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Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime
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Coupling light to Rydberg states of atoms under conditions of electromagnetically induced transparency (EIT)
leads to the formation of interacting quasiparticles, termed Rydberg polaritons. We derive a one-dimensional
model describing the time evolution of these polaritons under paraxial propagation conditions. Specifically, we
obtain a master equation governing the dynamics of Rydberg polaritons and identify conditions when it can
essentially be described by an effective Hamiltonian of a single-species polariton. We verify this Hamiltonian
by numerical two-excitation simulations. Under typical stationary EIT conditions it is impossible to reach the
strongly interacting regime where long-range density-density correlations emerge. In contrast, by employing
the time dependence of the control field the regime of strong interactions can be reached where the polaritons
attain quasicrystalline order. We provide a physical explanation for the differences between stationary and
time-dependent schemes.
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I. INTRODUCTION

There has been growing interest in using Rydberg gases
[1] to tailor strong and nonlocal nonlinearities for photons.
The strong interactions between Rydberg states in a gas of
ultracold atoms can mediate strong nonlocal interactions for
light fields propagating under conditions of electromagneti-
cally induced transparency (EIT) in such a medium [2–10].
For instance, the formation of a small blockaded volume
leading to antibunching of photons as well as pronounced
bunching of photons in a Rydberg gas has been demonstrated
experimentally [11,12]. Moreover, first steps have been taken
towards building single-photon logic devices using Rydberg
gases, such as single-photon switches [13–16].

Their pronounced interaction makes Rydberg polaritons
interesting candidates to study many-body effects in the
strongly correlated regime, where the interaction energy
dominates the kinetic energy. In the present paper we consider
the propagation of light in Rydberg EIT media under paraxial
conditions with transversal confinement, as can be realized
experimentally, e.g., using cigar-shaped atomic ensembles
or sending photons through hollow-core optical fibers filled
with Rydberg atoms [17,18]. In a previous Letter [19] we
argued that the propagation of photons inside Rydberg gases
under EIT conditions can be described in terms of interacting
quasiparticles, named Rydberg polaritons. Assuming that the
polaritons are at all times close to the ground state of an
effective one-dimensional model and using a Luttinger-liquid
approximation, we showed that a regime of strong correlations
can be reached by dynamically turning photons into stationary
Rydberg excitations [20].

In the present paper we extend these studies by deriving the
effective dark-state polariton model including leading-order
corrections valid for sufficiently large separation of Rydberg
polaritons. This regime allows for a perturbative treatment
of the coupling between bright- and dark-state polaritons.
We obtain a Lindblad master equation for the Rydberg
dark-state polaritons where the bright-state polaritons act as
a Markovian reservoir. We verify the model by employing
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numerical two-excitation wave-function simulations. We
derive conditions when the master equation can be reduced
to the effective Hamiltonian introduced in [19]. Furthermore,
we show that for an excitation density smaller than one
per blockade volume and a transversal beam diameter less
than the blockade radius the paraxial propagation can be
described by a one-dimensional model. The wave-function
simulations show that injecting an initial photon wave packet
into a Rydberg EIT medium and subsequent storage leads
to a quantum state close to the ground state of the effective
Hamiltonian. Finally we provide a simple physical picture
why reaching the strongly interacting regime under cw
conditions is impossible in typical EIT systems and how a
dynamical storage sequence can circumvent this problem.

The paper is organized as follows. In Sec. II we introduce
the microscopic model of photons coupled to interacting
three-level atoms and derive conditions when the free as well as
the interacting problem reduces to a one-dimensional model.
In Sec. III we derive a Born-Markovian master equation for
the dark-state polaritons by treating the bright-state polaritons
as a reservoir and discuss corrections to the simple unitary
time evolution introduced in [19]. In Sec. IV we employ
numerical two-excitation wave-function simulations to verify
the model and analyze the quantum state after sending a light
pulse into a Rydberg gas under EIT conditions. Finally, in
Sec. V we discuss many-body properties of the interacting
problem and point out the differences between stationary EIT
and a light storage scheme.

II. RYDBERG POLARITONS

In this section we discuss the paraxial propagation of weak
light pulses in an atomic medium under EIT conditions with
Rydberg interactions. We introduce our model and derive
conditions for the reduction of the full interaction problem
to a one-dimensional model with an effective Hamiltonian.

