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We consider the propagation of photons in a gas of Rydberg atoms under conditions of electromagnetically
induced transparency, where they form strongly interacting massive particles, termed Rydberg polaritons.
Depending on the strength of the van der Waals-type interactions of the atoms either bunching or antibunching of
photons can be observed when driving the atoms off-resonantly. The bunching is associated with the formation
of bound states. We employ a Green’s function approach and numerical wave-function simulations to analyze the
conditions for the creation and the dynamics of these photonic molecules and their interplay with the scattering
continuum which can also show photon bunching. Analytic solutions of the pair-propagation problem obtained
from a pseudopotential approximation and verified numerically provide a detailed understanding of bound and
scattering states. We find that the scattering contributions acquire asymptotically a robust relative phase which
can be employed to separate bound state and scattering contributions by a homodyne detection scheme.
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I. INTRODUCTION

Rydberg gases are of great interest in quantum optics as
they enable us to mediate strong and long-range nonlinearities
between photons. The van der Waals-type interactions between
Rydberg states [1] in a gas of three-level atoms can be used
to create strong photon-photon interactions for light fields
coupling to the atomic medium in a scheme of electromagnet-
ically induced transparency (EIT) [2,3]. Moreover, due to the
long-range nature of the Rydberg-Rydberg interactions, also
the photon-photon interactions are long range which makes
this setup a promising candidate for creating and analyz-
ing interesting many-body states with applications ranging
from quantum computation [4–8] to quantum simulations
[9–13].

In an EIT setup photons travel as massive quasiparticles, so-
called dark-state polaritons (DSPs) with group velocities much
smaller than the vacuum speed of light [2]. If the EIT coupling
involves atomic Rydberg states [see Fig. 1(a)], interactions
between Rydberg atoms are transferred to polaritons. In
particular, it has been proposed and observed experimentally
that repulsive Rydberg interactions lead to an avoided volume
of photons for small distances, i.e., antibunching [14,15]. On
the other hand, also bunching of photons has been observed
when driving the atoms off-resonantly [16]. This can result
from photonic bound states (“photonic molecules”), but also
from bunched continuum components (scattering states). The
formation of bound states requires an interplay between
interactions and dissipation. Numerical simulations show that
bunching can only be observed in the regime of weak to
moderate polariton interactions, quantified by a small optical
depth per blockade ξ � 1, which will be defined later on,
see Figs. 1(c) and 1(d). In the present paper we investigate
the properties of photonic bound states, analyze conditions
for their formation, and discuss possible ways to distinguish
bound- and continuum-state contributions.

*mmoos@physik.uni-kl.de

Specifically, we apply a Green’s function approach to model
one-dimensional systems of interacting Rydberg polaritons
and investigate the creation of states leading to the bunch-
ing and the dynamics at large times. For short times, bound-
and scattering-state contributions are equally important to
explain photon bunching. The bound state contribution decays
exponentially due to losses, and thus bunching at large times
comes solely from scattering states.

We find that the scattering states have a phase which
depends only on the ratio of the probe field detuning and the
decay rate of the excited atomic state. Therefore, this phase
is very robust and can be used to separate bunched photons
resulting from bound states and scattering states by homodyne
detection, see Fig. 1(b).

II. MODEL AND TWO-EXCITATION EQUATIONS

A. Model

We consider a quantized probe field Ê propagating under
conditions of EIT in a medium consisting of N atoms with
three levels driven by two optical fields in a ladder scheme as
illustrated in Fig. 1(a).

The atomic ground state |g〉 and the excited state |e〉
are coupled by the quantized probe field Ê(r,t) with carrier
frequency ωp and wave vector kp. The probe field is detuned
from the atomic transition by the single-photon detuning � =
ωeg − ωp. Furthermore, a classical control field with frequency
ωc drives the transition |e〉 ↔ |r〉 with Rabi frequency �

and detuning �c, which is chosen such that the resulting
two-photon detuning vanishes, i.e., δ = � + �c = 0. The
intermediate state is subject to spontaneous decay with rate γ .
The atoms are described by spin flip operators σ̂ i

μν = |μ〉ii 〈ν|
and interact via the van der Waals potential V (r) = C6/|r|6 in
the level |r〉. Assuming a homogeneous distribution of atoms
we can describe them by coarse-grained continuous operators
σ̂μν(r), which for negligible atomic saturation are bosonic
fields Ŝ(r) = σ̂gr (r) and P̂(r) = σ̂ge(r).

Finally, from the atom-field coupling Hamiltonian in
rotating wave approximation and Maxwell’s equations we
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FIG. 1. (a) Sketch of atomic coupling scheme in ladder-type EIT
setup, consisting of states |g〉, |r〉, and the intermediate state |r〉 that
is subject to spontaneous decay. The probe field Ê and the control
field � drive the transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉, respectively.
(b) Experimental setup for homodyne detection to filter bound state
and scattering state components. (c) and (d) Absolute value squared
of the two-photon wave function EE(z1,z2,t) = 〈0| Ê(z1)Ê(z2) |φ(t)〉
(given in arbitrary units). Numerical simulation of the two-photon
wave function inside a three-level atomic medium after propagating
from free space into the medium with boundary at z = 0. Depending
on the ratio ξ = RB/Labs, the two-photon wave function has a very
different spatial structure. Here RB denotes the Rydberg blockade
distance and Labs is the off-resonant absorption length in absence
of EIT, as defined in Sec. II. In (c) we show the result for weak
interactions ξ = 0.2, where bunching can be observed. For strong
interactions, there is an antibunching of photons, as shown in (d),
where ξ = 2.

