of the protocol can be estimated as
(see Appendix B)

e1(�r ) = exp

{
− 2γ

g2

∫ t1

ti

dt
[
ϕ̇2

1 sin2(θ1) + θ̇2
1 cos2(θ1)

]}
,

(20)
where we have assumed, for simplicity, that g3m = g3m+1 =
g. Here, ϕ1(r, t ) = tan−1 [�̄0(t )/�̄1(r, t )] and θ1(r, t ) =
tan−1 [

√
�̄2

1(r, t ) + �̄2
0(r, t )/g] are the time-dependent mixing

angles. For the Rabi frequencies (18), one can evaluate the
probability (20); see Appendix B.
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FIG. 4. Fidelity of the flux insertion scheme vs the peak Rabi
frequency �T and cavity coupling gT according to Eq. (24). We
assume Gaussian distribution of the atomic density. The parameters
are γ T = 100, a = 0.005, and ξ = 0.25w0.

Similarly, the probability for an atom at position r to remain
in the dark-state subspace during the second stage is given by

e2(�r ) = exp

{
− 2γ

g2

∫ tf

t1

[
ϕ̇2

2 sin2(θ2) + θ̇2
2

cos2(θ2)
]}

,

(21)
where now ϕ2(r, t ) = tan−1 [�̄2(r, t )/�̄0(t )] and θ2(r, t ) =
tan−1 [

√
�̄2

2(r, t ) + �̄2
0(t )/g].

The total probability for all atoms to stay in the dark state
after a full cycle of operation thus reads

p =
∫

d2r n(�r ) e1(�r ) e2(�r )∫
d2r n(�r )

. (22)

Furthermore, one has to take into account that the system is
prepared at the beginning of a full cycle in a state with a single
photon in mode f0,0 and all atoms in the ground state |g〉. This
state does not have a perfect overlap with the dark state, but
the latter reads

pin = 1

N

∫
d2r

�2
1κ

2
1 (r )

g2 + �2
1κ

2
1 (r )

n(�r ), (23)

where we have used that initially �̄0(ti ) = 0.
This gives, for the fidelity of the flux insertion,

F = ppin. (24)

In Fig. 4, we have plotted the fidelity as a function of the
peak Rabi frequency �T and the cavity coupling gT assuming
Gaussian distribution of the density of atoms, n(r ) = n0e

−r2/ξ 2

with n0 = N/πξ 2. As can be expected, increasing gT com-
pared to γ T leads to smaller absorption length, which improves
the fidelity. However, for sufficiently high gT compared to
�T , the respective overlap between the initial state and the
dark state becomes smaller, which limits the fidelity.

IV. LAUGHLIN STATE PREPARATION

Now, we discuss the preparation of Laughlin-type states in
a setup of cavity Rydberg polaritons. Following Refs. [23,24],
a Laughlin state can be grown by the successive repetition
of adiabatic flux insertion (see Sec. III) and a single-photon
coherent pump, discussed below.

A. Rydberg cavity polaritons and Laughlin state

To realize a fractional quantum Hall system requires,
besides the artificial magnetic field discussed in Sec. II and
Ref. [20], strong interactions between the photonic cavity
modes in the lowest photonic Landau level,

Hint =
∑
l1,l2

∑
l3,l4

V
l1,l2
l3,l4

a
†
l1
a
†
l2
al3al4 , (25)

where li = 3m and m = 0, 1, . . .. This Hamiltonian can be
realized by coupling the cavity field E0,0 to a high-lying
Rydberg state in an EIT configuration [8,27,28]. In recent cav-
ity experiments, the strong nonlinearity on the single-photon
level was demonstrated [32,33]. The Rydberg cavity polaritons
have an effective interaction potential, V (r ) = C6/(r6 + a6

B ).
Here, C6 is the effective interaction strength and aB is the
Rydberg blockade radius. Although the opposite regime is very
interesting in its own right [34], we assume in the following the
case where the magnetic length lB = w0/2 is much larger than
aB . In this limit, the dominant interaction contribution comes
from the zero’s Haldane pseudopotential [34],

V0 � 3C6

8l2
Ba4

B

, (26)

which determines all interaction coefficients [35],

V
l1,l2
l3,l4

= 〈l1, l2|V |l3, l4〉

� V0

2
(l1 + l2)!

√
2−2(l1+l2 )

l1!l2!l3!l4!
δl1+l2,l3+l4 . (27)

We assume for the interaction coefficients V
l1,l2
l3,l4

� |�0,1 −
�0,0|, i.e., they are small compared to the energy gap between
the Landau levels to avoid mixing of states in a different Landau
level.