A. Light-matter coupling

Let us consider a system of a weak quantized probe

field Ê =
√

�ωp

2ε0
Êe−i(ωpt−kpz) + H.a. propagating through an

ensemble of three-level atoms as sketched in Fig. 1(b)
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FIG. 1. (Color online) (a) Atomic level scheme with input probe
field E and control field �. (b) Sketch of a possible experimental real-
ization: one-dimensional setup with copropagating photons focused
inside an atomic cloud of Rydberg atoms and control field �.

with the level structure in a ladder configuration as in [21]
and as drawn in Fig. 1(a). The operators Ê,Ê † are slowly
varying envelope operators, which obey bosonic commutation
relations [Ê(r),Ê †(r′)] = δ(r − r′). Here ωp and kp denote
the carrier frequency and wave number of the probe field,
respectively. The atoms are composed of a ground state |g〉,
an intermediate excited state |e〉, and a metastable Rydberg
state |r〉. We neglect dipole-dipole interactions of Rydberg
states for a moment, which we will reintroduce later. The field
Ê couples the atomic states |g〉 and |e〉 with single-photon
detuning � = ωeg − ωp, where ωμν = (Eμ − Eν)/� denotes
the transition frequency between atomic states |μ〉 and |ν〉.
The transition between states |e〉 and |r〉 is driven by a
classical control field � with carrier frequency ωc and detuning
�c = ωre − ωc. We denote the resulting two-photon detuning
by δ = � + �c. The atomic state |e〉 is assumed to be subject
to spontaneous decay with rate γ .

The polarization and the spin coherence are microscopically
described by spin flip operators |μ〉〈ν| of individual atoms. By
averaging these over a small volume centered at a position r
and containing Nr � 1 atoms we define continuous, coarse-
grained atomic operators σμν at position r,

σ̂μν(r) = 1

Nr

Nr∑
j=1

|μ〉jj〈ν|, (1)

which fulfill the commutation relations [σ̂αβ(r),σ̂μν(r′)] =
1
n
δ(r − r′)[δβμσ̂αν(r) − δανσ̂μβ(r)], where we assume the den-

sity n of the atoms to be homogeneous. Transforming to a
frame rotating with the atomic frequencies and performing
the rotating-wave approximation, the atom-light coupling
Hamiltonian of this system can be written as (� = 1)

Ĥ = n

∫
d3r{�σ̂ee(r) + δσ̂rr (r)}

− {�σ̂re(r) + g
√

nÊ(r)σ̂eg(r) + H.a.}, (2)

where g = dge

√
ωge/2�ε0 denotes the coupling strength of the

electric field Ê to the atomic transition |g〉 − |e〉, with dge being
the corresponding dipole matrix element.

We derive Heisenberg-Langevin equations of motion for the
slowly varying field Ê and coarse-grained atomic operators
taking into account the spontaneous decay rate γ of the
intermediate level [22]. Assuming the probe field to be weak
compared to the control field, we can treat the equations in
linear response with respect to gÊ , leading to the equations of

motion for the polarization σ̂ge and spin coherence σ̂gr ,

∂t σ̂gr = −iδσ̂gr + i�σ̂ge

∂t σ̂ge = −σ̂ge + ig
√

nÊ + i�σ̂gr + F̂ge,
(3)

where  = γ + i� and F̂ge denotes a Langevin noise operator
[22], which is δ correlated in time and space with a vanishing
expectation value that needs to be added to preserve the
commutation relations. As the noise is related to the population
of the excited state, which we set as σ̂ee = 0 in linear response,
the Langevin operators can be neglected. In the following we
consider only the case of two-photon resonant driving, i.e.,
δ = 0.

B. Paraxial light propagation

The dynamics of the probe field is described by the
truncated paraxial wave equation(

∂t + c∂z − i
c

2kp

∇2
⊥

)
Ê(r,t) = ig

√
nσ̂ge(r,t). (4)

We assume a cylindrical symmetry of the experimental setup
and decompose the probe field into mode functions uμν(r,ϕ),
which are eigensolutions of ∇2

⊥uμν(r,ϕ) = 0,

Ê(r,t) =
∑
μ,ν

uμν(r,ϕ)Êμν(z,t). (5)

The mode functions

uμν(r,ϕ) = Cμν

w0

[√
2r

w0

]|μ|
e−r2/w2

0+iμϕL|μ|
ν

(
2r2

w2
0

)
(6)

are a complete orthogonal set in the cylindrical coordinates
(r,φ). Here Lμ

ν are the associated Laguerre polynomials,
Cμν are appropriate normalization constants, and ν and μ

denote the radial and azimuthal indices of the mode func-
tions, respectively. Replacing w0 → w(z), Eq. (5) describes
Gauss-Laguerre modes of paraxial light propagation [23].
For z values well within the Rayleigh length zR = πw2

0/λp,
one finds w(z) ≈ w0 = const and (5) becomes an adequate
decomposition.

We decompose σ̂ge(r,t) and σ̂gr (r,t) into the modes
uμν(r,ϕ) in an analogous way and obtain from Eq. (4) and
the completeness relation of the mode functions

(∂t + c∂z)Êμν(z,t)

= ig
∑
α,β

∫
dr dϕ

√
n(r)u∗

μν(r,ϕ)uαβ(r,ϕ)σ̂ αβ
ge (z,t). (7)

If the atomic density n(r) is slowly varying spatially in r on the
scale w0 and is furthermore independent of ϕ, orthogonality
of the modes yields

(∂t + c∂z)Êμν(z,t) = ig
√

nσ̂μν
ge (z,t). (8)

If also the driving-field Rabi frequency is independent of ϕ and
slowly varying in r , the Heisenberg-Langevin equations (3)
decouple in the transverse modes uμν(r,ϕ) as well. In this case,
the equations of motion can be reduced to a one-dimensional
propagation problem for the individual transverse modes. Note
that this is only correct as long as interactions are disregarded.
The effect of the latter will be discussed later on.
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In the following we drop the index (0,0) since we are
interested in particular in the Gaussian input mode Ê0,0.

