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Prethermalization in the cooling dynamics of an impurity in a Bose-Einstein condensate
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We discuss the cooling dynamics of heavy impurity atoms in a Bose-Einstein condensate (BEC) by emission
of Cherenkov phonons from scattering with the condensate. In a weakly interacting low-temperature condensate,
different scattering processes result in a separation of time scales of the thermalization dynamics. Prethermalized
states are formed with distinct regions of impurity momenta determined by the mass ratio of impurity and BEC
atoms. This can be employed to detect the mass renormalization of the impurity upon the formation of a polaron
and paves the way to preparing nonequilibrium impurity-momentum distributions.
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I. INTRODUCTION

Cooling atomic quantum gases down to ultralow tem-
peratures has opened a window to experimental exploration
of quantum phenomena [1–3]. Beyond probing of ground-
state properties of quantum objects, quantum gases offer the
possibility to induce and study nonequilibrium and relaxation
dynamics. Tight control over trapping potentials has allowed
shedding light onto the nonequilibrium dynamics of integrable
systems, which, owing to the large number of conserved
quantities, can stay at a nonthermal steady state [4,5], described
by a generalized Gibbs ensemble [6]. Weak integrability-
breaking perturbations will eventually lead to thermalization,
but a separation of time scales can give rise to long-lived
prethermalized states [7,8]. While much attention is paid to
nearly integrable quantum systems, also the thermalization
dynamics of nonintegrable systems can be nontrivial including
long-lived prethermalized states resulting from dynamical
constraints. Understanding here the microscopic details will
help elucidate open questions of quantum thermalization. A
powerful tool to trace this microscopic thermalization dynam-
ics is the immersion of impurities in a quantum gas [9–12]. In
particular, for the paradigmatic system of single impurities in
a Bose-Einstein condensate (BEC), the momentum-dependent
transition to superfluid dynamics is expected to have a profound
impact on the thermalization. In the present paper we show
that, even though the system is nonintegrable, this can lead
to a separation of time scales between a fast relaxation into
a prethermalized state and the eventual approach of thermal
equilibrium. Moreover, when the impurity is decelerated below
the critical momentum of superfluidity, polaronic quasiparti-
cles form [13–19], which has been observed recently for strong
coupling [20,21]. The polaronic modifications of the quantum
state can alter the prethermalized state. This may allow access
to properties of these quasiparticles such as the polaronic mass
renormalization for small modifications.

In this article we provide a microscopic description of the
cooling dynamics of a single mobile impurity immersed in a
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three-dimensional (3D) BEC [see Fig. 1(a)] using a simple
perturbative Boltzmann equation. Assuming only energy and
momentum conservation, we find that for impurity momenta
larger than the Landau critical momentum pc, deceleration and
cooling of the impurity are achieved by Cherenkov-type emis-
sion and scattering of Bogoliubov excitations, a mechanism
previously suggested in Refs. [22–24] and explored experi-
mentally in Refs. [25,26]. In contrast to these earlier works, we
consider theoretically a scenario not involving lattice potentials
and which is experimentally easily implementable [27]. Fur-
thermore, we find that in leading order of the impurity-BEC
interaction and for impurity masses larger than the boson mass,
additional critical momentum regions emerge characterized by
lower cutoff momenta [p(1)

c in Fig. 1(b)], which we interpret as
a consequence of the superfluid nature of the bath. For a weakly
interacting BEC, scattering processes into and out of these
regions will occur on vastly different time scales giving rise to
prethermalization. Scattering processes involving two thermal
phonons [see, e.g., Fig. 1(e)] eventually lead to a thermalization
of the impurity. On shorter time scales, relevant to prepare
and observe the prethermalized state, we find that one-phonon
processes, which can only populate momentum states above a
certain critical value, dominate over two-phonon processes. By
contrast, two-phonon terms typically dominate the dynamics
of two- and one-dimensional systems on all time scales, as we
discuss elsewhere [28]. We note that while fast single-phonon
scattering is forbidden for impurities with momenta below
the Landau critical value by energy-momentum conservation,
they can undergo higher-order scattering processes on very
long time scales. For the emerging stationary momentum
distribution in a one-dimensional Fermi gas see, e.g., [29].

