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Mobile bound states of Rydberg excitations in a lattice
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Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of
spin excitations—–magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable
long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg
state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state.
We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant
two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms
can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
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I. INTRODUCTION

Interacting many-body quantum systems are notoriously
difficult to simulate on classical computers, due to the exponen-
tially large Hilbert space and quantum correlations between the
constituents. It was therefore suggested to simulate quantum
physics with quantum computers [1], or universal quantum
simulators consisting of spin lattices with tunable interactions
between the spins [2]. Dynamically controlled spin lattices
can realize digital and analog quantum simulations. Quantum
field theories not amenable to perturbative treatments are often
discretized and mapped onto the lattice models for numerical
calculations. Spin lattices are fundamental to the studies of
many solid-state systems, where the competition between the
interaction and kinetic energies determines such phenomena
as magnetism and superconductivity.

Realizing tunable spin lattices in the quantum regime is
challenging. Several systems are being explored to this end,
including trapped ions [3,4], superconducting circuits [5,6],
quantum dots [7], and other solid-state systems. Cold atoms in
optical lattice potentials are accurately described by the Hub-
bard model, representing perhaps the most versatile and scal-
able platform to realize various lattice models [8]. The Hubbard
model for two-state fermions or strongly interacting bosons at
half filling can implement the lattice spin-1/2 model [9,10].
The spin-exchange interaction then stems from the second-
order tunneling (superexchange) process [11,12] and the inter-
spin Ising interaction can exist for atoms or molecules with
static magnetic or electric dipole moments [13,14]. These
interactions are, however, weak (tens of hertz or less), which
makes the system vulnerable to thermal effects even at ultralow
temperatures of nanokelvins [15–17].

Here we propose a practical realization of a tunable spin
lattice XXZ model with an array of trapped atoms [18,19].
The atomic ground state dressed by a nonresonant laser
with a Rydberg state [20–23] represents the spin-down state,
while another Rydberg state corresponds to the spin-up state
(see Fig. 1). Controllable spin-exchange interactions are then

mediated by the dressing laser and resonant dipole-dipole
exchange interaction (scaling with distance r as 1/r3) between
the atoms on the Rydberg transition. The van der Waals
interactions between the excited-state atoms (scaling as 1/r6)
serve as Ising-type interaction between the spins [24–28].
Due to long lifetimes of the Rydberg states and large energy
scales of their interactions, this system is essentially at zero
temperature. This permits observation of coherent quantum
dynamics of spin excitations—magnons.

We study the dynamics of magnons in the spin-lattice
with long-range spin-excitation hopping and nearest-neighbor
interactions. Apart from scattering states, we find exotic
interaction-bound states of magnons [29]. The bound pairs
of magnons can propagate in the lattice via resonant two-site
spin exchange and nonresonant second-order exchange
interactions [see Fig. 1(a)]. We note that the spin-lattice XXZ

model can be mapped onto the extended Hubbard model
with spinless fermions or hard-core bosons: In the extended
Hubbard model with low filling, particle tunneling from site
to site and the attractive or repulsive interactions between the
particles at the neighboring sites correspond, in the spin-lattice
model, to the excitation hopping via spin exchange and to
the Ising interspin interaction, respectively. The bound states
of magnons are then equivalent to interaction bound states
of particles in the (extended) Hubbard model [29,30]. But
our solution goes beyond the bound-state solutions of the
Hubbard model [31–37] and it can be easily generalized
to arbitrary-range hopping and interactions. We find that
longer-range hopping of individual magnons leads to the
increased, and tunable, mobility of the bound pairs.

II. INTERACTING SPIN EXCITATIONS IN A LATTICE

We consider a spin-lattice model described by the Hamil-
tonian (h̄ = 1)

H =
∑
i<j

Jij (σ̂+
i σ̂−

j + σ̂−
i σ̂+

j ) +
∑
i<j

Uij n̂i n̂j , (1)
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FIG. 1. (a) Spectrum of two spin (Rydberg) excitations in a lattice
versus the center-of-mass quasimomentum K . The scattering states
form a continuum spectrum (black) [Eq. (7)]. The bound states for
strong (red lines) and weak (blue lines) repulsive interactions are
obtained from the spin-lattice Hamiltonian (dashed lines) [Eq. (9)]
and from exact diagonalization of the Hamiltonian for the system
sketched in (b) (solid lines). In the simulations, we used a lattice of
size L = 100 and periodic boundary conditions, with the spin model
parameters J2/J1 = 1/8, U1/J1 = 3.4,1.9 for the red and blue dashed
lines, respectively. The inset illustrates the motion of the bound pair
via resonant two-site hopping J2 and second-order hopping J 2

1 /U1.
(b) Level scheme of atoms to realize a spin-lattice model. Atoms in
Rydberg states |e〉 and |s〉 undergo dipole-dipole exchange interaction
|es〉 → |se〉 with rate D. The atomic ground state |g〉 is dressed with
the Rydberg state |s〉 by a nonresonant laser with Rabi frequency �

and detuning � � �. The spin-up and spin-down states correspond
to |↑〉 = |e〉 and |↓〉 � |g〉 + �

�
|s〉. Interactions V ee between the

atoms in state |e〉 lead to formation of mobile bound states of
Rydberg excitations. The parameters in numerical simulations shown
in (a) correspond to �/� = 10, D1/� = 1, V es

1 /� = −0.125, and
V ee

1 /� = 0.03,0.015 for the red and blue solid lines, respectively.

where σ̂+
i = |↑〉i〈↓| and σ̂−

i = |↓〉i〈↑| are the raising and
lowering operators for the spin at position i, and n̂i ≡ σ̂+

i σ̂−
i =

|↑〉i〈↑| is the projector onto the spin-up state. In Eq. (1), the
first term is responsible for the spin transport via the exchange
interaction Jij , while the second term describes the interaction
between the spins in state |↑〉with strengthUij . BothJij andUij

have finite range and depend only on the distance r = |i − j |
between the spins at positions i and j .

A. Single magnon

Hamiltonian (1) preserves the number of spin excitations.
For a single excitation, the interaction does not play a role, and

the Hamiltonian reduces to

H(1)
J =

L∑
x=1

∑
d�1

Jd (|x〉〈x + d| + |x〉〈x − d|), (2)

where |x〉 ≡ σ̂+
x |↓1↓2 · · · ↓L〉 denotes the state with the spin

up at position x in a lattice of L � 1 spins (we assume periodic
boundary conditions), and d = 1,2, . . . is the range of the ex-
change interaction. The transformation |x〉 = 1√

L

∑
q eiqx |q〉

diagonalizes the Hamiltonian,

H(1)
J =

∑
q

|q〉〈q|E(1)
q , (3)

which indicates that the plane waves |q〉 = 1√
L

∑
x eiqx |x〉

with the lattice quasimomenta q = 2πν
L

(ν = −L−1
2 , . . . , L−1

2 )

are the eigenstates of H(1)
J with the eigenenergies E(1)

q =∑
d�1 2Jd cos(qd).