C. Slow-light polaritons

Assuming that the control field �(z,t) is slowly varying in
z on the scale w0 yields a system of linear partial differential
equations for the probe field and the atomic operators, which
separate in the transverse modes. Restricting to the lowest
transverse mode and defining x = (Ê,σ̂gr ,σ̂ge)T , we can write
equations of motion for x as

i∂tx = Hx, H =
⎛⎝−ic∂z 0 −g

√
n

0 0 −�

−g
√

n −� −i

⎞⎠, (9)

termed the Maxwell-Bloch equations. In Fourier space we
find the momentum eigenmodes of these equations. The small
momentum (k ≈ 0) eigenmodes are the so-called dark-state
polariton mode and two corresponding bright-state polariton
modes [21]. The dark-state polariton is a superposition of elec-
tric field and spin coherence σ̂gr : �̂ = cos θ Ê − sin θ

√
nσ̂gr ,

where the mixing angle θ is given by tan2 θ = g2n/�2. We
define the bright-state polariton as �̂ = sin θ Ê + cos θ

√
nσ̂gr ,

which is not an eigenmode of (9), but is a more convenient
definition. Assuming the complex decay rate  to define the
shortest time scale as ||−1, the σ̂ge can be adiabatically
eliminated. Transforming the remaining fields Ê,σ̂gr to the
polariton basis y = (�̂,�̂)T leads to the equations of motion

i∂ty = H ′y, H ′ =
(

c cos2 θ∂z c sin θ cos θ∂z

c sin θ cos θ∂z c sin2 θ∂z + eff

)
.

(10)

Here we defined the effective decay rate of the bright-state
polaritons as eff = �2

e/, with �2
e = g2n + �2. Comparing

the off-diagonal coupling between dark- and bright-state
polaritons to the difference of the diagonal terms, we find
that we can treat the off-diagonal terms perturbatively if

c|k| � |eff| (11)

is fulfilled for all relevant k values of the polariton field. In this
case one recognizes directly from Eq. (10) that �̂ is a stationary
dark state propagating lossless with reduced group velocity
vg = c cos2 θ � c (slow light). We note that condition (11)
sets a limit for the characteristic length scale of the dark-state
polaritons

lDSP � c||
�2

e

≈ |�|
γ

Labs, (12)

where the approximation holds in the off-resonance case and
Labs = cγ /g2n denotes the resonant absorption length of the
medium. It is immediately clear that many-body effects can
only be observed when many excitations fit inside the medium,
i.e., lDSP � L, with L being the medium length, requiring
media with large optical depth d = L/Labs � 1.

D. Rydberg interactions

For highly excited Rydberg states |r〉, dipole-dipole in-
teractions between atoms become important, due to their
large dipole moments [24]. Atoms in a state |r〉 interact with

the van der Waals interaction potential V (r) = C6/|r|6 with
interaction strength C6. For an ensemble of Rydberg atoms the
microscopic Hamiltonian describing the interaction reads

V̂ = 1

2

∑
i,j =i

σ̂ (i)
rr V (ri − rj )σ̂ (j )

rr , (13)

where σ̂ (i)
rr denotes the projection operator to the Rydberg

state of atom i at position ri . Assuming a small excitation
probability per atom to the Rydberg state allows us to set σ̂rr ≈
σ̂
†
gr σ̂gr by means of a Holstein-Primakoff transformation.

Transforming to coarse-grained operators according to Eq. (1)
and performing the continuum limit as above finally leads to
the continuous interaction Hamiltonian

Ĥint = n2

2

∫
d3r

∫
d3r′V (r − r′)σ̂ †

gr (r)σ̂ †
gr (r′)σ̂gr (r′)σ̂gr (r).

(14)
This interaction between Rydberg excitations gives rise to a
two-photon level shift, which exceeds the EIT linewidth (11)
when the distance between two excitations becomes less than
the EIT blockade radius

aB = 6
√

|C6|/�2. (15)

For short distances the mixing between dark- and bright-state
polaritons becomes strong and leads to a suppression of
multiple excitations, which is the so-called Rydberg blockade
[25]. Here the polariton picture is no longer adequate [26,27].
However, if the excitation density is smaller than a−3

B the
polariton picture is expected to hold true. It should be noted that
under slow-light conditions �2 becomes small and accordingly
the blockade radius aB becomes large. In the limit of light
storage, where �(t) → 0, one finds aB → ∞ and thus it is
unclear if light storage in a Rydberg EIT medium is possible
at all. We will show below, however, that the critical distance
between excitations at which a significant mixing between
polaritons sets in is not given by aB but instead by

ac = 6

√
|C6|/�2

e, (16)

which stays finite in the limit of light storage, as �2
e → g2n.