obtain in linear response in gÊ the paraxial Maxwell-Bloch
equations,

i
∂

∂t
Ê(r) = −ic

∂

∂z
Ê(r) − c∣∣kp

∣∣∇2
⊥Ê(r) − gP̂(r),

i
∂

∂t
P̂(r) = −i�P̂(r) − �Ŝ(r) − gÊ(r) + F̂ge,

i
∂

∂t
Ŝ(r) = −�P̂(r) +

∫
dr′ V (r − r′)Ŝ†(r′)Ŝ(r′)Ŝ(r),

(1)

where we defined the complex detuning � = γ + i� and the
coupling strength g = ℘

√
nωp/2h̄ε0 with ℘ being the dipole

moment of the |g〉 ↔ |e〉 transition, and n being the atomic
number density. F̂ge is a Langevin noise operator [17], which
we introduced to preserve the commutation relations. Under
EIT driving conditions the occupation of the level |e〉 stays
small, and thus the Langevin noise can be neglected.

As shown in [18], in experimentally relevant situations the
interaction can be described by a one-dimensional model and
we can neglect the transverse kinetic energy c

kp
∇2

⊥Ê . Finally,
assuming the time evolution being slow on the time scale set
by the complex detuning |�|, we adiabatically eliminate the
optical polarization P̂ , leading to

i
∂

∂t
Ê(z) = −ic

∂

∂z
Ê(z) − i

g2

�
Ê(z) − i

g�

�
Ŝ(z),

i
∂

∂t
Ŝ(z) = −i

�2

�
Ŝ(z) − i

g�

�
Ê(z)

+
∫

dz′ V (z − z′)Ŝ†(z′)Ŝ(z′)Ŝ(z), (2)

which is a set of coupled nonlinear integrodifferential equa-
tions for the operators Ê and Ŝ.

B. Dark-state polaritons

Let us first briefly summarize the description of the
noninteracting limit, i.e., V (z) ≡ 0, which also applies to
the case of a single photon propagating through the Rydberg
medium. In this case, Eqs. (2) form a set of linear equations
that can be expressed as

i
∂

∂t

(
Ê
Ŝ

)
= Ĥ0

(
Ê
Ŝ

)
, Ĥ0 = −i

(
c ∂

∂z
+ g2

�

g�

�

g�

�
�2

�

)
.

(3)

The eigenmodes of the Hamiltonian Ĥ0 in the long-wavelength
limit (k ≈ 0) correspond to quasiparticles composed of light
and matter excitation, the so-called dark- and bright-state
polaritons which can be written as ψ̂d = − cos θ Ê + sin θ Ŝ
and ψ̂b = sin θ Ê + cos θ Ŝ, respectively, see, e.g., [2]. Here
the mixing angle θ is defined by tan θ = g/�. Treating
the momentum k perturbatively one finds that the dark-
state polariton propagates lossless with the group velocity
vg = c cos2 θ . Furthermore, it forms a quasiparticle with an
effective mass m. The mass is approximately m ≈ (2vgLabs)−1

under slow-light conditions and in an off-resonant driving
scheme, where Labs = |�|c/g2 is the off-resonant optical
depth, In contrast, the bright-state polariton propagates with
velocity c sin2 θ ≈ c and is subject to losses with the rate
γ�2

e/|�|2, where the effective Rabi frequency is defined by
�2

e = g2 + �2.
For large separations between excitations the Rydberg-

Rydberg interaction can be included as a perturbation, see,
e.g., [19]. However, this approach does not capture bound
states and is thus not applicable in general. Instead the full
scattering problem has to be considered as was done in [20];
see also [21].

C. Effective model for two excitations

To analyze the dynamics of interacting excitations we now
consider the time evolution of two particles, which can be done
by using wave functions EE(z1,z2,t) = 〈0| Ê(z1,t)Ê(z2,t) |φ〉,
and analogously defined components ES, SE , and SS that
can be combined into the four-component vector �2 =
(EE,ES,SE,SS)T . The time evolution of �2 in real space
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is governed by the equation

i
∂

∂t
� = {Ĥ0(z1,z2) + V (z1 − z2)P̂SS}�, (4)

with Ĥ0 = Ĥ0(z1) ⊗ 12 + 12 ⊗ Ĥ0(z2). The operator P̂SS =
|ϕ4〉 〈ϕ4| denotes the projector onto the SS component of
the wave function, i.e., two Rydberg excitations, with |ϕ4〉 =
(0,0,0,1)T . This equation can be integrated numerically to find
the time evolution of a two-photon wave packet. In particular,
we simulate the time evolution starting in free space and
propagating according to Eq. (2) through a sharp boundary.
We find qualitatively a very different behavior inside the
medium depending on the strength of the interaction potential
V (z1 − z2) as can be seen in Figs. 1(c) and 1(d). In the
weakly interacting regime [Fig. 1(c)] we find a bunching of
photons, while in the strongly interacting regime [Fig. 1(d)]
the photons avoid a volume given by |z1 − z2| < RB, with
RB = (|�|C6/2�2)

1/6
being the off-resonant blockade radius.