B. Two magnons

Consider now two spin excitations. We denote by |x,y〉 the
state with one spin up at position x and the second spin up at
y > x. The total Hamiltonian H(2) = H(2)

J + H(2)
U consists of

the transport and interaction terms:

H(2)
J =

∑
x<y

[∑
d

Jd (|x,y〉〈x − d,y| + |x,y〉〈x,y + d|)

+
∑

d<y−x

Jd (|x,y〉〈x + d,y| + |x,y〉〈x,y − d|)

+
∑

d>y−x

Jd (|x,y〉〈y,x + d| + |x,y〉〈y − d,x|)
]
, (4)

H(2)
U =

∑
x<y

Uxy |x,y〉〈x,y|. (5)

We introduce the center of mass R ≡ (x + y)/2 and rela-
tive r ≡ y − x coordinates. Making the transformation |R〉 =

1√
L̃

∑
K eiKR|K〉 (L̃ = 2L − 3), we obtain the total Hamilto-

nian H(2) that is diagonal in the basis |K〉 of the center-of-mass
quasimomentum K = 2πν

L̃
: H(2) = ∑

K |K〉〈K| ⊗ HK , where

HK =
∑

r

[ ∑
d

Jd,K |r〉〈r + d| +
∑
d<r

Jd,K |r〉〈r − d|

+
∑
d>r

Jd,K |r〉〈d − r| + Ur |r〉〈r|
]
, (6)

with Jd,K ≡ 2Jd cos(Kd/2) (see Appendix A). The two-body
wave function can be cast as |�(x,y)〉 = 1√

L̃

∑
K eiKR|K〉 ⊗∑

r�1 ψK (r)|r〉, where the relative coordinate wave function
ψK (r) depends on the quasimomentum K as a parameter via
the effective hopping rates Jd,K in HK . There are two kinds
of solutions of the eigenvalue problem HK |ψK〉 = EK |ψK〉
for |ψK〉 = ∑

r�1 ψK (r)|r〉, corresponding to scattering states
of asymptotically free magnons and to the interaction-bound
states.
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1. Scattering states

The wave function for the scattering states has the standard
form containing the incoming and scattered plane waves
ψK,k(r > dU ) = eikr + e−2iδK,k e−ikr , where dU is the (finite)
range of the interaction potential Ur , and the phase shift δK,k

depends on Ur . The energies of the scattering states are simply
given by the sum of energies of two free magnons,

E
(s)
K,k = E(1)

q1
+ E(1)

q2
=

∑
d

2Jd,K cos(kd), (7)

where K = q1 + q2 and k = (q1 − q2)/2 are the center-of-
mass and relative quasimomenta. In Fig. 1(a) we show the
spectrum of the scattering states, assuming the range of the
spin-exchange interaction dJ = 2 with J1 > J2, while Jd�3 =
0. Note that due to the longer-range hopping J2, the spectrum
at K = ±π does not reduce to a single point E(s) = 0 as in
Refs. [33,34] but has a finite width E

(s)
K=π,k ∈ [−4J2,4J2] (see

also Refs. [31,37]).

2. Bound states

The bound-state solutions correspond to a normalizable rel-
ative coordinate wave function,

∑
r |ψK (r)|2 = 1. We assume

nearest-neighbor interaction, U1 = 0 and Ur>1 = 0 in Eq. (6).
We set ψK (0) = 0 and ψK (1) = c, with c some constant, and
make the ansatz

ψK (r) = αKψK (r − 1) + βKψK (r − 2). (8)

The physical intuition behind this recurrence relation is that
every (discrete) position r can be reached from positions r − 1
and r − 2 with the amplitudes αK ∝ J1 and βK ∝ J2. We then
obtain (see Appendix A) αK = J1,K

U1
, βK = J2,K

U1+J2,K
, and the

energy of the bound state,

E
(b)
K =2J2,K + J 2

1,K

U1
+ J 2

1,KJ2,K

U 2
1

+ U 2
1

U1 + J2,K

. (9)

The first term on the right-hand side of this equation does
not depend on the interaction U1 and it describes two-site
resonant hopping of the excitation over the other excitation,
|x − 1,x〉 ↔ |x,x + 1〉, with rate ∝J2. This process is res-
onant because the relative distance r = 1, and thereby the
interaction energy, is conserved during this two-excitation
“somersault.” The second and third terms are contributions
from the second-order (∝J 2

1 /U1) and third-order (∝J 2
1 J2/U 2

1 )
hopping processes. The last term is the energy shift due to
interaction U1.

The above solution is valid under the conditions that bound-
state wave function is normalizable. Inserting ψK (r) ∝ λr

into Eq. (8), we obtain that the wave function exponentially
decays with distance r , and therefore is normalizable, when
1
2 |αK ±

√
α2

K + 4β2
K | < 1 (see Appendix A). This condition

also means that the energy of the bound state, E
(b)
K , in Eq. (9)

is outside the energies of the scattering continuum, E
(s)
K,k , in

Eq. (7). In Fig. 2(a) we show the values of αK and βK , forming
a triangular region, for which there exists an exponentially
localized bound state. With only nearest-neighbor hopping
(J2 = 0), we recover the condition |αK | < 1 of Refs. [33,34].
For a given set of parameters J1, J2, U1, the bound state may
not exist for all values of the center-of-mass quasimomentum

FIG. 2. (a) Diagram of values of αK and βK for the existence
of bound states (light blue shaded region). (b) Wave function ψK (r)
versus the relative distance r for several values of the center-of-mass
quasimomentum K . The parameters are the same as in Fig. 1, with
U1/J1 = 3.4 [left graph and red line in (a)], and U1/J1 = 1.9 [right
graph and blue line in (a)], where the bound state does not exist in the
vicinity of K = 0.

K , since both αK and βK depend on K . In general, the closer
is the point (αK,βK ) to the boundary of the shaded region in
Fig. 2(a), the less localized is the bound-state wave function,
as we illustrate in Fig. 2(b). In Fig. 3 we show the diagrams of
J2/J1 and U1/J1 versus K for the existence of the bound states.