E. Reduction to a one-dimensional model

While the paraxial light propagation in a linear EIT
medium can be described by a one-dimensional model, this
no longer holds in general true if there are interactions
between polaritons. The Rydberg interactions can lead to
a scattering between different transverse Laguerre-Gaussian
modes uμν(r,ϕ), defined in Eq. (6), and thus the propagation
of slow-light polaritons in a Rydberg gas in general has to be
considered as a three-dimensional problem. In the following
we will show that nevertheless an effective one-dimensional
description is valid, provided the waist of the beam is small
compared to the Rydberg blockade radius aB.

To derive the interaction Hamiltonian of an effective
one-dimensional model we use the decomposition of the
spin coherence σ̂gr (r) into Laguerre-Gaussian modes σ̂gr (r) =∑

μν uμν(r,ϕ)σ̂ μν
gr (z) as in Sec. II B. This allows us to decom-

pose the interaction into different components describing the
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interaction between different transversal modes

Ĥint = n2

2

∫
dz

∫
dz′ ∑

μ1μ2μ3μ4
ν1ν2ν3ν4

Ṽ μ1μ2μ3μ4
ν1ν2ν3ν4

(z − z′)

× σ̂ †μ1ν1
gr (z)σ̂ †μ2ν2

gr (z′)σ̂ μ3ν3
gr (z′)σ̂ μ4ν4

gr (z), (17)

The effective scattering matrix elements Ṽ μ1μ2μ3μ4
ν1ν2ν3ν4

are ob-
tained from the three-dimensional interaction potential by
integrating out r,r ′ and ϕ,ϕ′,

Ṽ μ1μ2μ3μ4
ν1ν2ν3ν4

(z − z′)

:=C6

∫ 2π

0
dϕ

∫ 2π

0
dϕ′

∫ ∞

0
rdr

∫ ∞

0
r ′dr ′

× u∗
μ1ν1

(r,ϕ)u∗
μ2ν2

(r ′,ϕ′)uμ3ν3 (r ′,ϕ′)uμ4ν4 (r,ϕ)

[r2 + r ′2 + 2rr ′ cos(ϕ − ϕ′) + (z − z′)2]3
. (18)

The angular integrals can be calculated analytically by residue
integration yielding the momentum conservation rule

Ṽ μ1μ2μ3μ4
ν1ν2ν3ν4

(z − z′) ∝ δμ1−μ4,μ3−μ2 , (19)

but further evaluation has to be done numerically. We are in-
terested in the scattering processes of an initial Gaussian mode
with zero angular momentum into higher-order Laguerre-
Gaussian modes that are described by the scattering matrix
elements Ṽ

μ,−μ00
ν1ν200 . The modes uμν with μ = 0, i.e., higher-

order azimuthal modes, have vanishing amplitude at r = 0
and the corresponding interaction processes are suppressed
compared to the μ = 0 modes. Thus we will restrict the
following discussion to scattering processes into azimuthally
symmetric modes.

In Fig. 2 we show the coupling strength of two photons
at relative distance z in the Gaussian mode ν3 = ν4 = 0 to
Laguerre-Gaussian modes with radial indices ν1,ν2, calculated
by numerical integration of (18). The relevant reference is
the forward scattering potential Ṽ

0,0,0,0
0,0,0,0 . We find that for

FIG. 2. (Color online) Different interaction potentials Ṽ 0000
ν1ν2ν3ν4

between two photons initially in Laguerre-Gaussian modes ν3,ν4

sitting at positions (z,z′ = 0) and finally in Laguerre-Gaussian modes
ν1,ν2. In particular we choose initial Gaussian modes ν3 = ν4 = 0 and
final modes ν1,ν2 as labeled in the figure. The dashed lines indicate
power-law fits z−α in the regime z > w0 with exponents α ∈ {6,8,10}
(increasing slope). The potentials are symmetric in interchanging
ν1 ↔ ν2.

distances smaller than the beam waist w0 all potentials show
a z−4 decay with different initial amplitudes due to the small
overlap of the different modes. At z ≈ w0 the potentials cross
over to a power law z−α , where we find numerically that
α ≈ 6 + 2(ν1 + ν2). Due to the strong interactions, excitations
separated by small distances are blockaded, where typically the
blockade distance is on the order of a few w0. Therefore, the
relevant distance regime is given by w0 < ac � z, where the
scattering matrix elements scale as z−α . One recognizes that for
distances already slightly larger than w0 the scattering matrix
elements into higher Laguerre-Gaussian modes are orders of
magnitude smaller than the forward scattering one. Thus we
can safely neglect the scattering processes into higher modes
if the distance between excitations is sufficiently larger than
the blockade radius ac > w0 [28]. The remaining potential
Ṽ 0000

0000 (r) can be approximated by the van der Waals potential
V (r) = C6/|r|6 yielding an effective one-dimensional (1D)
interaction. Omitting again the indices 0 we find

Ĥint = n2

2

∫
dz

∫
dz′V (z − z′)σ̂ †

gr (z)σ̂ †
gr (z′)σ̂gr (z′)σ̂gr (z).