The combination of the photonic Landau level given by
Eq. (1) and the strong photon nonlinearity given by Eq. (25)
lead to a set of degenerate low-energy states with total angular
momentum L depending on the photon number N [20,22,36].
For a given photon number N , the zero-energy state with lowest
total angular momentum,

〈z1, . . . , zN |LN, N〉 =
∏
i<j

(
z3
i − z3

j

)2
, (28)

is a unique ground state of the system [36], which resembles a
Laughlin (LN)-type state. Here we have dropped the ubiquitous
Gaussian factor and the normalization constant [20,36]. The
two-dimensional coordinate is zj = xj − iyj . The total angu-
lar momentum of the state (28) with N photons is L|LN, N〉 =
3N (N − 1)|LN, N〉. In addition, we consider here the mth
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quasihole states with N photons,

〈z1, . . . , zN |qhm〉 =
∏
k

z3m
k

∏
i<j

(
z3
i − z3

j

)2
, (29)

having total angular momentum L|qhm,N〉 = 3
2mN

(N + 1)|qhm,N〉. It is straightforward to show that the
Laughlin-type state with N + 1 photons has the same total
angular momentum as the two-quasihole state with N photons.

B. Full protocol

Single-photon pump. We consider a coherent pump which
injects a single photon into the mode a0. This implies that
there is no transfer of angular momentum into the system. We
assume that an external laser field is applied with mode profile
matching the l = 0 angular momentum state,

H�p
= �p(a†

0e
−iωt + a0e

iωt ). (30)

Here, �p is the driving pump Rabi frequency into the cavity
and ω is the oscillation frequency which we assume to be in
resonance with respect to the energy of the LLL, i.e., ω = �0,0.
Without the interaction given by Eq. (25), the Hamiltonian (30)
creates a coherent amplitude of the photonic mode which con-
tains a superposition of many photons. However, strong photon
blockade ensures the insertion of a single photon requiring
�p � V0,�LN, where �LN � 0.2V0 is the many-body gap of
the system. Note that the Laughlin gap only slightly depends
on the photon number N . Starting from a two-quasihole state
|2qh, N〉, we use a π pulse of time τp = π/2�(N ), where

�(N ) = �p〈LN, N + 1|a†
0|2qh, N〉 (31)

is the coupling between the quasihole and Laughlin
state [23,24], to insert a single photon.

Adiabatic flux insertion. In Sec. III, we discussed the
noninteracting case for inserting flux quanta by transferring all
photons to the first Landau level and then back to the LLL. Now,
in the interacting case, we require adiabaticity �LNτf � 1,
where the many-body gap �LN should not vanish during flux
insertion. To this end, we couple the photonic cavity field E0,1

in the first Landau level using an EIT scheme to a Rydberg state
as well. This ensures maintenance of a finite many-body gap
�LN. For simplicity, we assume the same interaction potential
V (r ) as before. Now, in Eq. (25), we sum over all photonic
modes in the lowest and first Landau level.

Protocol. The growing scheme is depicted in Fig. 5. It starts
by preparing the cavity with no photon. Then, in the first
step, a single photon in mode a0 is pumped into the cavity
|0〉 → a

†
0|0〉 by using the nonlinear interaction (25). This state

obviously has total angular momentum L = 0. Next, we repeat
the flux insertion scheme in Sec. III two times, which realizes
the transition a

†
0|0〉 → a

†
6|0〉 with L = 6. The latter state is a

two-quasihole state with one photon. Now a second photon is
pumped into the cavity. The finite overlap �(1)/�p = √

10/11
with the Laughlin state ensures that we pump into the ground
state of the system. This step creates a Laughlin state with
N = 2 photons. By repeating these two steps, we grow a
Laughlin-type state (28) with N photons.

To numerically simulate the full growing protocol is
rather involved, since taking into account all different atomic

FIG. 5. The growing scheme which is used for the preparation of
the Laughlin-type states consists of two steps. (i) Coherent pump of a
single photon in the ground state of the cavity by using the nonlinear
photon-photon interaction. (ii) Increase of angular momentum per
particle by 6 (flux insertion). Repeating the two steps lead to growing
of the photonic Laughlin-type state.