FIG. 3. Diagram of values of J2/J1, for fixed U1 = 3J1 (upper
panel), and U1/J1, for fixed J2 = J1/8 (lower panel), versus K , for
the existence (white regions) and absence (black regions) of the bound
states.
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Note that both attractive (U1 < 0) and repulsive (U1 > 0)
interactions can sustain bound states. Clearly, for certain sets
of parameters, the bound states do not exist at all, or exist only
within a certain interval of values of K .

III. RYDBERG DRESSED ATOMS IN A LATTICE

The spin-lattice model of Eq. (1) might be realized with a
regular array of atoms in Rydberg states |s〉 and |e〉. One or
more atoms could be excited to state |e〉 = |↑〉 while all the
remaining atoms are prepared in state |s〉 = |↓〉. Assuming the
transition |s〉 ↔ |e〉 is dipole allowed, resonant dipole-dipole
interaction between the atoms at lattice positions i and j would
lead to transfer of excitations via the exchange interaction
|es〉 ↔ |se〉 with rate Dij = C3/a

3

|i−j |3 , where C3 is the interaction
coefficient and a is the lattice constant [38–40]. Atoms in the
Rydberg states also interact via the van der Waals interactions

V
μν

ij = C
μν
6 /a6

|i−j |6 , which would map onto the interactions Uij

between the spin excitations [24–28], provided V ee
ij differs

from the interaction V es
ij between the |e〉 and |s〉 state atoms.

Typically, however, the resonant dipole-dipole interaction
D is orders of magnitude stronger than the van der Waals inter-
actions V , since the latter originate from nonresonant dipole-
dipole interactions, V ∼ D2/δω, with large Förster defects,
δω � D [41]. Small interactions V � D will preclude the
interplay between the spin transport and spin-spin interactions.
In principle, one could explore the angular dependence of the
dipole-dipole and van der Waals interactions [42] to tune the
relative strengths of D and V , which, however, would be very
sensitive to atomic position uncertainties. Moreover, if all the
atoms are prepared in the Rydberg state |s〉, the motion of
the untrapped atoms and their decay will strongly affect the
system on the timescale of the interaction. To mitigate these
problems, we propose to dress trapped ground-state atoms
with the Rydberg state |s〉. The dressing laser would then
mediate hopping of the Rydberg excitation |e〉 to nearby atoms
in the dressed ground state with rates Jd which can be made
comparable to, or even weaker than, the effective interaction
Ur between the excitations. Rydberg dressing of ground-state
atoms [20–23,43–45] is a versatile tool for tuning interatomic
interactions to simulate various lattice models [46–51].

A. Parameters of the effective lattice Hamiltonian

We consider an array of single atoms with the level scheme
shown in Fig. 1(b). The ground state |g〉 of each atom is
coupled to the Rydberg state |s〉 by a spatially uniform laser
with Rabi frequency � and detuning � = ωsg − ω � |�|. The
corresponding Hamiltonian for the atoms is

Hat =
∑

j

[
�σ̂ ss

j − (
�σ̂

gs

j + H.c.
)] +

∑
i<j

Dij

(
σ̂ es

i σ̂ se
j + H.c.

)

+
∑
i<j

(
V ee

ij σ̂ ee
i σ̂ ee

j + V ss
ij σ̂ ss

i σ̂ ss
j + V es

ij σ̂ ee
i σ̂ ss

j

)
, (10)

where σ̂
μν

j = |μ〉j 〈ν| are the atomic operators. We assume that
� is much larger than the resonant dipole-dipole interactions
Dd between the |s〉 and |e〉 state atoms separated by d =
1,2, . . . lattice sites. The van der Waals interactions V

μν
r are

assumed to be still weaker, so the hierarchy of the energy scales
is � � �,Dd � V ee

r ,V es
r ,V ss

r .
The laser instills a small admixture �

�
|s〉 of the Rydberg

state to the ground state |g〉 (see Appendix B). We then identify
the dressed ground state with the spin-down state, |↓〉 �
|g〉 + �

�
|s〉, while the spin-up state is |↑〉 = |e〉. Neglecting the

interactions ∼|�|4
�4 V ss

r between the dressed ground-state atoms,
we adiabatically eliminate the nonresonant state |s〉 and obtain
effective excitation hopping rates

Jd � |�|2Dd

�2
(11)

between the atoms separated byd lattice sites. SinceDd ∝ d−3,
we can truncate Jd to range dJ = 2. More careful considera-
tions show that the hopping rates J1,2 for a Rydberg excitation
are slightly altered when another Rydberg excitation is in close
proximity (see Appendix B). We assume that the lifetime of
the Rydberg state |e〉 is longer than the timescale J−1

d for
the system dynamics and neglect dissipation. The number of
atoms prepared in state |e〉 is then conserved. Decay via the
nonresonant state |s〉 is suppressed by the factor of |�|2

�2 .
For the effective interaction potential between the excita-

tions we obtain

Ur � V ee
r + 2

|�|2D2
r

�3
, (12)

where both terms scale with distance as ∝r−6. Ur is dominated
by the nearest-neighbor van der Waals interaction V ee

1 between
the atoms in Rydberg states |e〉. Corrections to the level shift
of Rydberg-dressed atoms in the vicinity of the Rydberg
excited atom |e〉 lead to a small contribution to Ur and weak
longer-range interaction (see Appendix B). Despite these small
variations of Jd (r) and Ur with distance r between Rydberg
excitations, the spin-lattice model of Eq. (1) approximates well
the properties of interacting Rydberg excitations, including the
two-excitation bound states shown in Fig. 1(a).

B. Experimental considerations

The dynamics of Rydberg excitations in a lattice and their
bound states can be prepared and observed with the presently
available experimental techniques. We envisage a defect-free
array of cold atoms confined in a one-dimensional optical
lattice potential or a chain of microtraps [18,19]. Using focused
laser beams, selected atoms can be resonantly excited from the
ground state |g〉 to the Rydberg state |e〉, while the dressing
laser is turned off, � = 0. Next, turning on the dressing laser,
� = 0 will lead to the admixture of the Rydberg state |s〉 to
the ground-state atoms, which will induce the |e〉 excitation
hopping between the atoms due the dipole-dipole exchange
interaction. With a proper choice of state |e〉, we can ensure
appropriate interaction strength U1 � V ee � J1, which will
result in the formation of tightly bound Rydberg excitations
that are still mobile as they propagate with rate ∼J2. Free
Rydberg excitations and their scattering states can be dis-
criminated from the interaction-bound states spectroscopically
or by the fast and slow dynamics, respectively. Turning off
the dressing laser would freeze the dynamics, and individual
Rydberg excitations can be detected with high efficiency and
single-site resolution [26–28].
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To be specific, we consider the atomic parameters similar
to those in the recent experiments [39,52,53]. The ground state
of Rb atoms |g〉 = 5S1/2 can be dressed with the Rydberg state
|s〉 = 63P1/2 by a detuned UV laser with the Rabi frequency
�/(2π ) � 5 MHz and detuning �/(2π ) � 33 MHz (�/� =
0.15). The excited Rydberg state |e〉 = 62D3/2 can be popu-
lated by a two-photon transition from the ground state using
laser beams focused onto the desired atoms. With the above
Rydberg states |e〉 and |s〉, the dipole-dipole coefficient for the
exchange interaction D = C3/r3 is C3 = 7950 MHz μm3 and
the van der Waals coefficient for the interaction V ee = C6/r6