(20)

Note that the 1D operators σ̂gr (z) = σ̂ 00
gr (z) have a differ-

ent physical dimension from the operators σ̂gr (r) in three
dimensions.

Transforming the 1D interaction Hamiltonian (20) to the
polariton basis using

√
nσ̂gr (z) = − sin θ�̂(z) + cos θ�̂(z)

yields

Ĥint = 1

2

∫
dz

∫
dz′V (z − z′){[sin θ�̂†(z) − cos θ�̂†(z)]

× [sin θ�̂†(z′) − cos θ�̂†(z′)][sin θ�̂(z′)

− cos θ�̂(z′)][sin θ�̂(z) − cos θ�̂(z)]}. (21)

By expanding the products one can identify terms describing
(i) a two-body interaction of dark-state polaritons with relative
strength sin4 θ , (ii) an interaction of bright-state polaritons with
relative strength cos4 θ , and (iii) nonlinear coupling terms of
dark- and bright-state polaritons.

In the slow-light regime one has cos2 θ � 1 and by
taking the Hamiltonian (21) in lowest order of cos θ only
a nonlinear interaction term between Rydberg dark-state
polaritons remains. Adding the effective free Hamiltonian that
can be derived by adiabatically eliminating the bright-state
polaritons from (10) and transforming to a frame comoving
with the group velocity vg finally yields

Ĥeff = −
∫

dz �̂†(z)
∂2
z

2m
�̂(z)

+C6 sin4 θ

∫
dz

∫
dz′ �̂

†(z)�̂†(z′)�̂(z′)�̂(z)

|z − z′|6 , (22)

where m−1 ≈ vgLabs(�/γ ). This Hamiltonian was derived in
[19] and used there as the basis of the theoretical discussion.
It is, however, perturbative in the interaction-induced coupling
between dark- and bright-state polaritons, which we will now
analyze in more detail.

053846-4



MANY-BODY PHYSICS OF RYDBERG DARK-STATE . . . PHYSICAL REVIEW A 92, 053846 (2015)

III. NONADIABATIC AND INTERACTION-INDUCED
COUPLINGS

The derivation of Hamiltonian (22) requires the polaritons
to keep a minimal distance of ac defined in Eq. (16) to justify
the approximations used in [19]. Two types of corrections
arise due to the coupling between dark-state and bright-state
polaritons: They are due to (i) nonadiabatic couplings that are
already present in the noninteracting system and (ii) couplings
between dark-state and bright-state polaritons induced by the
interaction Hamiltonian (21).

Using the standard approach [29], we now derive an
effective master equation for the Rydberg dark-state polaritons
that allows us to treat both kinds of corrections at once. We
will restrict ourselves to leading-order terms here. A brief
derivation of the full master equation will be presented in the
Appendix. The full time evolution of dark- and bright-state
polaritons is governed by the sum of free Hamiltonian, which
can be read off Eq. (10) and the interaction Hamiltonian
(21) and can be decomposed into dark-state, bright-state, and
coupling terms Ĥ = Ĥ0 + Ĥint = Ĥ� + Ĥ� + Ĥ��. The free
time evolution of the polaritons in zeroth order in the coupling
is described by the differential equations (10),

∂t �̂(z,t) = −c cos2 θ∂z�̂(z,t),

∂t �̂(z,t) = −c sin2 θ∂z�̂(z,t) − eff�̂(z,t),

where we have disregarded the Langevin noise terms. As can
easily be shown, the solution of these equations is given by
�̂(z,t) = �̂(z − c cos2 θτ,t − τ ) and �̂(z,t) = e−effτ �̂(z −
c sin2 θτ,t − τ ). Thus the free dark-state polaritons propagate
form-stable with group velocity vg = c cos2 θ , while the
bright-state polaritons propagate with velocity c sin2 θ and are
subject to radiative decay with rate Re[eff]. Assuming that
|eff|−1 defines the fastest time scale, we can adiabatically
eliminate the bright-state polaritons. If there is no external
driving of bright-state polaritons, they decay into the vacuum
state ρ� = |vac〉�〈vac�| for which the lowest-order correla-
tion function reads

〈�̂(x,t)�̂†(y,t − τ )〉 ≈ e−effτ δ(x − y), τ > 0. (23)

The remaining nonvanishing correlation functions can be
found in the Appendix, Eq. (A1).

In an interaction picture with respect to Ĥ� + Ĥ� the
dark-state polariton degrees of freedom are described by the
density matrix ρ = tr�(χ ). In the Born approximation the time
evolution of ρ is then governed by

ρ̇�(t) = −
∫ ∞

0
dτ tr�{[Ĥ��(t),[Ĥ��(t),ρ(t) ⊗ ρ�]]}.