To gain analytical insight into these observations, we
employ a Green’s function approach to solve the time evolution
of the two-photon wave function [Eq. (4)], similar to [20]. We
transform to center-of-mass and relative coordinates of the
two excitations R = 1

2 (z1 + z2) and r = z1 − z2, respectively.
Subsequently, we perform a Fourier transform with respect to
the center of mass R according to f (R) = ∫

dK eiKRf̃ (K).
Specifically, we consider the initial state

�(K,r,0) = f (K,r) |ϕ1〉 , (5)

where |ϕ1〉 = (1,0,0,0)T , i.e., we assume that only the pho-
tonic component is present at the beginning of the evolution.
Our calculation can easily be generalized to other initial states.
Furthermore, we restrict ourselves to the case of negative
single-photon detuning � < 0. The solution for positive
detuning can be derived straightforwardly.

We are interested in the (asymptotic) behavior of the ampli-
tude EE(K,r,t) at large times. In this limit, the low-frequency
contributions are the dominant ones (see Appendix A for more
details) and by simple algebraic calculations one obtains for
the two-photon amplitude

EE(K,r,t) = cos4 θ

2πi

∫∫
dω dr ′ e−iωtG(r,r ′,ω)f (K,r ′). (6)

Here the Green’s function G(r,r ′,ω) is the solution of the
integral equation

G(r,r ′,ω) = G0(r,r ′,ω) − sin4 θ

×
∫

dr ′′ G0(r,r ′′,ω)W (r ′′)G(r ′′,r ′,ω), (7)

where W (r) denotes an effective potential which is defined by
Eq. (11).

Under the condition that Im{√2m(ω − vgK)} > 0, the
free Green’s function G0 in Eq. (7) has the coordinate
representation

G0(r,r ′,ω) = −exp{i√2m(ω − vgK)|r − r ′|}
2i

√
2m(ω − vgK)

. (8)

In the low-energy regime, |ω| � �2/|�|, i.e., for fre-
quencies well inside the EIT window the Green’s function
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FIG. 2. Real (solid blue lines) and imaginary part (dashed
red lines) of effective potential W (r), defined in Eq. (11) for
(a) positive � = 8γ > 0 and (b) negative single-photon detuning
� = −8γ < 0 and � = γ .

G describes the evolution of a particle with an effective
Hamiltonian

Ĥeff = − 1

2m

d2

dr2
+ W (r) sin4 θ. (9)

The complex mass is given by

m = i
g2

4c�vg

= sgn(�)

4vgLabs

(
1 + i

γ

�

)
(10)

and the effective interaction potential reads

W (r) ≡ V (r)

1 + αV (r)
, α = iγ − �

2�2
. (11)

In the limit of slow light g � � and large single photon
detuning |�| � γ the effective mass reduces to the simpler
expression m ≈ sgn(�)(4vgLabs)−1, which coincides with the
results derived in [22]. Likewise the coefficient α simplifies to
α ≈ −�/2�2.

In the following we assume slow-light conditions and set
sin2 θ ≈ 1.

In Fig. 2 we show the effective potential for positive and
negative detuning. For distances larger than RB the potential
decays like the bare van der Waals potential, for small distances
the potential becomes flat. We can interpret the effective
potential as complex susceptibility of a single photon in the
presence of a fixed Rydberg excitation at the origin resulting
in a space dependent two-photon detuning [14,23]:

χ (r) = χ ′ + iχ ′′ = −i
g2

�2
W (r). (12)

Note that the complex mass (10) always has a positive
imaginary part, effectively describing the (small) polariton
losses due to spontaneous decay of the intermediate level |e〉,
while the sign of its real part can be tuned depending on the
sign of the single-photon detuning �. The product of the real
part of the effective potential and the effective mass is always
negative at small distances, suggesting the existence of bound
states, independent of the sign of �.

III. WEAKLY BOUND STATES—PHOTONIC MOLECULES

For the interacting problem we have to solve Eq. (7) for the
Green’s function. In the far-detuned limit, when |�| � γ , the
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Green’s function G(r,r ′,ω) can be written as a sum

G(r,r ′,ω) =
N∑

n=1

ψn(r)ψ∗
n (r ′)

ω − En

+
∫

dE
ψE(r)ψ∗

E(r ′)
ω − E

(13)

of bound eigenstates, denoted by ψn(r), and continuum
eigenstates, denoted by ψE(r). The binding energies of the
molecular states are in general complex and increase with the
optical depth per blockade distance ξ ≡ RB/Labs.

A sufficient condition for the existence of bound states ψn

in the spectrum of this Hamiltonian is [24]∫ ∞

−∞
dr mW (r) < 0. (14)

We note that in our case of negative single-photon detuning,
the product of m and W (r) is negative, and thus this condition
is met.

A. Properties of bound states

The bound eigenstates ψn(r) can be computed by numerical
diagonalization of the effective Hamiltonian [Eq. (9)] for
discretized spatial coordinates on a finite spatial interval.
This allows us to get an approximate spectrum of the bound
eigenstates as a function of the optical depth per blockade
distance ξ , which is shown in Fig. 3(a). For sufficiently small
ξ only a single bound state exists and with increasing ξ the
number of bound eigenstates grows, as does their energy. As
the effective Hamiltonian is only applicable in the regime of
small energies, we show only energies with an absolute value
smaller than �2

2|�| , corresponding to frequencies inside the EIT
transparency window.

The number of bound states N can be estimated [24] by

N � 1 + 2|m|
∫ ∞

−∞
dr |r|W (r). (15)

This leads to a condition for the existence of only one bound
state:

ξ �
√

3
√

3/π ≈ 1.2861. (16)

Hence, a unique bound state exists only for small optical depth
per blockade ξ . Consequently, to observe the formation of
sufficiently long-lived photonic molecules in an experiment
one has to operate in this regime. Deeply bound states have
small spatial extent, i.e., they are strongly localized and hard
to excite by a flat initial photon distribution. The higher-n
bound eigenstates ψn, which exist for ξ � 1, are also hard to
excite, since they exhibit many oscillations and, furthermore,
are subject to strong decay, as we will show later on. This
explains the behavior seen in Figs. 1(c) and 1(d). The excitation
of a bound photon state is only effective if a single bound state
close to the continuum exists, i.e., in the weakly interacting
limit.