is C6 = 730 GHz μm6 [39,52,53]. With the lattice constant
a � 10 μm, we have U1 � 730 kHz, J1 � 180 kHz, and J2 �
22 kHz. Thus the interaction U1 � 4J1 will support strongly
bound states of Rydberg excitations.

In order to observe coherent dynamics of the Rydberg
excitations, timescales for decay and relaxations should be
longer than J−1

1,2 � 5–50 μs. In the absence of blackbody
radiation, the lifetime of state |e〉 is τe � 100 μs, and the
dressing state |s〉 has a similar lifetime τs � 135 μs [54] (but
the decay of |s〉 is suppressed by the factor of |�|2/�2). A cryo-
genic setup would suppress the blackbody-radiation-induced
transitions to other Rydberg states, which moreover can cause
additional strong dephasing of the Rydberg states [55–57].
Next the dressing laser phase fluctuations and Doppler shifts
of thermal atoms would result in decoherence of the Rydberg
excitation dynamics. Recall that the excitation hopping Jd �
�Dd�

∗/�2 between two atoms involves absorption (�) of
the laser photon by the ground-state atom, |g〉 → |s〉, dipole-
dipole exchange (Dd ) with the Rydberg-state atom, |se〉 →
|es〉, and then emission (�∗) of the laser photon by the second
atom, |s〉 → |g〉. Thus, J1,2 are susceptible to dephasing of the
ground-to-Rydberg transition, which will necessitate the use
of a laser with a narrow linewidth of <10 kHz, and cooling the
atoms to T ∼ 10 nK temperatures to eliminate the effects of
Doppler broadening. We note that these or similar requirements
also apply to most schemes for coherent quantum gates and
simulations with Rydberg atoms [41,58].

The dressed ground-state atoms are tightly confined by the
microtraps, but the atoms in the Rydberg state are usually not
trapped. During the interaction, the Rydberg-excited atoms
experience a repulsive (or attractive, if C6 < 0) force F =
−∂rV

ee(r) = 6C6/r7, which can result in their displacement
�r from the equilibrium lattice positions. We can estimate
the displacement for a pair of atoms at the neighboring lattice
sites, r = a, as �r � F (a)

2m
t2, where m is the atomic mass and

t � J−1
1,2 is the timescale of the interaction. We then obtain

�r = 3–200 nm, which is still smaller than the typical trap
waist �a � 1 μm.

We finally note that similar parameters of the spin-lattice
model can be obtained for atoms in optical lattices with
a smaller period a � 1 μm and tighter confinement �a �
100 nm by choosing lower-lying Rydberg states |s〉 and |e〉.
Such states, however, have shorter lifetimes, which necessitates
larger hopping rates Jd obtained with stronger dressing lasers.
Furthermore, at small interatomic separation, the van der
Waals interactions between the untrapped Rydberg-excited
atoms will exert stronger force [22,59], which can lead to the
displacement of atoms comparable to the lattice spacing. This
can be mitigated by using “magic wavelength” optical lattices

that simultaneously trap the atoms in both the ground state and
the Rydberg state [60].

IV. CONCLUSIONS

We have shown that spin-lattice models with controllable
long-range hopping and interactions between the spin excita-
tions can be realized with Rydberg-dressed atoms in a lattice.
We have found mobile bound states of spin excitations which
are quantum lattice solitons. It would be interesting to consider
bound aggregates of more than two magnons which may form
mobile clusters that can propagate via a resonant long-range
hopping process. In turn, multiple clusters can form a lattice
liquid [61,62], while including controllable dephasing and
disorder [46,63] may change the transport of (bound) Rydberg
excitations from ballistic to diffusive or localized. Hence, this
system can be used to simulate and study few- and many-body
quantum dynamics in spin lattices.
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APPENDIX A: DETAILS OF DERIVATION OF THE
TWO-EXCITATION WAVE FUNCTION IN A SPIN LATTICE

Consider two spin excitations at positions x and y > x

in a lattice of L � 1 sites. The transport and interaction
Hamiltonians are given by Eqs. (4) and (5) in the main text.
We introduce the center of mass R ≡ (x + y)/2 and relative
r ≡ y − x coordinates: R = 1 + 1

2 ,2,2 + 1
2 , . . . ,L − 1

2 takes
L̃ = 2L − 3 discrete values, and r = 1,2, . . . ,L − 1 takes
L − 1 values. In terms of these coordinates, the transport
Hamiltonian reads

H(2)
J =

∑
R,r

[ ∑
d

Jd (|R〉〈R − d/2| ⊗ |r〉〈r + d|

+ |R〉〈R + d/2| ⊗ |r〉〈r + d|)
+

∑
d<r

Jd (|R〉〈R + d/2| ⊗ |r〉〈r − d|

+ |R〉〈R − d/2| ⊗ |r〉〈r − d|)
+

∑
d>r

Jd (|R〉〈R + d/2| ⊗ |r〉〈d − r|

+ |R〉〈R − d/2| ⊗ |r〉〈d − r|)
]
, (A1)

Similarly to the single excitation case, we can diagonalize
the center-of-mass part of H(2)

J by the transformation |R〉 =
1√
L̃

∑
K eiKR|K〉, where K = 2πν

L̃
(ν = − L̃−1

2 , . . . , L̃−1
2 ) is the
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center-of-mass quasimomentum:

H(2)
J =

∑
K

|K〉〈K| ⊗
∑

r

[ ∑
d

Jd,K |r〉〈r + d|

+
∑
d<r

Jd,K |r〉〈r − d| +
∑
d>r

Jd,K |r〉〈d − r|
]
, (A2)

where Jd,K ≡ 2Jd cos(Kd/2). The interaction Hamiltonian
remains diagonal in these coordinates,

H(2)
U =

∑
K

|K〉〈K| ⊗
∑

r

Ur |r〉〈r|, (A3)

and the total Hamiltonian can be cast as

H(2) = H(2)
J + H(2)

U =
∑
K

|K〉〈K| ⊗ HK.