Increasing the interaction strength between an impurity with
sufficiently low momentum and the BEC leads to polaron
dressing. While the polaronic binding energy is readily accessi-
ble by radio-frequency spectroscopy [30–32], other polaronic
properties such as quasiparticle weight or effective mass must
be deduced by other means. We show that the critical value
p(1)

c for the final impurity is sensitive to small modifications of
the impurity mass by phonon dressing. This could be used to
measure the polaronic mass renormalization of an impurity at
finite momentum.
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II. PRETHERMALIZED IMPURITIES IN ULTRACOLD
BOSE-EINSTEIN CONDENSATES

A. Model

In the following we consider a single impurity atom (mass
mI) which is immersed in a BEC of a second bosonic species
of atoms (mass mB). We model their mutual interaction by a
local contact potential with strength gIB.

The atoms of the condensate are assumed to weakly interact
with each other with interaction strength g. In this case the
homogeneous BEC can be described using the Bogoliubov ap-
proximation, where the original boson operators b̂k are related
to phonons âk by b̂k = âk cosh θk − â

†
−k sinh θk (see, e.g., [33])

and tanh2 θk = ( k2

2mB
+ n0g − ωk)( k2

2mB
+ n0g + ωk)−1. In this

approximation the Hamiltonian of the BEC is just that of
noninteracting phonons with momentum k,

Ĥ0 =
∫

ddk ωkâ
†
kâk, ωk = ck(1 + k2ξ 2/2)1/2, (1)

with c = √
gn0/mB being the speed of sound and ξ =

1/
√

2mBgn0 the healing length of the BEC with density n0.
The interaction of a single impurity at position r̂ with the BEC
reads

ĤI = gIB

∫
ddk

∫
ddk′b̂†kb̂k′ei(k−k′)·r̂ . (2)

Up to a constant energy offset this leads to the total Hamiltonian
in d spatial dimensions

Ĥ = ε p̂ +
∫

ddk

[
ωkâ

†
kâk + gIBn

1/2
0

(2π )d/2
Wke

ik·r̂ (â†
k + âk)

]

+ gIB

2(2π )d

∫
ddk

∫
ddk′[(WkWk′ + W−1

k W−1
k′

)
â
†
kâk′

+ 1
2

(
WkWk′ − W−1

k W−1
k′

)
(â†

kâ
†
−k′ + â−kâk′)

]
ei(k−k′)·r̂ .

(3)

Here we consider trapped systems in d = 3 spatial dimensions,
but will disregard the effects of the trapping potential to the
Bogoliubov excitations. In addition, p̂ (r̂) are the impurity-
momentum (position) operators and n0 denotes the density of
the condensate. Here and in the following we set h̄ = 1 and
kB = 1. Finally, we defined Wk = [k2ξ 2/(2 + k2ξ 2)]1/4 and
the kinetic energy of the impurity ε p̂ = p̂2/2mI.

The term in the first line of Eq. (3) corresponds to the
Fröhlich Hamiltonian [34], known to describe polarons in
solid-state systems. The Ginzburg radiation [35] resulting from
the Fröhlich term has been investigated for particles with
internal structure in [36]. The terms in the last two lines include
two-phonon scattering terms, which in general need to be taken
into account in a BEC [14,15,37].

B. Boltzmann equation

In the following we want to study the nonequilibrium
dynamics of the Hamiltonian (3), starting from a BEC at
finite temperature and a thermal momentum distribution of
the impurity centered around a value p0. When their temper-
atures are given by T and TI, respectively, the density matrix
before the BEC-impurity interaction is ρ̂(0) = exp[−( p̂ −
p0)2/2mITI] ⊗ exp[− ∫

ddk ωkâ
†
kâk/T ]. We consider the case

when the temperature of the BEC is well below the critical
temperature for condensation Tc = 2πn

2/3
0 /mBζ (3/2)2/3, i.e.,

T � Tc, and assume a heavy impurity, i.e., mI > mB.
We use a master equation to describe the dynamics of

the impurity-density matrix ρ̂I(t), which can be derived by
integrating out thermal phonons and employing the Born-
Markov approximation. The Born approximation neglects
higher-order scattering contributions and is valid for weak
impurity-condensate interactions gIB. This is equivalent to
Fermi’s golden rule with transition rates given by 	m→n =
2πδ(Em − En)|〈n|ĤI |m〉|2 [38]. In this way we obtain a linear
Boltzmann equation for the momentum distribution n p of the
impurity, which has different contributions