It is well known [25] that the bound state energies of a one-
dimensional Schrödinger equation with a complex potential
W (r) are bounded by

|En| � |m|
4

(∫ ∞

−∞
dr |W (r)|

)2

. (17)
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FIG. 3. Results of numerical diagonalization of the effective
Hamiltonian Ĥeff [Eq. (9)] for a system of finite length with periodic
boundary conditions. (a) Bound-state energies En in dependence of
interaction strength, respectively, optical depth per blockade volume
ξ . The (light blue) dashed-dotted line is the approximate solution
E0 ≈ − π2

9 ξ 2 that will be derived in Sec. IV. We restrict the plot
to energies larger −�2/2|�|, as the effective Hamiltonian is only
valid for small energies. (b) First bound state ψ0 in comparison
to an exponential function in the weakly interacting regime with
ξ = 0.2, where we adjusted the amplitude of the bound state to fit the
exponential.

Making use of this inequality we then obtain the following
estimate for the energy of the bound state:

|E0| � 1

2
ξ 2

(
2π

3

)2 2�2

�
� 2�2

�
, (18)

where in the last step we assumed that only a single bound
state exists. Hence the bound state energy is inside the low-
frequency region of the EIT transparency window.

An estimate for the size of the bound state ψ0(r) can
be obtained from the uncertainty of the relative momentum.
Assuming that we are in the regime of a single bound state
close to the continuum, i.e., ξ � 1, a simple calculation shows
that the momentum width of the bound state ψ0(r) is given by

�p =
∫ ∞

−∞
dr

(
dψ0(r)

dr

)2

�
∫ ∞

−∞
dr |2mW (r)|.
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Using Heisenberg’s uncertainty relation, we can derive an
approximate expression for the size of the bound state

rb =
∫ ∞

−∞
dr r2ψ2

0 (r) � 1

2

(∫ ∞

−∞
dr |2mW (r)|

)−1

, (19)

which yields

rb � 3

4π

Labs

ξ
> Labs > RB, (20)

where we used ξ � 1. Thus in the parameter regime, where
bound states can be excited, their spatial extend is rather large
and exceeds the absorption length as well as the blockade
radius. In Fig. 3(b) we show an eigenstate for ξ = 0.2
calculated by numerical diagonalization of the two-photon
Hamiltonian compared to an exponential function with the
size π

3 RB/ξ 2, showing a very good agreement.

B. Bound-state components

The internal structure of the bound state can be found
numerically by calculating the time evolution of an initially
broadly distributed wave function consisting of two dark-state
polaritons for the case of vanishing center-of-mass momentum
K = 0. We assume that the SS component has initially no
excitation inside the blockaded region |r| � RB. The results
are shown in Fig 4. As expected, the SS component is strongly
suppressed inside the blockade radius. Here the bound state has
mainly photonic character. In the case of � > 0 one recognizes
a sharp peak of theSS component close to the blockade radius.
This coincides with the sharp minimum seen in the effective
potential for positive detuning at this distance, cf. Fig. 2(a).

If condition (16) for a single bound state is fulfilled, the
amplitude EE(r,t) of finding two photons at relative distance
r reads

EE(r,t)

cos4 θ
= C0e

−iE0tψ0(r) +
∫

C(E)e−iEtψE(r)dE, (21)

where C0 and C(E) are the overlap integrals between the initial
state and the bound and continuum eigenstates, respectively.
We here consider only the first part, corresponding to the bound
state and will discuss the continuum states in the following
section. The amplitudes of the remaining components ES,
SE , and SS of the bound state can be obtained by substituting
the solution for EE into the two-particle Schrödinger equation.
A direct calculation gives

ES+(r,t) = ES + SE ≈ −2C0 cos3 θψ0(r)e−iE0t . (22)

In obtaining this expression we have assumed that g2/|�| �
cK,|E0|. The calculation of the spin component SS(r,t) is
more involved, but straightforward. After simple algebra we
arrive at

SS(r,t) ≈ C0
cos2 θ

1 − �
2�2 V (r)

ψ0(r)e−iE0t . (23)

Analogous calculations can be performed for the antisymmet-
ric component ES− = ES − SE , which becomes negligible if
the size of the bound state is much larger than the off-resonant
optical length rb � Labs:

|ES−(r,t)|
2C0 cos3 θψ0(r)

≈
∣∣∣∣ Labs

ψ0(r)

dψ0(r)

dr

∣∣∣∣ → 0. (24)
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FIG. 4. Photonic molecule state obtained from numerical time
evolution of the paraxial Maxwell-Bloch equations for K = 0,
g = 20�, ξ = 0.2, and t = 20 in units of |�|/2�2. Shown are the
amplitudes of the wave-function components EE , ES±, SS, and
W (r)EE , and each scaled with powers of cos θ according to Eq. (25)
to make them comparable. (a) The result for negative detuning
� = −4γ and (b) the result for positive detuning � = +4γ , where
the SS component exhibits resonances. Outside the blockade radius
we find small deviations from the result we expect from Eq. (25).