We have thus reduced the two-body problem for

|�(x,y)〉 =
∑
x<y

�(x,y)|x,y〉

= 1√
L̃

∑
K

eiKR|K〉 ⊗
∑
r�1

ψK (r)|r〉 (A4)

to a one-body problem for the relative coordinate wave function
ψK (r), which depends on the center-of-mass quasimomentum
K as a parameter via the effective hopping rates Jd,K in HK .

Our aim is to solve the eigenvalue problem

HK |ψK〉 = EK |ψK〉 (A5)

for the relative coordinate wave function |ψK〉 =∑
r�1 ψK (r)|r〉. The scattering solutions are expressed via the

plane waves as given in the main text. We present here the
details of derivation of the bound solutions corresponding to
a normalizable (localized) relative coordinate wave function,∑

r |ψK (r)|2 = 1 [with ψK (r → ∞) → 0].
We assume range dU = 1 (nearest-neighbor) interaction,

U1 = 0 and Ur>1 = 0 in Eq. (A3), leading to the Hamiltonian

HK =
∑
r�1

[J1,K (|r〉〈r + 1| + |r + 1〉〈r|)

+J2,K (|r〉〈r + 2| + |r + 2〉〈r|)]
+ (U1 + J2,K )|1〉〈1|. (A6)

This results in the equation

J1,K [ψK (r + 1) + ψK (r − 1)]

+ J2,K [ψK (r + 2) + ψK (r − 2)]

+ (U1 + J2,K )δr,1ψK (r) = EKψK (r). (A7)

We set ψK (0) = 0 and ψK (1) = c, with c some constant to be
determined by the normalization. We make an ansatz for the
wave function,

ψK (r) = αKψK (r − 1) + βKψK (r − 2). (A8)

The physical meaning of this recurrence relation is that every
site r can be reached from the previous two sites r − 1 and
r − 2 with the amplitudes αK ∝ J1 and βK ∝ J2. Starting from
position r = 1, the wave function at any r can then be written

as

ψK (r) = c

�(r−1)/2�∑
n=0

(
r − 1 − 2n

n

)
αr−1−2n

K βn
K, (A9)

where �·� is the floor function, and the binomial coefficients
count the weights for different paths from site 1 to r > 1.
For instance, we can reach |r = 4〉 from |1〉 by three one-site
hoppings ∝α3

K , or by two-site hopping βK followed by one-site
hopping αK , or vice versa, ∝βKαK + αKβK = 2αKβK . Using
the ansatz (A9) in Eqs. (A7) for r = 1,2,3 we obtain a set of
three equations,

EK = (U1 + J2,K ) + J1,KαK + J2,K

(
α2

K + βK

)
,

(A10a)

EKαK = J1,K

(
α2

K + βK + 1
) + J2,K

(
α3

K + 2αKβK

)
,

(A10b)

EK

(
α2

K + βK

) = J1,K

(
αK + α3

K + 2αKβK

)
+ J2,K

(
1 + α4

K + 3α2
KβK + β2

K

)
, (A10c)

for the unknowns αK , βK , and EK . Solving these equations,
we obtain

αK = J1,K

U1
, βK = J2,K

U1 + J2,K

, (A11)

while the energy of the bound state is

E
(b)
K =2J2,K + J 2

1,K

U1
+ J 2

1,KJ2,K

U 2
1

+ U 2
1

U1 + J2,K

. (A12)

The physical meanings of the various terms of this equation
are discussed in the main text.

We finally discuss the conditions of validity of the above
solution under which the bound-state wave function is normal-
izable,

∑
r |ψK (r)|2 = 1. Assuming ψK (r) ∝ λr and inserting

into Eq. (A8), we obtain the quadratic equation λ2 = αKλ +
βK with the solutions

λ1,2 =
αK ±

√
α2

K + 4β2
K

2
. (A13)

We can now write the wave function as

ψK (r) = c1λ
r
1 + c2λ

r
2, (A14)

and determine the coefficients c1,2 from ψK (0) = 0 and
ψK (1) = c, leading to c2 = −c1 = c√

α2
K+4β2

K

. This is of course

the same wave function as in Eq. (A9). More important,
however, is that we have found that ψK (r) ∝ λr

1,2 exponentially
decays with distance r , and therefore is normalizable, when
both |λ1,2| = 1

2 |αK ±
√

α2
K + 4β2

K | < 1.

1. Truncation of interaction range

Our formalism to obtain the bound states of excitations in
a lattice can be easily extended to longer-range hopping Jd

and interaction Ur . We are, however, mainly concerned with
the typical case of resonant dipole-dipole exchange interaction,
leading to Jd ∝ 1/d3, and van der Waals repulsive or attractive
interaction, leading to Ur ∝ 1/r6. We have therefore truncated
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FIG. 4. Scattering (black) and bound-state (red solid line) spectra
obtained by exact numerical diagonalization of Hamiltonian with
long-range interactions Jd = J1/d

3 and Ur = U1/r6 (U1/J1 = 4).
The bound-state energy EK of Eq. (A12) (dashed blue line), obtained
with truncated interactions (dJ = 2 and dU = 1), is nearly indistin-
guishable from the exact result.

Jd to range dJ = 2 and Ur to range dU = 1. In Fig. 4 we show
the spectra for the scattering and bound states obtained without
the truncation. This figure clearly demonstrates that the above
approximations are well justified for the power-law decay of
the strengths of Jd and Ur with distance.

2. Periodic versus open boundary conditions

Our treatment of spin excitations in a lattice assumes
periodic boundary conditions, leading to simple analytic and
numerical solutions, which also apply to infinitely long lattices.
But our results should also hold for a sufficiently long lattice
with open boundary conditions. We can define the localization
length ζ of the bound-pair wave function via |ψK (r)| ∝ e−r/ζ ,
leading to ζ � −1/ ln(|λi |), where λi is the smaller (in absolute
value) root in Eq. (A13). Then, if we require that L � ζ ,
the wave function and energies of the bound pair will not
be significantly modified by the boundary conditions in a
finite lattice of length L. For a shorter spin lattice, however,
one has to exactly diagonalize the system Hamiltonian, and
the eigenstates and eigenfunctions will strongly depend on
the boundary conditions. In fact, for a short system, L ∼ ζ ,
it may not be possible to clearly distinguish the bound and
scattering states. We have checked numerically that, for our
parameters, the system size L > 10 is sufficient to resolve
the bound magnon pairs. We note that lattices with periodic
boundary conditions have been realized for atoms in optical
tweezers in Ref. [26].