(24)
We note that the free part of Ĥ� corresponds to the generator of
a transformation to a frame comoving with the group velocity
vg = c cos2 θ . Introducing the operator

L̂≡ − sin3 θ cos θ

[∫
ds V (z − s)�̂†(s)�̂(s) + i

c∂z

sin2 θ

]
�̂(z)

(25)

allows us to write the system-reservoir-coupling Hamiltonian
in the interaction picture in the compact form

Ĥ��(t) =
∫

dz{�̂†(z)L̂(z) + L̂†�̂(z)} + · · · , (26)

where we neglected terms of second and higher order in
the bright-state polariton operators. We insert Eq. (26) into
Eq. (24) and follow the standard derivation of a master
equation [29]. Performing the Markov approximation, we get
a master equation in Lindblad form describing an effective
time evolution of the dark-state polaritons. After transforming
back to a moving frame we arrive at

ρ̇ = i
�

�2
e

∫
dz[ρ,L̂†(z)L̂(z)] + i sin4 θ

∫
dz

∫
dz′

×V (z − z′)[ρ,�̂†(z)�̂†(z′)�̂(z′)�̂(z)]

+ γ

�2
e

∫
dz(2L̂(z)ρL̂†(z) − {ρ,L̂†(z)L̂(z)}), (27)

where {·,·} denotes the anticommutator and we have taken into
account only leading-order terms in cos2 θ � 1. Specifically,
the unitary time evolution is governed by L̂†(z)L̂(z)�/�2

e

and the dark-state polariton interaction in the second line of
Eq. (27). After expanding L̂†(z)L̂(z) we identify the following
terms: first, a kinetic energy term with an effective mass

m−1 = 2vg
c� sin2 θ

�2
e

= 2vg
�

γ
Labs sin4 θ ; (28)

second, a drift term proportional to
∫

dz′V (z − z′)�̂†(z′)�̂(z′),
giving corrections to the group velocity vg mediated by
interactions in the presence of a second polariton; and, finally,
higher-order terms in the interaction, namely, a three-body
interaction and corrections to the two-body interaction pro-
portional to V 2(z − z′). Combining the two-body interaction
terms, we find the effective potential

Veff(r) ≈ sin4 θ

[
V (r) + �

�2
e

cos2 θV 2(r)

]
. (29)

As can be seen from this, the second correction
term becomes relevant for distances smaller than r0 =
(|C6�| cos2 θ/�2

e)(1/6), where the potential leads to an r−12

interaction. Note that this interaction is always repulsive for
r < r0, since the product of the effective mass and effective
potential is always positive for r < r0. Thus, independent of
the signs of the detuning and the C6 coefficient, Rydberg
dark-state polaritons are always expelled from the region of
small relative distances.

The bright-state polaritons are subject to radiative decay
giving rise to effective loss channels for the dark-state
polaritons. The decay processes are described by the operator
L̂ defined in (25). This operator consists of two terms
corresponding to the two possible loss channels resulting from
coupling between dark- and bright-state polaritons, namely, a
linear coupling that becomes relevant outside the EIT window
and a nonlinear coupling arising from the interaction. In
particular, we identify a generalized single-particle decay
generated by the Lindblad operator

√
̂(z)�̂(z) with the
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operator-valued loss rate

̂(z) = γ cos2 θ sin6 θ

�2
e

[∫
dx V (z − x)�̂†(x)�̂(x)

]2

. (30)

Note that these losses as well as the corrections to the drift
term cannot be simply treated in a mean-field approximation,
since V (r) diverges for r → 0. For a physical interpretation of
the losses we assume a fixed Rydberg excitation �̂†(x)�̂(x) =
sin2 θδ(x), which yields a loss rate (r) ≈ γ cos2 θV 2(r)/�2

e

for a dark-state polariton at a distance r from the fixed
excitation, which scales like r−12. The remaining loss terms
include the spatial derivative ∂z�̂ as well a combination thereof
and the interaction potential. Thus they can be interpreted as
momentum-dependent damping terms affecting high-energy
modes strongly.

We have shown that treating the bright-state polaritons as
a reservoir for the dark-state polaritons allows us to derive
the effective Hamiltonian (22) with corrections. The leading-
order corrections are a strong repulsive potential as well as a
strong loss process for short relative distances scaling as r−12,
which leads to a strong blockade effect. The nature of the
blockade effect is determined by the ratio of �/γ . In the far-
off-resonance regime (� � γ ) strong repulsion dominates,
while in the resonant regime (� � γ ) absorption dominates.

We point out that the master equation approach dis-
tinguishes explicitly between dissipative and unitary time
evolution, other than a simple perturbative calculation that
yields a complex polariton mass.

IV. TWO-PARTICLE SIMULATIONS AND VERIFICATION
OF THE EFFECTIVE MODEL

It was shown numerically in [30] and on the basis of an
effective master equation that the van der Waals interaction
leads to an avoided volume for the propagating photons. Near
single-photon resonance |�| � γ , two photons at distance
smaller than aB get absorbed and an incident two-photon wave

packet evolves into a nonclassical state that is a statistical
mixture of a single excitation and a correlated train of (two)
photons separated by 2aB [30]. In the off-resonance regime
(|�| � γ ) the absorption plays no role but two photons closer
than the blockade distance propagate with the vacuum speed of
light and thus escape from the remaining wave packet, which
lags behind. Moreover, the repulsive interaction prevents the
photons from getting inside the blockade distance.