In this weak-interaction limit the amplitudes [Eqs. (21)–
(23) and (24)] can be combined in a compact form � =
(EE,ES,SE,SS)T , yielding

�(r,t) = cos2 θC0

⎛
⎜⎜⎝

cos2 θ

− cos θ

− cos θ
1

1− �

2�2 V (r)

⎞
⎟⎟⎠ψ0(r)e−iE0t , (25)

where the factor cos2 θ in front appears as a result of projecting
the initial state onto the state of two free polaritons and can
be changed by choosing a specific initial state vector �(r,0).
Note that this result is only applicable when the energy |E0| of
the bound state is much smaller than other energies involved
in the system, e.g. 2�2/|�|. The spatial size of the bound state
ψ0(r) is in this case larger than Labs. We observe that �(r,t)
in Eq. (25) describes a two-photon wave packet that, although
subject to decay, propagates form stable and exhibits bunching
for small distances, i.e., a photonic molecule state.

We find relatively good agreement of the different asymp-
totic forms of the wave function amplitudes [Eq. (25)] with the
numerical results. There is only a small deviation, as we still

023853-5



MOOS, UNANYAN, AND FLEISCHHAUER PHYSICAL REVIEW A 96, 023853 (2017)

find a finite remaining antisymmetric component ES−(r,t) and
correspondingly a slightly increased spin excitation.

IV. BOUND STATES AND CONTINUUM

A major goal of this paper is to analyze the interplay
between bound state and continuum contributions. In this
section we employ an effective Schrödinger equation to derive
asymptotic analytical solutions of Eq. (7) including both bound
and continuum parts that we compare to numerical solutions.
We show that an initial state evolves into a superposition of
bound states and scattering states both of which contribute to
the bunching signal.

A. Approximate analytic solutions

For the relevant propagation distances the dispersive nature
of the interaction potential, i.e., the frequency dependence of
W (r,ω), can be ignored for the dynamics of the two-particle
wave function (see Appendix A). In this case we can proceed in
a standard way and reformulate the integral equation [Eq. (7)]
as a Schrödinger-type initial value problem for the propagator
G(r,r ′,t),

i
∂

∂t
G(r,r ′,t) =

(
1

2m

∂2

∂r2
+ W (r)

)
G(r,r ′,t),

(26)
G(r,r ′,0) = δ(r − r ′).

In obtaining this result we have omitted the kinematic term
cK cos2 θ for the center-of-mass motion, as it generates a
trivial shift in time. In the following we thus assume K = 0.
The potential W (r) [Eq. (11)] can be treated as an effective
interaction between two photons. At short times the model (26)
does not approximate the full dynamics well, since our
derivations of Eq. (26) are based on the assumption that
the evolution time should be long compared to all other
characteristic time scales of the system (see Appendix A).
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bound+cont.

FIG. 5. Second order correlation functions |EE(r,t)|2 of two
photons as function of relative distance r and fixed time t = 20 (in
units of |�|/2�2). The solid blue line shows a numerical calculation
for K = 0, g/� = 100, � = −4γ in the weakly interacting regime
with ξ = 0.2. The dashed red and the dotted yellow line show
the bound and continuum part of the wave function, respectively,
according to Eq. (28), and the dash-dotted purple line shows the sum
of both.

As can be seen from the full numerical solution in Fig. 5,
for weakly interacting photons, i.e., ξ � 1, the range of spatial
variation of the two-photon amplitude EE(r,t) is much greater
than the range of the potential, i.e., the blockade radius RB.
This suggests that W (r) can be approximated by a deltalike
pseudopotential:

W (r) → Weff(r) = 2πRB

3

2�2

|�|
1

(1 + iγ /|�|)5/6
δ(r). (27)

Assuming that the initial two-photon amplitude is uniformly
distributed in the relative coordinate r one can show that
the Schrödinger equation for EE(r,t) with the effective
interaction potential Weff(r) admits analytical solutions in
closed form at large times. For convenience we introduce
dimensionless time and space coordinates that are measured in
units of (2�2/|�|)−1 and RB, respectively. After a lengthy but
straightforward calculation we find the following expression
for the two-photon amplitude EE(r,t),

EE(r,t)

cos4 θ

= erf
(√

iβ

2t
|r|

)
+ exp

(
−i

βη2

2
t − βη|r|

)

×
{

2 −
[
1 + erf

(
−sgn[Re(βη)]

√
βη2

2i
t +

√
iβ

2t
|r|

)]}
,

(28)

where for convenience we defined the constants

η = 2π

3

1(
1 + i

γ

|�|
)5/6

, β = 1

2

ξ 2

1 + i
γ

|�|
. (29)

The term 2 exp(−i
βη2

2 t − βη|r|) in Eq. (28) corresponds to
a single bound state wave function of the effective potential
Weff(r), if the condition Re(βη) > 0 is fulfilled. This holds
if |�| > 0.8665 γ , i.e., under off-resonant driving conditions.
The size of the bound state (in units of RB) is equal to

rb ≈ (βη)−1 ≈ π

3
ξ−2 � 1. (30)

In Fig. 5 we show the bound and continuum-state con-
tributions obtained from Eq. (28) and compare them to the
full numerical solution. One recognizes very good agreement,
which also shows that the approximation used to derive
Eq. (26) is justified. One notices that the spatial structure of
bound and continuum states near r = 0 is the same.