excitations leads to fast growing of the relevant Hilbert space
even for few excitations. Therefore, we simplify the protocol,
reducing it to the essential components, namely, the adiabatic
increase of angular momentum of the cavity modes by flux
insertion and subsequent photon insertion. The simplified flux
insertion method used for the simulation relies solely on the
photonic cavity modes and is therefore amenable to numerical
simulations by exact diagonalization. Specifically, we consider
a direct coupling between the lowest and first Landau level
and change the energies of the Landau levels in time. This
resembles a rapid adiabatic passage sweep. In Appendix C, we
explain the method in detail. In Fig. 6, we show a numerical
simulation of the full protocol for the preparation of Laughlin
states up to three photons. After three steps of the protocol,
we obtain a LN state with three photons with probability
|〈ψ |LN, 3〉|2 ≈ 0.97.
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FIG. 6. Numerical simulation of growing scheme for the creation
of Laughlin states with N = 2 and N = 3 photons. The system is
prepared initially in a state with no photon. The red arrow indicates the
time at which the coherent pump is applied. The angular momentum
per photon is increased by repeating the flux insertion twice. The
probabilities are pm = |〈ψ |a†

m|0〉|2, and, respectively, pLN,N and
pqhm,N are the probabilities for the Laughlin state and mth-quasihole
state. The adiabatic flux insertion method for numerical simulation
is explained in Appendix C. The parameters are set to �0/V0 = 10,
�p/V0 = 1/20, and ga/V0 = gb/V0 = 1/5.
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Finally, let us comment on the fidelity of our scheme. On
the one hand, in the flux insertion process (see Sec. III E),
the imperfections come from nonadiabatic transitions, which
requires �lτf � 1,�LNτf � 1. On the other hand, in the
coherent pump, the imperfections come from coupling to
higher photon-number states which require �LNτp � 1. While
both favor large timescales τ = 2τf + τp for each step in the
growing protocol, losses limit the timescale τ . We take into
account the effect of cavity losses as well as the finite lifetime
of the Rydberg state by an effective loss rate γeff . As shown
in Refs. [23,24], the fidelity for the creation of an N -photon
Laughlin state then scales as

FN � exp

{
− 1

2
N

[
1

2
γeffτ (N + 1) + �2

N

(�LNτ )2

]}
, (32)

where �N depends on photon number N . Note that our
protocol first creates a hole excitation in the center and then
refills the hole. Repeating the steps of the protocol, photons
are pumped continuously into the center of the system. Defects
created by losses will be continuously pumped to the periphery
of the system and we expect that a much higher fidelity can be
achieved in the steady state in the center of the cavity.

V. DISCUSSION AND OUTLOOK

In summary, we discussed an adiabatic transfer protocol
to insert flux quanta in a photonic twisted-cavity setup. The
scheme relies on a robust STIRAP technique transferring OAM
of an external classical laser beam to the photonic cavity
modes. A dense atomic ensemble hereby acts as a mediator.
We show that the transfer can be described by a set of dark
states between cavity modes with different angular momentum.
Furthermore, we discuss imperfections of the protocol and
estimate the fidelity. In addition, we discuss the preparation
of Laughlin-type states based on the growing protocol of
Refs. [23,24]. To this end, we discuss a single-photon pump
coupling the cavity field to a high-lying Rydberg state in
an EIT configuration. We show that by successive repetition
of flux insertion and coherent pump, a Laughlin-type state
can be prepared with high fidelity. Since, as compared to
alternative growing protocols [25], in our scheme photons and
thus also loss-induced defects are continuously pumped from
the center to the periphery of the system, we expect to create
Laughlin-type states with much higher fidelity in the center of
the cavity.

The nonlocal character of the interaction between Rydberg
polaritons may lead to other interesting states such as the
Moore-Read Pfaffian [37] in the regime of large magnetic
fields, where the magnetic length becomes comparable to
or smaller than the blockade radius [34]. Furthermore, the
coherent control may allow one to investigate bilayer quantum
Hall phases, exploring different photonic Landau levels.
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APPENDIX A: COUPLING MATRIX ELEMENTS

1. Properties of Laguerre-Gauss polynomials

The Laguerre-Gauss (LG) polynomials form a complete set
of functions with the following orthogonal condition:∫ ∞

0
e−xxkLk

n(x)Lk
m(x)dx = (n + k)!

n!
δn,m. (A1)

For n = 0, we have Ll
0(x) = 1. The LG polynomials also

obey the recurrence relations Ll−1
n (x) = Ll

n(x) − Ll
n−1(x) and∑n

p=0 Ll
p(x) = Ll+1

n (x).
The mode functions fn,l in Eq. (2) fulfill the orthogonality

relation∫ 2π

0
dφ

∫ ∞

0
dr rf ∗

n,l (r, φ)fn′,l′ (r, φ) = δl,l′δn,n′ . (A2)

2. First step

The coupling matrix elements of the first step are

χ
n′,n
3m = C

n′,n
3m

∫ ∞

0
e−2x2

x6m+2κ1(x)L3m+1
n (2x2)L3m

n′ (2x2)dx,

(A3)

with C
n′,n
3m = 23m+2

√
2n!n′!