dn p

dt

∣∣∣∣
sp,1ph

= − g2
IBn0

(2π )d−1

∫
ddk W 2

k [n pδ(ε p − ε p−k − ωk) − n p+kδ(ε p+k − ε p − ωk)], (4)

dn p

dt

∣∣∣∣
T,1ph

= − g2
IBn0

(2π )d−1

∫
ddk n̄k(T )W 2

k (n p − n p−k)[δ(ε p − ε p−k − ωk) + δ(ε p−k − ε p − ωk)], (5)

dn p

dt

∣∣∣∣
≺

= − g2
IB

8(2π )2d−1

∫
ddk1d

dk2
(
Wk1Wk2 − W−1

k1
W−1

k2

)2{[1 + n̄k1 (T )][1 + n̄k2 (T )]

× [n pδ(ε p − ε p−k1−k2 − ωk1 − ωk2 ) − n p+k2+k1δ(ε p+k2+k1 − ε p − ωk2 − ωk1 )] + n̄k1 (T )

× n̄k2 (T )[n pδ(ε p + ωk1 + ωk2 − ε p+k1+k2 ) − n p−k2−k1δ(ε p − ωk2 − ωk1 − ε p−k2−k1 )]}, (6)

dn p

dt

∣∣∣∣
×

= − g2
IB

4(2π )2d−1

∫
ddk1d

dk2
(
Wk1Wk2 + W−1

k1
W−1

k2

)2
n̄k1 (T )

[
n̄k2 (T ) + 1

]
× [

n pδ
(
ε p + ωk1 − ε p+k1−k2 − ωk2

) − n p+k2−k1δ
(
ε p + ωk2 − ε p+k2−k1 − ωk1

)]
. (7)

Here the thermal Bose-Einstein distribution function is given
by n̄k(T ) = [exp (ωk/kBT ) − 1]−1.

The first two terms describe one-phonon emission, includ-
ing spontaneous (sp) and thermally activated (T) processes.

The third term (≺) describes two-phonon creation or annihi-
lation (thermal and spontaneous). These terms are illustrated
in the diagrams shown in Figs. 1(c) and 1(d). The last term
describes the scattering of a phonon at the impurity and is,
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FIG. 1. (a) We consider impurity atoms inside an ultracold BEC
of density n0 in a thermal state. The emission of Cherenkov phonons
of momentum k leads to dissipation of kinetic energy of the impurity
with initial momentum p and thus to cooling. (b) Energy-momentum
conservation permits single-phonon emission if the initial impurity
momentum p is larger than the Landau critical value pc and can lead
to final momentum values above a critical value p(1)

c , which is larger
than zero if the impurity mass mI is larger than the boson mass mB.
Also shown are elementary events corresponding to (c) single- and
(d) two-phonon creation and (e) phonon scattering [see Eqs. (4)–(7)].
Two-phonon scattering depicted in (d) and (e) leads to corrections to
the standard Fröhlich model.

in a weakly interacting BEC, where quantum depletion can
be disregarded and in the lowest-order Born approximation
in gIB only relevant at finite temperatures. It is illustrated in
Fig. 1(e). Due to the superfluidity of the BEC we expect that
spontaneous phonon creation out of the condensate can only
take place for impurity momenta p larger than the Landau
critical momentum pc = mIc and thus these processes cannot
lead to a redistribution below pc. Higher-order scattering will
eventually lead to a thermalization of the impurity.

We have numerically simulated the time evolution of the
momentum distribution of the impurity in a homogeneous BEC
at finite T � Tc using Eqs. (4)–(7). The results in Fig. 2 show
the impurity momentum distribution np = ∫

d3 p′n p′δ(p −
| p′|) of states having a momentum value of | p| = p with
color encoded evolution time. One clearly recognizes that the
emission of Cherenkov phonons leads to a fast population of
momentum states below pc but only above a certain critical
momentum

p(1)
c = c

√
m2

I − m2
B, (8)

which can be derived from energy-momentum conserva-
tion associated with spontaneous single-phonon creation [see
Eq. (B1)]. On a much longer time scale, two-phonon processes,
not accounted for in the Fröhlich model, lead to a population
of momentum states below p(1)

c . Here energy-momentum
conservation leads to a second characteristic momentum scale
for T = 0, provided mI > 2mB,

p(2)
c = c

√
m2

I − 4m2
B. (9)

One recognizes from Fig. 2 a clear separation of time scales for
scattering events populating momenta above p(1)

c versus those
populating lower momenta. For p(2)

c such a separation is much
less visible however.