The complex energy of the bound states can be read off
from Eq. (28). Up to second order in γ /� it is given by

E0 ≈ −π2

9
ξ 2

(
1 − i

8

3

γ

�
− 44

9

γ 2

�2

)
. (31)

From this we can also read off the decay rate of the bound state
which is approximately

γb ≈ 2.924 ξ 2 γ

�
. (32)

Note that both E0 and γb are in units of 2�2/|�|. One
recognizes that long lifetimes of bound states require small
optical depth per blockade volume, ξ .
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FIG. 6. Logarithmic plot of the amplitudes of bound- (dashed,
red) and continuum-states components (dashed-dotted, yellow) of
the two-photon wave function EE(0,t) as function of time for zero
relative distance shown (solid, blue). The dotted purple line shows
the full numerical solution. The results are in the weakly interacting
regime for ξ = 0.2 and g/� = 100 and calculated for (a) small single
photon � = −1.5γ and (b) large detuning � = −12γ . The dashed
vertical line in (a) indicates the crossover time scale t0.

B. Bound-state and continuum contributions to bunching

There are two distinct features of bound and continuum
states. First of all, while in the vicinity of r = 0 the continuum
states have the same spatial structure as the bound state, they
are the dominant contribution at large relative distances r ,
see Fig. 5. This is due to the exponential localization of the
bound state on a length scale rb. Second, as can be seen from
Eq. (28), bound and continuum contributions have a different
time evolution. While the continuum states decay diffusively
in time, i.e., ∝ 1/

√
t , bound states decay exponentially. This

is illustrated in Fig. 6, where we have plotted the amplitudes of
bound and continuum state as a function of time at vanishing
relative distance r = 0 along with the two-photon amplitude
EE(0,t). The larger the detuning |�| the slower the decay of
the bound state. Nevertheless for large times the continuum
contributions become the dominant part also for small relative
distances. The oscillatory behavior of EE is an interference
effect between bound and continuum contributions, which will
be discussed in more detail later.
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FIG. 7. Time evolution of two excitation wave function for K = 0
inside medium in the weakly interacting regime where ξ = 0.2 for
� = −12γ , and g = 100�. (a) Amplitude |EE(r,t)|2 (in arbitrary
units) and (b) phase arg(EE(r,t)) (in units of π ). One recognizes a
large phase, constant over the extend of the two-photon bound state
for fixed times.

At large times, the solution of (28) at r = 0 can be further
simplified to

EE(0,t)

cos4 θ
≈ 2 exp

(
− iβη2

2
t
)

− 1√
πβη2

2i
t

, (33)

where again the first term on the right-hand side corresponds
to the bound state while the second term gives the contribution
from the continuum.

Using Eq. (28) or, for sufficiently large |�|, Eq. (33) we can
identify a crossover time t0 at which the contribution of the
scattering states becomes the dominant one. This also means
that for t � t0 any observed bunching is solely due to the
scattering states. A simple analysis shows that t0 is minimal if

Re(βη2) = 0, (34)

i.e., when γ /|�| = tan 3π
16 ≈ 0.6681 ≈ 2/3 and at this point

for t0 one has

t0 ≈ π

2ξ 2
, (35)

according to Eq. (28). For ξ < 1 this time scale is much larger
than one in units of the typical EIT time scale |�|/2�2.

V. FILTERING OF BOUND AND CONTINUUM
COMPONENTS

As can be seen in Fig. 6, the two-photon amplitude shows
an oscillatory time dependence. These oscillations result
from an interference between bound- and continuum-states
contributions to the two-photon amplitude, due to the different
phases of these terms. We will now investigate the time
evolution of the phase in more detail and will argue that this
can be used to filter out the bound-state components, allowing
for an experimental investigation of the photonic molecules
alone.

In order to employ the phase shift of the photonic molecule
for its experimental separation, it should be spatially homo-
geneous and at the same time sufficiently large. In Fig. 7 we
show amplitude and phase of EE(r,t) as functions of relative
distance r and time t obtained from numerically solving the
full two-particle evolution. One recognizes that the phase shift
is large and constant in space over the whole extent of the
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FIG. 8. Phases φb and φcont. of bound-state (dashed, red) and
continuum-state components (dashed-dotted, yellow) of the two-
photon wave function EE(0,t) (solid, blue), respectively, as function
of time for zero relative distance shown. The dotted purple line shows
the phase of a full numerical solution. The green crosses (green
line with crosses) shows the phase difference between bound and
continuum states. The results are in the weakly interacting regime
for ξ = 0.2 and g/� = 100 and calculated for (a) the special case
� ≈ −1.5γ , where t0 is minimal and the continuum reaches a phase
of π/2 (b) large detuning � = −12γ .

localized two-photon component for fixed times. This is fully
consistent with the approximate analytic solutions obtained in
Sec. IV.

As can be seen from Eq. (33), the bound state attains a
dynamical phase

φb(t) = 1
2 Re(βη2)t. (36)

At the point γ /|�| = tan 3π
16 , where t0 is minimal, this

dynamical phase vanishes, as Re(βη2) = 0.
At the same time, the phase of the continuum states

approaches for large times the constant value

φcont(t) = −π/2, (37)

for γ /|�| = tan 3π
16 . Going to larger detunings the bound state

attains a nonvanishing dynamical phase and the phase of the
continuum states increases with |�| up to a value of

φcont(t) = −3π/4, (38)

for very large |�|. This is further illustrated in Fig. 8, where we
have plotted the phases of the bound and continuum states as
function of time for the detuning of � ≈ − tan 3π

16 γ and a larger
detuning of � = −12γ . We have verified the accuracy of the
approximate solutions by comparison to numerical solutions
of the Maxwell-Bloch equations in the case K = 0.