APPENDIX B: DERIVATION OF THE EFFECTIVE
EXCITATION HOPPING RATE AND INTERACTION
STRENGTH FOR RYDBERG-DRESSED ATOMS IN A

LATTICE

Consider an ensemble of atoms in a lattice described by
the Hamiltonian of Eq. (10). We take the detuning � of the
laser field to be much larger than the Rabi frequency � as well
as the resonant dipole-dipole interactions Dd = C3/a

3

d3 between
the Rydberg-state atoms separated by d = 1,2, . . . lattice sites.

The van der Waals interactions V
μν

d = C
μν
6 /a6

d6 are assumed to
be still weaker, � � �,Dd > V ee

d ,V es
d ,V ss

d .

1. Rydberg dressing

For a single (isolated) atom, the dipole-dipole and van der
Waals interactions are irrelevant, and the Hamiltonian reduces
to that for a two-level system (TLS),

HTLS = �|s〉〈s| − �|g〉〈s| − �∗|s〉〈g|. (B1)

(We set the energy of the ground state |g〉 to zero and work in a
rotating frame in which the energy of state |e〉 is also zero). The
eigenstates and corresponding eigenvalues of this Hamiltonian
are

|±〉 = ε∓|g〉 + �|s〉√
ε2∓ + |�|2

, ε± = � ±
√

�2 + 4|�|2
2

. (B2)

For � � |�|, the eigenstate |−〉 � |g〉 + �
�

|s〉, with shifted

energy ε− � −|�|2
�

≡ δ (ac Stark shift), corresponds to the
ground state |g〉 with a small admixture of the Rydberg state
|s〉. We identify this Rydberg-dressed ground state with the
spin-down state, |↓〉 ≡ |−〉, while the spin-up state is |↑〉 ≡
|e〉.

A pair of dressed ground-state atoms would interact with
each other via the Rydberg state |s〉 components. Each atom
is in state |s〉 with probability |�|2

�2 and therefore the two-

atom interaction strength is |�|4
�4 V ss

r [49]. We neglect this
weak interaction and instead focus below on the interatomic
interactions that are up to second order in �

�
. Hence, with L

atoms in a lattice, all in the dressed ground state, the total
energy shift is

E0 =
L∑
i

δi = −L
|�|2
�

. (B3)

This constant energy shift can be disregarded by redefining the
zero-point energy, e.g., by absorbing the ac Stark shift into the
laser detuning, ω → ω + |�|2

�
.

2. Single excitation

Assume now that one atom is excited to state |e〉 while
the rest of the atoms are in the dressed ground state. Our aim
is to derive the effective hopping rate of the single Rydberg
excitation in the lattice and the modification of the ac Stark
shifts of the ground-state atoms in the vicinity of the excited
one. We are interested in the interatomic interactions that are
up to second order in �

�
, which thus involve no more than one

(virtual) |s〉 excitation. It is therefore sufficient to consider the
two-atom state

|φ〉 = cge|ge〉 + ceg|eg〉 + cse|se〉 + ces |es〉 (B4)

and the corresponding Hamiltonian

H(1)
at = �(x)

y |se〉〈se| + �(y)
x |es〉〈es|

−�(|ge〉〈se| + |eg〉〈es| + H.c.)

+Dxy(|se〉〈es| + H.c.), (B5)
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where x and y denote the positions of the two atoms, and
we defined �(x)

y ≡ � + V se
xy = �

(y)
x . The equations for the

amplitudes cνμ of the state vector |φ〉 are then

iċge = −�cse, (B6a)

iċeg = −�ces, (B6b)

iċse = (
� + V se

xy

)
cse − �∗cge + Dxyces, (B6c)

iċes = (
� + V se

xy

)
ces − �∗ceg + Dxycse. (B6d)

We adiabatically eliminate states containing the highly detuned
Rydberg state |s〉. To that end, we set ċse = 0 and ċes = 0
and solve the last two equations for cse and ces . Inserting the
solution into the first two equations, we obtain

iċge = − |�|2(� + V se
xy

)
(
� + V se

xy

)2 − D2
xy

cge + |�|2Dxy(
� + V se

xy

)2 − D2
xy

ceg,

(B7a)

iċeg = − |�|2(� + V se
xy

)
(
� + V se

xy

)2 − D2
xy

ceg + |�|2Dxy(
� + V se

xy

)2 − D2
xy

cge.

(B7b)

We can interpret these equations as follows: The dressed |g〉
state atom at position y acquires an energy shift

δ(x)
y = − |�|2(� + V se

xy

)
(
� + V se

xy

)2 − D2
xy

, (B8)

which depends on the position x of the |e〉 excitation. Besides,
states |eg〉 and |ge〉 are coupled via the exchange interaction

Jxy = |�|2Dxy(
� + V se

xy

)2 − D2
xy

. (B9)

This effective excitation hopping rate Jxy = Jd depends on the
relative distance d = |x − y|.

Hence, the total energy of L atoms in a lattice with a single
|e〉 excitation is

E1 =
∑
y =x

δ(x)
y . (B10)

This sum has now L − 1 terms. The terms δ(x)
y with small sepa-

ration |x − y| � 1 are affected by the Dxy and V se
xy interactions,

while the terms with |x − y| � 1 are obviously equal to the
ac Stark shift δ = −|�|2

�
of a noninteracting atom. Due to the

translational invariance of the lattice, E1 does not depend on
the position x of the |e〉 excitation. E1 is therefore a constant
which can be disregarded by redefining the zero-point energy
(notice, however, that E1 = E0).

We thus obtain an effective Hamiltonian for a single exci-
tation hopping on a lattice,

H(1)
J =

∑
x =y

Jxy |x〉〈y|

=
L∑

x=1

∑
d�1

Jd (|x〉〈x + d| + |x〉〈x − d|), (B11)

which has the same form as H(1)
J in the main text. For � �

Dd,V
es
d , the excitation hopping rates

Jd � |�|2Dd

�2
∝ 1/d3 (B12)

can be truncated to range dJ = 2.

3. Two excitations

Consider finally two |e〉 excitations in the lattice. As argued
above, to determine interatomic interactions that are up to
second order in �

�
, we can restrict our analysis to the multiatom

configurations with at most one atom in state |s〉. It is then
sufficient to consider the three-atom state

|φ〉 = cgee|gee〉 + cege|ege〉 + ceeg|eeg〉
+ csee|see〉 + cese|ese〉 + cees |ees〉. (B13)

We assume, as before, that the interaction V ee
d between the |e〉

excitations is weak, V ee
d � �,Dd � �, and neglect it here;

later we account for V ee
d exactly in the effective Hamiltonian.