(3m+1+n)!(3m+n′ )! . Here the function κ1(x)

describes the intensity shape of the Rabi frequency �̄1. We
choose

κ1(x) = x2

a3 + x3
, (A4)

where a = r0/w0 is the dimensionless cutoff.
a → 0 limit. Considering first the LLL, i.e., n = 0 and,

making the substitution y = 2x2, we have

χ
n′,0
3m =

√
2n′!

(3m + 1)!(3m + n′)!

∫ ∞

0
e−yy3mL3m

n′ (y)dy.

(A5)
Using the orthogonality given by Eq. (A1), we find

χ
n′,0
3m =

√
2

3m + 1
δn′,0. (A6)

The general result for the coupling coefficient in the limit a →
0 is

χ
n′,n
3m =

⎧⎨⎩
√

2(3m+n′ )!n!
n′!(3m+1+n)! for n � n′,

0 for n < n′.

While the couplings χ
0,n′
3m between the lowest and higher

Landau levels n′ � 1 are of the order of unity even for a → 0,
all couplings χ

n′,0
3m vanish identically.

Lowest-order corrections in a. The lowest-order correction
of χ

n′,0
3m in a for m = 0 is

χ
n′,0
0 ≈ −8π

3

√
2

3
a2 + O(a3) (A7)
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and becomes even smaller for m > 0. Thus, as long as a � 1,
coupling to higher Landau levels is negligible.

3. Second step

In the second step, we choose �̄2(r, ϕ, t ) = �2(t ) x2 e2iϕ,

such that the coupling strengths become

χ̃
n′,n
3m = C̃

n′,n
3m

∫ ∞

0
e−2x2

x6m+1L3m−2
n (2x2)L3m

n′ (2x2)dx,

(A8)

with C̃
n′,n
3m = 23m+1

√
n!n′!

(3m−2+n)!(3m+n′ ) . Setting n = 0 and mak-

ing the substitution y = 2x2, we get

χ̃
n′,0
3m = 1

2

√
n′!

(3m − 2)!(3m + n′)!

∫ ∞

0
e−yy3mL3m

n′ (y)dy.

(A9)

Finally, using the orthogonality (A1), we obtain

χ̃
n′,0
3m = 1

2

√
3m!

(3m − 2)!
δn′,0, (A10)

which implies that the transition to states with n′ > 0 is
completely suppressed.

APPENDIX B: NONADIABATIC LOSSES

Consider the five-level system driven by two cavity fields
g3m and g3m+1 and, respectively, two classical laser beams �1

and �0, as depicted in Fig. 2. Including the spontaneous decay
from the two excites states, the non-Hermitian interaction
Hamiltonian becomes

H =

⎡⎢⎢⎢⎣
−iγ �1 0 g 0
�1 0 �0 0 0
0 �0 −iγ 0 g

g 0 0 0 0
0 0 g 0 0

⎤⎥⎥⎥⎦, (B1)

where, for simplicity, we assume equal cavity couplings g3m =
g3m+1 = g. The time-dependent Schrödinger equation reads

ih̄ d
dt

�B = H �B, where column vector �B = [ce, cs, cr , ca1 , ca2 ]T

comprises the diabatic probability amplitudes of the five states.
For γ = 0, the eigenspectrum of H consists of one zero-energy
dark state,

|d〉 = cos(ϕ) sin(θ )|a0〉 + sin(ϕ) sin(θ )|a1〉 − cos(θ )|s〉,
(B2)

two states with energies E± = ±g,

| ± g〉 = 1√
2

[sin(ϕ)|e〉 − cos(ϕ)|r〉 ± sin(ϕ)|a0〉

∓ cos(ϕ)|a1〉], (B3)

and two states with energies E±λ = ±λ with λ =√
g2 + �2

1 + �2
0,

| ± λ〉 = 1√
2

[± cos(ϕ)|e〉 + sin(θ )|s〉 ± sin(ϕ)|r〉

+ cos(ϕ) cos(θ )|a0〉 + sin(ϕ) cos(θ )|a1〉]. (B4)

Here, the states |aj 〉 ≡ |g〉a†
j |0〉 denote the states with one

photon in modeaj and all atoms in the ground state. The mixing
angles are defined by

tan(ϕ) = �0

�1
, tan(θ ) =

√
�2

1 + �2
0

g
. (B5)

Note that due to the spatial dependence of the laser fields, the
mixing angles vary with the distance to the origin which could
violate the adiabaticity of the transition close to the cavity axis.