We note that this phase of the continuum state is very robust,
as it only depends on |�|/γ and can be tuned by changing the
frequencies of the probe and control fields.

When combining our results about the amplitudes and
phases of the bound state and continuum state components one
can distinguish three regimes depending on the ratio |�|/γ .
First, for small detuning the continuum states dominate the
dynamics at all times and attain a phase of −π/2. Second, for
intermediate detuning the crossover time t0 increases and the
dynamics is governed by an interplay of bound and continuum
state components, and finally, for large detuning the continuum
state decays very quickly and the bunching is solely due to the
bound state. To observe the photonic molecule, one could
simply go to large detuning and wait until the continuum
states are decayed. However, this would be experimentally
challenging. Therefore it is better to work in the regime of
intermediate detunings. As can be seen from Fig. 8, in this
case the phase of the continuum contribution attains its robust
asymptotic value long before the crossover point t0. Thus,
the continuum contribution can effectively be filtered out by
interferometric techniques, as sketched in Fig. 1(b), allowing
for an isolation and observation of the probe field component
corresponding to the molecular state.

VI. CONCLUSION

We discussed the bunching of dark-state polaritons propa-
gating under conditions of electromagnetically induced trans-
parency in a gas of atomic three-level atoms and interacting via
van der Waals-type interactions mediated by Rydberg interac-
tions of the atoms. By employing a Green’s function approach,
we derived an effective model for two dark-state-polariton
excitations and analyzed its spectral properties, showing the
existence of bound eigenstates. We showed that for weak
interactions, quantified by the optical depth per blockade,
and in an off-resonant driving scheme the model has a
single eigenstate close to the scattering continuum. We argued
that, while the higher-n bound states are difficult to excite,
this low-energy single bound state can be experimentally
observed. We confirmed this by numerical integration of the
full Maxwell-Bloch equations for two particles which shows
bunching for sufficiently small values of the optical depth per
blockade, but antibunching for larger values, as has also be
shown in recent experiments [15,16].

By using the Green’s function approach we showed that
this bunching feature cannot be solely explained by the bound
eigenstate, but rather comes about by an interplay of bound
and continuum states. We derived closed analytic expressions
for the bound state and continuum wave functions in the limit
of weak interactions, where the effective interaction potential
can be approximated by a δ potential. This expressions
allowed us to investigate the time dependence of the individual
components. Specifically, we showed that the bound state
decays exponentially in time, whereas the scattering states
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have an diffusive time dependence. Thus, for small times the
bunching has to be explained by a superposition of bound and
continuum wave function, while for large times the polariton
pair is dominated by the continuum. Moreover, we found
that, after some time, the continuum component attains a
robust and constant phase, while the bound state exhibits a
dynamical phase. This allows us to filter bound and continuum
components by making use of a homodyne detection scheme.
We here concentrated on an effective one-dimensional setting.
In three spatial dimensions there is an additional constraint
for the existence of a bound state, which we discuss in
Appendix B.

ACKNOWLEDGMENTS

The authors would like to thank H. P. Büchler and M.
Lukin for useful discussions. Financial support by the DFG
through the priority program GiRyd, SPP 1929 is gratefully
acknowledged.

APPENDIX A: GREEN’s FUNCTION APPROACH

Here we present the details of the Green’s function
approach employed in the derivation of Eqs. (6)–(11). The
noninteracting result Eq. (8) follows then immediately from
Eq. (6) when setting the effective potential W equal to
zero.

To simplify the derivation in the following we consider an
initial vector |�0〉 ≡ �(K,r,t = 0) given by

�(K,r,t = 0) = f (K,r)|ϕ1〉, (A1)

where |ϕ1〉 = (1,0,0,0)T denotes a pure field excitation, i.e.,
EE . The derivation with other initial conditions can be treated
analogously. The time evolution of the two-photon amplitude
EE(t) admits a spectral Fourier-Laplace representation, given
by

EE(t) = 1

2πi

∫ ∞

−∞
e−iωt 〈ϕ1| Ĝ(ω) |�0〉 dω, t > 0, (A2)

for t > 0. The full and free Green’s functions are defined by

Ĝ(ω) ≡ 1

Ĥ − ω − i0+ and Ĝ0(ω) ≡ 1

Ĥ0 − ω
, (A3)

respectively, where Ĥ = Ĥ0 + V (r)P̂SS as in the main text.
We denote the Green’s function governing the time evolution
of EE(t) by

G11(ω) = 〈ϕ1| Ĝ(ω) |ϕ1〉 . (A4)

This operator usually has a branch cut and in the presence
of an interaction between atoms it may have poles, which
correspond to resonant states with negative imaginary parts
(t > 0). For sufficiently large times, larger than the decay time
of resonances, branch cut singularities of the Green’s function
contribute into the integral (A2) only.