FIG. 2. Numerical simulation of the impurity momentum distri-
bution when starting from a thermal state with p0 = 0 and TI = 10Tc

and a low BEC temperature T = 0.1Tc. Here we assume a peak
density of n0 = 10/ξ 3, gIB = 1, and a mass ratio mI/mB = 87/39
corresponding to a rubidium impurity in a potassium BEC. Momenta
are given in units of the Landau critical momentum pc = mIc. The left
column shows the dynamics including only single-phonon processes
and the right column the dynamics including one- and two-phonon
processes. Vertical lines indicate emerging critical momenta p(1)

c =
c
√

m2
I − m2

B (solid vertical line) and p(2)
c = c

√
m2

I − 4m2
B (dashed

vertical line).

From the Boltzmann equations one can determine the char-
acteristic rates of spontaneous single-phonon (	sp

1ph) and two-
phonon (	sp

2ph) processes for an initial impurity momentum p,

	
sp
1ph(p) = g2

IBn0

∫
d3k

(2π )2
W 2

k δ(ε p − ε p−k − ωk), (10)

	
sp
2ph(p) = g2

IB

2(2π )5

∫
d3k

∫
d3k′

(
WkWk′ − W−1

k W−1
k′

2

)2

× δ(εp − ε p−k−k′ − ωk − ωk′ ). (11)

The relative scaling of the two rates can be estimated as

	
sp
2ph

	
sp
1ph

∼ 1

2πξ 3n0
. (12)

We have verified this scaling in our numerical simulations. For
weak interactions n0ξ

3 � 1 and thus spontaneous two-phonon
scattering occurs at a much lower rate than single-phonon
scattering, which leads to the separation of time scales
observed in the numerical simulations.

C. Finite-temperature effects

Next we discuss the influence of a nonvanishing BEC
temperature. While spontaneous scattering results in a fast
increase of population in the momentum region p(1)

c � p � pc,
thermal scattering can also cause a depopulation of that region.
Thermally induced single-phonon scattering, however, cannot
lead to impurity momenta below p(1)

c . Thus prethermalization
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FIG. 3. Ratio of single-phonon to two-phonon scattering rates
at finite T for different incoming impurity momenta. We find that
scattering is dominated by single-phonon processes in either case,
spontaneous (T = 0) or thermal. With an increasing BEC tempera-
ture, the two-phonon scattering rate increases faster than the single-
phonon scattering rate, hence two-phonon processes become more
important at large temperatures. Here n0 = 5 and ξ = 1.

prevails also at finite T as long as single-phonon scattering
dominates.

Since the two-phonon rate is proportional to the square
of the thermal phonon number n̄2

k , it increases faster with
temperature than the single-phonon rate. At a certain character-
istic temperature T2ph there is a crossover between the single-
and two-phonon-dominated regimes. This crossover can be
characterized by considering the thermal phonon number at
some characteristic phonon momentum k0 = 1/ξ ∼ O(pc).
The thermal phonon number at k0 exceeds unity for T >

Tc(n0ξ
3)−2/3. Since for weak interactions n0ξ

3 � 1, temper-
atures sufficiently below the critical temperature are required
in order to be determined entirely by spontaneous processes.
The crossover temperature T2ph can be estimated by setting
the ratio of finite-T one- and two-phonon scattering rates
	T

2ph/	T
1ph ∼ n̄k0	

sp
2ph/	

sp
1ph = 1. This yields

T2ph

Tc

∣∣∣∣
3D

≈ [ζ (3/2)]2/3

√
2

(n0ξ
3)1/3, (13)

which, for weak interactions, is larger than unity and thus the
crossover occurs only above Tc. This is illustrated in Fig. 3,
where we have plotted the ratio of rates of single- and two-
phonon creation at finite temperature, obtained from numerical
integration.