The three-atom Hamiltonian is

H(2)
at =�(z)

x,y |ees〉〈ees| + �(y)
x,z|ese〉〈ese| + �(x)

y,z|see〉〈see|
− �(|gee〉〈see| + |ege〉〈ese| + |eeg〉〈ees| + H.c.)

+ Dxy(|see〉〈ese| + H.c.)

+ Dxz(|see〉〈ees| + H.c.)

+ Dyz(|ese〉〈ees| + H.c.), (B14)

where x,y,z denote the positions of the atoms, �(z)
x,y ≡ � +

V se
xz + V se

yz , and similarly for �
(y)
x,z and �(x)

y,z. From the differen-
tial equations for the amplitudes cλμν of |φ〉, we adiabatically
eliminate the amplitudes corresponding to the highly detuned
|s〉 state, i.e., we set ċees = ċese = ċsee = 0, solve for the
amplitudes cees,cese,csee, and insert them into the remaining
equations. The resulting equations have the form

ċeeg =|�|2(�(y)
x,z�

(x)
y,z − D2

xy

)
�(x,y,z)

ceeg

+ |�|2(DxyDxz − Dyz�
(x)
y,z

)
�(x,y,z)

cege

+ |�|2(DxyDyz − Dxz�
(y)
x,z

)
�(x,y,z)

cgee, (B15)

with �(x,y,z) ≡ −�(z)
x,y�

(y)
x,z�

(x)
y,z − 2DxyDxzDyz +

�(z)
x,yD

2
xy + �

(y)
x,zD

2
xz + �(x)

y,zD
2
yz, and similarly for ċege and

ċgee. The first term in Eq. (B15) corresponds to the energy
shift of the dressed |g〉 state atom, while the other two terms
describe the exchange interactions between the atom in state
|g〉 and the atoms in state |e〉.

Using series expansion in �
�

� 1, the energy shift of the
ground-state atom at position z can be cast as

δ(x,y)
z = − |�|2

�
(z)
x,y

− |�|2D2
xz(

�
(z)
x,y

)2
�

(x)
z,y

− |�|2D2
yz(

�
(z)
x,y

)2
�

(y)
x,z

+ O

( |�|4
�4

)
. (B16)
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FIG. 5. (a) Diagram of transitions for retrieving the perturbative
energy shifts and excitation hopping rates for two excited |e〉 and
one ground |g〉 state atoms. The atomic positions are x,y,z. The
red shaded region denotes the high-energy subspace, � � �,D,
which is eliminated adiabatically. (b) Illustration of three virtual
processes contributing to the energy shift of |eeg〉, as per Eq. (B16).
(c) Two possible paths for the hopping process |eeg〉 ↔ |gee〉 given
by Eq. (B17).

Here, the first term is the second-order ac Stark shift of the
|g〉 state atom due to virtual excitation to state |s〉 via the
nonresonant laser field. The next two terms describe higher-
order shifts due to the laser excitation followed by exchange
interaction with the |e〉 state atoms. Similarly, we can cast
the excitation hopping |eeg〉 ↔ |gee〉 between the atoms at
positions x and z as

J (y)
xz = |�|2Dxz

�z
x,y�x

z,y

− |�|2DyzDxy

�z
x,y�x

y,z�
y
z,x

+ O

( |�|4
�4

)
. (B17)

Here, the first term describes the laser-mediated excitation
hopping via direct dipole-dipole exchange interaction between
the atoms at positions x and z. The second term describes
the excitation hopping via indirect process that involves, first,
exchange interaction between the |e〉 state atom at position y

and the virtually |s〉 excited atom at z, followed by exchange
interaction between the |s〉 state atom now at y and the |e〉 state
atom at position x. Analogously, we obtain the hopping rates
for |eeg〉 ↔ |ege〉 and |ege〉 ↔ |gee〉. In Fig. 5 we illustrate
the virtual processes that lead the perturbative energy shifts
and excitation hoppings.

The effective low-energy Hamiltonian for two excited-state
atoms and one ground-state atom can now be cast as

H(2)
eff = (

δ(y,z)
x + V ee

yz

)|gee〉〈gee| + (
δ(x,z)
y + V ee

xz

)|ege〉〈ege|
+(

δ(x,y)
z + V ee

xy

)|eeg〉〈eeg| + J (z)
xy (|gee〉〈ege| + H.c.)

+J (y)
xz (|eeg〉〈gee| + H.c.) + J (x)

yz (|ege〉〈eeg| + H.c.),

(B18)

FIG. 6. Comparison of the low-energy spectra of the exact Hamil-
tonian (B14) including the interactions V ee

r (solid lines), and the
effective Hamiltonian (B18) (dashed lines). The positions of the first
and second atoms are fixed, x = 0 and y = a, while the position
of the third atom varies: z � 2a. Black lines at E � 0 show the
exact spectrum for � = 0, corresponding to the bare states |ege〉,
|gee〉, and |eeg〉. Blue lines show the spectra for the dressed states
with the parameters �/� = 10, D1/� = 1, V se

1 /� = −1/8, and
V ee

1 /� = 0.03 (Dr ∝ 1/r3, Vr ∝ 1/r6).

where we have included the interactions V ee
r between the |e〉

state atoms. In Fig. 6 we show the spectrum of this Hamiltonian
for varying the position z of the third atom, while the first and
second atoms are at positions x = 0 and y = a. For compari-
son, we also show the low-energy part of the spectrum of the ex-
act Hamiltonian (B14) including also the interactions V ee

r . We
observe that the effective Hamiltonian reproduces very well the
low-energy part of the exact Hamiltonian. Clearly, the discrep-
ancy between the exact and effective models decreases by in-
creasing the detuning�, and in the limit of�/� → 0 the effec-
tive model reduces to the low-energy part of the exact model.