To validate this picture we perform numerical simulations
of the full 1D Maxwell-Bloch equations for two copropa-
gating polaritons subject to van der Waals interaction. We
consider an initial Gaussian two-photon wave packet [|�0〉 =
EE(z1,z2,t)Ê †Ê †|0〉] in free space, i.e., EE(z1,z2,t) ∝
e−(z1−ct)2/2lp e−(z2−ct)2/2lp , where we assume that the spectral
width fits well inside the EIT window of the medium in the
absence of interactions. The state vector at time t is then
described by the two-excitation wave function

|�(t)〉 =
∫

dz1

∫
dz2

∑
F,G

FG(z1,z2,t)F̂
†(z1)Ĝ†(z2)|0〉,

where F̂ ,Ĝ ∈ {Ê,σ̂ge,σ̂gr} and FG(z1,z2,t) = 〈�(t)|F̂ †(z1)
Ĝ†(z2)|0〉 denotes all possible two-particle wave functions
corresponding to excitations in the electric field Ê (E),
the polarization σ̂ge (P ), and the spin coherence σ̂gr (S),
respectively. For example, |EE(z1,z2,t)|2 gives the probability
of finding two electric-field excitations at positions z1 and
z2, i.e., FG ∈ {EE,PP,SS,EP,PE,ES,SE,PS,SP }. Note
that in the presence of decay the norm of the wave function
is not conserved. We then simulate the propagation of the
pulse from free space into the Rydberg gas by considering
a space-dependent atomic coupling strength g2n = g2n(z),
where we use a step function in space for n(z). To take care
of the EIT pulse compression for small group velocities we
employ an adaptive spatial grid spacing. In Figs. 3(a) and 3(b)
we show two snapshots of the time evolution of the EE(z1,z2)
component incident into the medium in the lower left corner

FIG. 3. (Color online) Splitting of the initial Gaussian wave packet due to van der Waals interaction. The full two-excitation wave function
simulation is shown for the parameters g = 10� = 10γ and � = 4γ . The optical depth per blockade is chosen as dB ≡ aB/Labs = 7. The color
plots show the two-excitation probe field amplitude EE(z1,z2,t) at times (a) t = 0 and (b) t = 0.5L/vg corresponding to the times where the
center of the incident Gaussian wave packet is at the medium boundary and at the middle of the medium, respectively. (c) Cross section (blue
solid line) of the middle color plot along the diagonal r = z1 − z2 for 2R = z1 + z2 = L = 100aB, as indicated by the dash-dotted line in (b).
We compare the cross section to a pulse propagating in the absence of interactions (Gaussian, purple dotted line) and the two-particle ground
state of the effective Hamiltonian (22) (yellow dashed line), where we impose periodic boundary conditions with a period corresponding to
the distance of the two peaks (blue solid line). The red dash-dotted line shows a thermal two-particle state of the effective Hamiltonian. For
illustration purposes we continued the two-particle ground state.
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(z1/2 = 0) and propagating along the diagonal to the upper
right corner of the pictures. As can be seen, in the considered
off-resonance regime, the wave packet splits at the medium
boundary into two parts separated by 2aB, indicating a photon
antibunching as shown for the resonant case in [30]. However,
after longer propagation inside the medium the separated parts
move even farther apart due to the repulsive interaction on
length scales �z � aB.

The results in Fig. 3 verify the expected time evolution
governed by the Hamiltonian (22). This can be seen from
Fig. 3(c), where we compare a cross section (blue solid line)
of the evolved pulse to the two-excitation ground state of
the effective Hamiltonian (yellow dashed line) calculated for
periodic boundary conditions. For illustrative purposes we
have periodically continued the ground-state wave function
in the plot.

We recognize two important things. First, we find remark-
ably good agreement between the numerically evolved wave
packet and the ground state of the effective Hamiltonian up to
a length scale of r ≈ ±25aB. Second, we do not find localized
two-particle excitations around r = 0 (bunching), contrary to
[12].

That the final state of the evolution is so close to the ground
state is somewhat unexpected since the initial wave packet
contains many highly excited components. The presence of
a finite EIT window sets an upper bound on the energy of
the polaritons. Since the system is not integrable, we can
assume that the polaritons quickly thermalize after entering
the interacting medium. However, as can be seen from a
comparison with the red dash-dotted curves in Fig. 3(c), a
temperature estimated by the EIT transmission window (11) is
much too high. A possible explanation for this is the presence
of a mechanism similar to evaporative cooling. High-energy
modes of the dark-state polaritons are preferentially coupled to
bright-polariton modes and decay or propagate away. Further
analysis of this mechanism is beyond the scope of the present
paper.