III. EFFECTS OF POLARONIC MASS
RENORMALIZATION

While there is no spontaneous emission of Bogoliubov
phonons for impurity momenta p < pc (subsonic regime),
the interaction with the condensate phonons leads to the
formation of a polaron [34,39–41]. A polaron is a quasiparticle
that describes the impurity dressed by a cloud of phonons
carried along with the impurity. The strength of the impurity-
BEC coupling is characterized by a dimensionless coupling
constant α which describes the ratio of interaction energy to a
characteristic energy scale of phonons [41]

α = a2
IB

aBB ξ
, (14)

FIG. 4. (a) For weak interactions, polaron physics is well captured
in the self-consistent Born approximation, which amounts to replacing
the impurity propagator in Fig. 1(c) by a dressed propagator including
mean-field VMF and noncrossing phonon-exchange diagrams (see,
e.g., [42]). (b) Effect of polaronic mass renormalization to cutoff
momentum p(1)

c of single-phonon scattering for mass ratio mI/mB =
87/39 corresponding to a Rb impurity in a K BEC. Instead of
calculating polaronic effects explicitly, a phenomenological approach
is used replacing the impurity mass mI by a dressed mass m∗ (see
the text). The dressing m∗/mI is color encoded. The black solid line
depicts no dressing (m∗/mI = 1). The yellow solid line is a theoretical
extrapolation showing that a finite critical momentum p(1)

c exists even
for heavy polarons (m∗/mI → ∞).

where aIB and aBB are the impurity-boson and boson-boson
scattering lengths and g = 2πaBB/mB and gIB = 2πaIB/mred,
with mred = mImB/(mI + mB) being the reduced mass. In
equilibrium the polaron energy and mass m∗ are well defined
quantities and can be calculated using different approaches
[19,37,41]. In the regime of strong interactions these calcula-
tions are rather involved and some open questions remain, in
particular under nonequilibrium conditions. For an impurity at
rest and in lowest-order perturbation in the coupling strength
α and at T = 0 one finds a linear dependence [41]

m∗ − mI ∼ α. (15)

In the following we argue that a measurement of the prether-
malized momentum distribution of the impurity may offer
an experimental approach to measure the polaronic mass
renormalization.

The Hamiltonian (3) captures polaronic effects such as a
mass renormalization. In the formal derivation of the scattering
rates and the Boltzmann equations (4)–(7) one would have
to replace the impurity propagator with a dressed propagator,
as illustrated in Fig. 4(a) in self-consistent Born approxima-
tion, valid in the weak-interaction regime. This is, however,
beyond the scope of our paper and we thus follow a purely
phenomenological approach: In order to take into account
the effects of a dressing of the impurity by phonons to the
cooling dynamics, we replace the bare impurity propagator in
the scattering diagrams of Fig. 1 by its free propagator for
p > mIc and by a dressed propagator for p < mIc, replacing

023621-4



PRETHERMALIZATION IN THE COOLING DYNAMICS OF … PHYSICAL REVIEW A 97, 023621 (2018)

the bare mass by (the unknown) dressed mass m∗,

εp =
{
p2/2mI if p > pc

p2/2m∗ otherwise.
(16)

Most interestingly, we find that the polaronic mass renor-
malization affects the cutoff momentum of the phonon scatter-
ing terms (8) and (9). Figure 4(b) shows the modified critical
momentum pc

(1) for one-phonon scattering as a function of
polaron mass (for details see Fig. 6 in Appendix C). One notices
a sizable shift already for moderate mass renormalization. In
the limit m∗/mI → ∞ the cutoff approaches the value

pc
(1) −→ pc − mBc

√√
4 + (mI/mB)2 − 2. (17)

IV. SUMMARY AND OUTLOOK

Concluding, we have numerically studied the cooling dy-
namics of individual impurities in a BEC at nonzero temper-
ature, including scattering processes up to second order. We
found that the range of accessible final impurity momenta
is restricted to values above a critical momentum p(1)

c for
short times, while equilibration to a thermal state occurs
on a longer time scale, dominated by two-phonon scattering
processes. This time-scale separation leads to a prethermalized
quantum state of the impurity as long as energy redistribution
by impurity-impurity interaction can be neglected.

Moreover, the critical momentum obtained depends on the
mass renormalization of the polaronic quasiparticle state form-
ing. This is an alternative route to experimentally measuring
the polaronic mass shift in cold-atom experiments.