The Green’s function (A4) satisfies the operator
equation

G11(ω) = 〈ϕ1| Ĝ0(ω) |ϕ1〉
− 〈ϕ1| Ĝ0(ω) |ϕ4〉 V 〈ϕ4| Ĝ(ω) |ϕ1〉 , (A5)

where the propagators in this equation can be written in the
form

〈ϕ1| Ĝ0(ω) |ϕ1〉 = α11(ω) + γ 2(ω)g00(ω), (A6)

〈ϕ1| Ĝ0(ω) |ϕ4〉 = γ (ω)g00(ω), (A7)

with the quantities

α11(ω) = i�

(cK − ω)i� − 2g2
, (A8)

γ (ω) = 2�2 − iω�

2g2 − i(ω − cK)�
, (A9)

g00(ω) = 1
p2

2m0(ω) − �0(ω)
, (A10)

the effective mass

m0(ω) = �2g2
[
g2 + �2 + (

cK
2 − ω

)
i�

]
i�(2i�2 + ω�)2c2

(A11)

and

�0(ω) = (2�2 − iω�)(2g2 + 2�2 + icK� − 2iω�)

× [2ωg2 − (cK − ω)(2�2 − iω�)]

4g2�2[2g2 − i�(ω − cK)]
. (A12)

In the next step we find the equation for the Green’s function
〈ϕ4| Ĝ(ω) |ϕ1〉. It can be derived in an analog manner to
Eq. (A5) which yields

[1 + α00(ω)V ] 〈ϕ4| Ĝ(ω) |ϕ1〉 = 〈ϕ4| Ĝ0(ω) |ϕ1〉
−g00(ω)V 〈ϕ4| Ĝ(ω) |ϕ1〉 ,

(A13)

where α00(ω) = i�
2�2−iω�

. Absorbing the factor [1 + α00(ω)V ]
into the Green’s function G41 by defining

G41(ω) = [1 + α00(ω)V ] 〈ϕ4| G(ω) |ϕ1〉 , (A14)

we can write the operator equation (A13) in the closed form

G41(ω) = γ (ω)g00(ω) − g00(ω)W (ω)G41(ω), (A15)

where the effective potential W (r,ω) is defined by

W (r,ω) = V (r)

1 + α00(ω)V (r)
. (A16)

Combining Eq. (A15) with Eq. (A5), we arrive at the following
equation:

G11(ω) = α11(ω) + γ (ω)G41(ω) (A17)

for the required Green’s function G11(ω). The evolution of the
two-photon amplitude, in the coordinate representation,

EE(r,t) = 1

2πi

∫ ∞

−∞
e−iωtα11(ω)dω

+ 1

2πi

∫∫ ∞

−∞
e−iωtγ (ω)G41(r,r ′,ω)f (K,r ′)dωdr ′

(A18)

is obtained by substituting Eq. (A17) into the integral (A2).
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We note that the first integral at large t � �2

2γg2 is negligible.
We thus have

EE(r,t) = 1

2πi

∫∫
e−iωtγ 2(ω)G(r,r ′,ω)f (K,r ′)dωdr ′,

(A19)

where G(r,r ′,ω) = G41(ω)/γ (ω), which obeys the following
integral equation:

G(r,r ′,ω) = g00(r,r ′,ω)

−
∫ ∞

−∞
g00(r,r ′′,ω)W (r ′′,ω)G(r ′′,r ′,ω)dr ′′.

(A20)

As was pointed out earlier, our interests are restricted to large
times. Thus we can further simplify the expressions for the
Green’s functions by considering only small frequencies and
momentum in Fourier space. In particular, we assume low
frequencies ω � min(2�2/|�|,2g2/|�|) and small center-of-
mass momentum cK � min(2�2/|�|,2g2/|�|). In this limit
all quantities such as m0(ω), �0(ω), and γ (ω) take much
simpler forms, and, moreover, the effective potential Eq. (A16)
becomes independent of ω. This leads to the following
expression for EE(r,t):

EE(r,t) = cos4 θ

2πi

∫∫ ∞

−∞
e−iωtG(r,r ′,ω)f (K,r ′)dωdr ′,

(A21)

where the Green’s function G(r,r ′,ω) satisfies the following
integral equation:

G(r,r ′,ω) = G0(r,r ′,ω)

− sin4 θ

∫ ∞

−∞
G0(r,r ′′,,ω)W (r ′′)G(r ′′,r ′,ω)dr ′′.

(A22)

The free Green’s function

G0(ω) = 1
p2

2m
− ω + cK cos2 θ

(A23)

describes a Schrödinger particle with the complex effective
mass

m = i
g2�2

e

4��2c2
= i

g2

4c�vg

. (A24)

Note that the solution of the Schrödinger problem, in
integral representation Eq. (A21), will be of little help for
any practical purposes. However, Eqs. (A21) to (A23) allow
us to show that the time evolution of the two-photon amplitude
EE(r,t) obeys the following Schrödinger equation:

i
∂

∂t
EE(r,t) =

[
p2

2m
+ W (r) sin4 θ + cK cos2 θ

]
EE(r,t),

(A25)

with the initial condition

EE(K,r,0) = cos4 θf (K,r). (A26)

APPENDIX B: BOUND STATES IN THREE DIMENSIONS

In the main text we assume that the system is one
dimensional and the results are strictly valid only in this case.
As in experimental setups only an approximate confinement
to one dimension can be achieved, we analyze the influence
of higher dimensions. Therefore we consider the effective
Hamiltonian corresponding to the three-dimensional problem,

H = − 1

2|m|
∂2

∂r2
− vg

kp

(
∂2

∂x2
+ ∂2

∂y2

)
+ W (|r|), (B1)

where kp = ωp/c denotes the carrier wave number of the probe
field. In order to neglect the transversal kinetic energy terms

vg

kp

(
∂2

∂x2
+ ∂2

∂y2

)
(B2)

compared to the longitudinal one, the following condition
should be fulfilled:

1

2|m|
1

r2
B

� 2
vg

kp

1

w2
, (B3)

where w denotes the probe beam waist. We can rewrite this as
a condition for the parameter ξ , which yields

ξ �
√

λpLabs

2πw2
, (B4)

i.e., imposing a lower bound on the interaction strength.
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