It is convenient to work in the adiabatic basis, where the
loss of transfer efficiency due to the spontaneous decay shows
up as population decay from the dark state. The probability
amplitudes �A = [ag, a−g, ad, a−λ, aλ]T of the adiabatic states
are connected to the diabatic amplitudes by the relation �A =
W �B, where the orthogonal rotation matrix W is given by

W = 1√
2

⎡⎢⎢⎢⎣
sin(ϕ) 0 − cos(ϕ) sin(ϕ) − cos(ϕ)
sin(ϕ) 0 − cos(ϕ) − sin(ϕ) cos(ϕ)

0 −√
2 cos(θ ) 0

√
2 cos(ϕ) sin(θ )

√
2 sin(ϕ) sin(θ )

− cos(ϕ) sin(θ ) − sin(ϕ) cos(ϕ) cos(θ ) sin(ϕ) cos(θ )
cos(ϕ) sin(θ ) sin(ϕ) cos(ϕ) cos(θ ) sin(ϕ) cos(θ )

⎤⎥⎥⎥⎦. (B6)

It is straightforward to show that the Schrödinger equation
in the adiabatic basis reads ih̄ d

dt
�A = W−1HW − iW d

dt
W−1 �A,

where the last term describes the nonadiabatic transitions. As
long as the spontaneous decay is sufficiently strong, the popula-
tions of the nonzero-energy adiabatic states change negligibly
such that one can perform adiabatic elimination, ċ±g = ċ±λ =
0. Assuming g � ϕ̇2

λ
cos(θ ) and neglecting terms of the order

of O(ϕ̇3), O(θ̇3), O(ϕ̇2θ̇ ), and O(ϕ̇θ̇2), we find

Pd ≈ exp

{
− 2γ

g2

∫ ∞

−∞
[ϕ̇2 sin2(θ ) + θ̇2 cos2(θ )]dt

}
. (B7)

One can evaluate the probability remaining in the adiabatic
states during both stages of the protocol using the Rabi
frequencies (18) and (19). We obtain Pd(�r ) = ea (�r ) with a =
1, 2, where

ea (�r ) = exp

{
− γ

4T

(
2

g2
− 1

g2 + �2
− 1

g2 + f 2
a �2

)}
.

(B8)
Here, f1 = κ1(x) and f2 = x2.
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APPENDIX C: FLUX INSERTION METHOD
FOR NUMERICAL SIMULATION

Simulating the flux insertion protocol in Sec. III in the
presence of particle-particle interactions is numerically chal-
lenging since it requires inclusion of all photonic modes as well
as a large number of four-level atoms. In order to simplify the
numerical integration, we replace the flux insertion technique
based on STIRAP by another adiabatic transfer technique
without coupling to an atomic medium. This protocol cannot
directly be realized with the current cavity setup, but correctly
captures the fidelity of the growing protocol for Laughlin states.

As before, we split the protocol into two steps:

(i) a3m → a3m+1, (ii) a3m+1 → a3m+3. (C1)

To mimic the adiabatic transfer mediated by the atomic
medium in an effective way, we add to the photonic Landau-
level Hamiltonian, given by Eq. (1), a weak coupling between
the lowest and first Landau level with time-dependent cou-
plings,

Hc =
∑
m

[ga (t )a†
3ma3m+1 + gb(t )a†

3m+1a3(m+1) + H.c.].

(C2)

The coupling ga (t ) is on during step (i) and gb(t ) during step
(ii). Furthermore, ga, gb � �LN. We assume that the excited-
state Landau-level energy can be changed linear in time t with
respect to the lowest Landau-level energy,

�(t ) = −�0 + 4�0

τf

∣∣∣∣t − τf

2

∣∣∣∣, (C3)

where �0 = �0,1 − �0,0. This resembles a rapid adiabatic
passage protocol. Let us start with the adiabatic limit tf → ∞.
In the first step, the coupling ga is turned on and we transfer
an OAM per photon of 1h̄ after the first step t = tf/2. Then, ga

is turned off and gb is turned on. The second step starts with
detuning �(tf/2) = −�0 and transfers 2h̄ flux per photon to
the system after time t = tf. After a full step, we added three
flux quanta per particle to the system. For adiabaticity, we
require

τf � 4�0

�2
LN

, (C4)

which means that the detuning sweep �(t ) must be slow
compared to the many-body gap of the system.
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