Importantly, our work paves the way for dynamical quantum
state engineering of nonthermal impurity states, for example,
by shaping its prethermalized momentum distribution. This can
be done by operations selective on the impurity’s momentum
state being fast (slow) compared to the inverse two-phonon
(one-phonon) rate.
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APPENDIX A: NUMERICAL MODELING

The simulations are performed by first evaluating the δ

distribution in Eqs. (10) and (11) for a given incoming impurity
moment p(in). Considering only one-phonon processes, this
results in a large manifold of possible outgoing momenta
{p(out)}, forming a sharply defined 3D surface in momentum
space (see Fig. 5 for illustration). Due to radial symmetry,
these can be reduced in subsequent steps to eventually one
dimension by radial integration, allowing for an efficient
numerical calculation of scattering rates at moderate numerical

FIG. 5. Three-dimensional map of the spontaneous one-phonon
scattering rate of different outgoing impurity momenta for an in-
coming impurity momentum of p̂(in) = 2.5pc. The numbers indicate
the steps for dimensional reduction to one dimension, owing to the
symmetry of scattering.

effort. We thus obtain an evolution of the impurity state in
momentum space, while in our approach the BEC remains a
unperturbed quantum bath.

For two-phonon processes, the distribution of outgoing
momenta is no longer restricted to the 3D surface in mo-
mentum space but becomes smeared out to a volume which
is, however, sparsely filled. Clearly, in the limit of weak
interactions ξ 3n0 � 1, the scattering rates for momenta in the
inner (volume) part of the 3D momentum distribution are much
smaller than the scattering rates corresponding to momenta
on the surface; thus single-phonon scattering processes in the
BEC lead to much faster dynamics than two-phonon scattering
processes.

APPENDIX B: CRITICAL MOMENTA

All scattering processes in Eqs. (4)–(7) conserve both en-
ergy and momentum. When an incoming impurity momentum
p(in) interacts with the bath and creates an excitation, the
momentum k is transferred. The resulting momentum p(out)

then fulfills

p(in) − p(out) − k = 0, (B1)

εp(in) − εp(out) − ωk = 0. (B2)

Obviously this limits the resulting impurity momenta in one
dimension to

p(out)(k) = mI

k
(ωk − εk). (B3)

The resulting momentum p(out) has a global minimum when
the created excitation and incoming impurity are antiparal-
lel. Thus we obtain a global minimum for all dimensions

p
(out)
min (k(1)

c ) = p(1)
c at k(1)

c = 2c2m2
I

p
(1)
c

. This critical momentum

p(1)
c < pc [see Eq. (8)] exists for heavy impurities mI >

mB and is below the Landau critical momentum pc. Given
the case that the impurity is heavier mI > 2mB than the
boson mass, one finds a second critical momentum p(2)

c
for the spontaneous two-phonon scattering 	

sp
2ph.
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FIG. 6. Possible outgoing impurity momentum p(out) versus in-
coming impurity momentum p(in) for different effective impurity
masses m∗/mI. The bare impurity case (no dressing) is indicated
by the black line, while an infinitely heavy polaron is indicated by
the light yellow line. We find no solution of Eq. (B3) but the trivial
pin = pout if the impurity is already dressed by phonons p(in)/pc � 1
(dashed orange line). We define the minimum of p(out) for every
dressing curve as the first critical momentum p(1)

c for this dressing.
These minima are plotted versus the respective mass ratio in Fig. 4(c).

APPENDIX C: POLARONIC MASS RENORMALIZATION

The polaronic dressing of the impurity leads to changes
of the impurity’s interaction with the quantum gas. First,
modifications of the energy spectrum due to the polaronic
binding energy have been measured in the vicinity of a
Feshbach resonance [20,21]. Second, the effective mass of
the impurity is expected to change due to polaron formation.
For our system we thus expect a modification of the critical
momentum that an impurity may reach via the resonant scat-
tering processes depicted in Fig. 1. We introduce the polaron
mass m∗ and effectively replace the free impurity propagator
by a free polaron particle if the impurity’s velocity becomes
smaller than the speed of sound c. When applying this to
Eqs. (4)–(7) the integral kernels remain untouched, though
the energy conservation is affected, leading to a change of
new critical momenta, which are a result of Eqs. (B1) and
(B2). Inserting the dispersion relation (16) into momentum-
and energy-conservation relations [see Eq. (B3)], we find
a decrease of the critical momentum p(1)

c with increasing
dressing (see Fig. 6). The minima here are below p(1)

c and
therefore redefine the critical momentum. These minima are
plotted versus the respective mass ratio in Fig. 4(c).
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