Effective lattice Hamiltonian

We can now extend the three-atom model to a system of L

atoms on a lattice (setting the lattice constant a = 1). We start
with the transport term of the Hamiltonian. Denoting by x and
y the positions of the two excitations and using the notation
J

(y)
xz ≡ Jd (r) with d ≡ |x − z| and r = |x − y|, we have

H(2)
J =

∑
x<y

[∑
d

Jd (r)(|x,y〉〈x − d,y| + |x,y〉〈x,y + d|)

+
∑

d<y−x

Jd (r)(|x,y〉〈x + d,y| + |x,y〉〈x,y − d|)

+
∑

d>y−x

Jd (r)(|x,y〉〈y,x + d| + |x,y〉〈y − d,x|)
]
,

(B19)

which has the same form as Eq. (4) but with the hopping rates
Jd (r) that depend on the relative distance r between the two
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FIG. 7. (a) One- and two-site hopping rates J1(r) and J2(r) versus
distance r between the two excitations. (b) Interaction potential Ur of
Eq. (B23), for V ee

1 = 0. The parameters are �/� = 10, D1/� = 1,
and V se

1 /� = 1.

excitations. Since in the leading order Jd (r) ∝ Dd ∼ 1/d3,
we truncate it to range dJ = 2. As in the main text, we
can transform H(2)

J to the center of mass R and relative r

coordinates and diagonalize the center-of-mass part by Fourier
transform |R〉 = 1√

L̃

∑
K eiKR|K〉, obtaining

H(2)
J =

∑
K

|K〉〈K|

⊗
{∑

r�1

[2J1(r) cos(K/2)|r〉〈r + 1| + |r + 1〉〈r|)

+ 2J2(r) cos(K)(|r〉〈r + 2| + |r + 2〉〈r|)]

+ 2J ′
2(1) cos(K)|1〉〈1|

}
. (B20)

From Eq. (B17) we have for the hopping rates

J1(r = 1) = |�|2D1(
� + V se

1

)(
� + 2V se

1

)(
1 − D2

� + V se
1

)
,

(B21a)

J1(r � 2) = |�|2D1(
� + V se

1

)2 , (B21b)

J2(r = 1) = |�|2D2

�
(
� + V se

1

) , (B21c)

J2(r � 2) = |�|2D2

�2
, (B21d)

J ′
2(1) = |�|2D2(

� + V se
1

)2

(
1 − D2

1/D2

� + 2V se
1

)
, (B21e)

where we set V se
d�2 = 0 and Dd�3 = 0. In Fig. 7(a) we show

the dependence of the one- and two-site hopping rates on

the relative distance r between the excitations. While J2(r)
is nearly constant for the relevant parameter regime, J1(r) has
a noticeable dip at r = 1 for large V se

1 ∼ �. It follows from
Eq. (B21a) that J1(r) becomes r independent for V se

1 = −D2.

Since we assumed that Dd = C3/a
3

d3 and V se
d = Cse

6 /a6

d6 , the re-
quired lattice constant is a = 2 3

√−Cse
6 /C3 with the interaction

coefficients Cse
6 and C3 having opposite sign. Notice that J ′

2(1)
in Eq. (B21e), responsible for the two-excitation “somersault,”
can be tuned by � or even made to vanish. Thus J ′

2(1) = 0 for
� + 2V se

1 = D2
1/D2, which, with D2 = D1/8 and V se

1 � �,
requires � � 8D1.

For � � �,D1 � D2,V
es

1 , the excitation hopping rates of
Eqs. (B21) can be well approximated by r-independent rates
Jd of Eq. (11) in the main text.

Consider next the effective interaction between the excita-
tions. The total energy of L atoms in a lattice with two |e〉
excitations is

E2(x,y) =
∑
z =x,y

δ(x,y)
z . (B22)

This sum has now L − 2 terms and it depends on the positions
x and y of the two excitations as per Eq. (B16). Due to
translational invariance of the lattice, E2(r) depends only on
the relative distance r = |x − y|. For large r , E2(r) tends to
a constant since each dressed ground-state atom can have at
most one excited atom in its vicinity. Setting E2(r → ∞) as the
zero point energy, we can then define the interaction potential
between the two excitations as

Ur = E2(r) − E2(r → ∞). (B23)

Setting, as before, V se
d�2 = 0 and Dd�3 = 0, we obtain an

effective interaction potential Ur having range dU = 3,

U1 = V ee
1 − 2

( |�|2
�

− |�|2
� + V se

1

)

+ 2
|�|2D2

1(
� + V se

1

)2

(
2

� + V se
1

− 1

� + 2V se
1

)

+ 2|�|2D2
2

(
2

�3
− 1

�2
(
� + V se

1

) − 1

(� + V se
1 )3

)
,

(B24a)

U2 = V ee
2 −

( |�|2
�

− |�|2
� + V se

1

)

+ 2
|�|2D2

1

� + V se
1

(
1(

� + V se
1

)2 − 1(
� + 2V se

1

)2

)

+ 2
|�|2D2

2

�3
, (B24b)

U3 = V ee
3 + 2

|�|2D2
2

�

(
1

�2
− 1(

� + V se
1

)2

)
, (B24c)

where for consistency we included the interactions V ee
r up to

range dU = 3. In Fig. 7(b) we show the interaction potential
Ur of Eq. (B23), i.e., Eqs. (B24) without V ee

r . Clearly, the
nearest-neighbor interaction U1 is stronger than Ur�2. Thus,
neglecting Ur�2 would correspond to the spin-lattice model
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FIG. 8. Scattering and bound spectrum for two |e〉 excitations in
a lattice, with the parameters as in Fig. 7.

studied in the text. We can now write the interaction term of
the Hamiltonian as

H(2)
U =

∑
K

|K〉〈K| ⊗
3∑

r=1

Ur |r〉〈r|, (B25)

which has the same form as Eq. (A3).

To summarize, the total Hamiltonian for two |e〉 excitations
in a lattice of Rydberg dressed atoms is

H(2) = H(2)
J + H(2)

U , (B26)

where H(2)
J and H(2)

U are given by Eqs. (B20) and (B25),
respectively. In Fig. 1(a) of the main text we show the
spectrum of this Hamiltonian. The scattering states are in-
sensitive to the variations of Jd (r) and Ur at short range,
r � 3, so the scattering spectrum is well reproduced by the
spin-lattice model Hamiltonian with r-independent hopping
rates Jd and only the nearest-neighbor interaction U1. The
spin-lattice model approximates well also the bound states
of Hamiltonian (B26), especially for Ur dominated by the
nearest-neighbor interatomic interaction V ee

1 and constant J1

achieved for V se
1 = −D2, which is used in Fig. 1(a).

Note that even without interatomic interactions, V ee
r ,V se

r =
0, we still have nonvanishing effective interaction U1 �
2 |�|2D2

1
�3 , which is, however, too weak compared to J1 � |�|2D1

�2

to sustain a bound state (see the lower panel of Fig. 3).
But strong enough interatomic interaction |V se

1 | � �,D1 � �

resulting in U1 � −2 |�|2V se
1

�2 can sustain a two-excitation bound
state, as shown in Fig. 8. The corresponding hopping rate J1(r)
has now sizable r dependence (see Fig. 7).
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