Let us briefly comment on the fact that we do not see
bunching of photons in the numerical simulations of the full
Maxwell-Bloch equations as demonstrated in [12]. Here we
consider the case mC6 > 0, where the effective Hamiltonian
(22) does not have bound states that would support bunching.
The full set of Maxwell-Bloch equations, on the other hand,
should reproduce the bunching. However, our simulation is
run in a regime where the optical depth per blockade dB =
aB/Labs is much larger than in [12]. As will be discussed
elsewhere [27], in this regime not a single but many bound
states exist, which cannot be excited, however, by the incident
photon pulse. For values of dB much smaller than considered
here we also find bunching in our numerics [27].

V. LIGHT STORAGE IN RYDBERG GASES

A. Reaching the strongly interacting regime

The physics of the polariton Hamiltonian (22) is governed
by an interplay of the kinetic energy contribution trying to
delocalize the massive particles and the polariton-polariton
interaction leading to spatial order. If the kinetic energy per
particle dominates, the polaritons are in the weakly interacting

regime, characterized by small quantum correlations. An
interesting question is if one can also reach the opposite limit of
strong correlations, where interactions set the dominant energy
scale. To answer this question we make use of the fact that the
low-energy physics of a gapless one-dimensional system can
be described in terms of a Luttinger liquid (LL) [31].

A LL is fully characterized by two parameters, the speed
of sound vs and the Luttinger parameter K; K universally
determines the long-range behavior of the ground state
correlation functions. In particular, the equal-time first-order
correlation function describing superfluid order is given by
[31]

〈�̂†(z)�̂(0)〉 = ρ0A1

(
1

z

)1/2K

, (31)

where the amplitude A1 is some nonuniversal constant.
Likewise, one finds for the density-density correlations

〈ρ̂(z)ρ̂(0)〉 = ρ2
0 − K

2π2

1

z2
+ A2ρ

2
0 cos(2πρ0z)z−2K, (32)

where ρ̂(z) = �̂†(z)�̂(z) and A2 is again a nonuniversal
amplitude. We are particularly interested in the last term
in Eq. (32), which oscillates spatially with the period 1/ρ0

corresponding to a charge-density wave (CDW). Depending
on K either superfluid (first-order) (K � 1/2) correlations or
CDW order (K � 1/2) dominate long-range correlations and
K = 1/2 marks the crossover point where both correlations
decay with an exponent 1. Further, K � 1 corresponds to
a gas of weakly interacting bosons, where superfluid order
dominates, and K = 1 to a gas of either hard-core bosons,
i.e., bosons with infinite local interactions, or equivalently
to free fermions, which are dual to each other. Note that
values of K less than unity cannot be reached for pointlike
interactions, such as photons interacting via a Kerr nonlinearity
[32,33].

In Fig. 4 we show normalized density-density
and first-order correlations calculated by density-matrix
renormalization-group (DMRG) simulations. For short dis-
tances the normalized density-density correlations are strongly
suppressed, i.e., g(2)(0) = 0, indicating the photon blockade
of two copropagating excitations. Here we have introduced
a dimensionless parameter �, defined as the ratio of the
interaction energy at average interparticle distance 1/ρ0 and
the Fermi energy [34],

� = (ρ0aB)4

4π

( γ

�

)2
d2

B. (33)

For small �, corresponding to weak interactions, the first-
order correlation functions govern the long-range behavior,
indicating a superfluid state. Increasing the interaction strength
leads to a strongly pronounced and slowly decaying density
wave (CDW) with fast decaying first-order correlations. Due
to the low (one) dimensionality of the model, no slower-than-
power-law decay of correlations can be found, i.e., the model
cannot exhibit true crystalline order. The latter can in principle
be created by engineering an additional lattice potential, i.e.,
a space-dependent two-photon detuning for the polaritons
leading to a sine-Gordon-like model for commensurate fillings.
This model exhibits a quantum phase transition to a gapped
phase with true crystalline order [31,35].
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FIG. 4. (Color online) Correlation functions computed by
DMRG. The top panel shows 1 − g(2)(z) [and g(2)(z) in the inset] for
different interaction strengths as labeled in the legend in the bottom
plot, where g(2) is the normalized density-density correlation (taken
from [19]). The bottom panel shows the corresponding first-order
correlation functions for different interaction strengths as labeled in
the legend.

To enter the strongly interacting regime K � 1 has to
be realized, which is only possible for nonlocal interactions
such as the 1/r6 interactions of Rydberg polaritons. As we
will discuss in the following section, this regime, however, is
not accessible for Rydberg polaritons under typical cw EIT
conditions.

B. Strongly interacting regime under stationary EIT conditions

We now discuss what LL parameters can be reached in a
gas of Rydberg polaritons. For our model (22), the dependence
of the K parameter as a function of microscopic parameters
cannot be given analytically, but has to be determined numer-
ically. We can extract K from DMRG simulations, where we
calculate the compressibility χ−1 = ρ2

0
∂μ

∂ρ0
= ρ2

0L ∂2E
∂N2 . From

this we get the ratio K/vs = πρ2
0χ and together with the

product vsK = πρ0/m, which is constant for any Galilean
invariant system [31], we can extract the K parameter as a
function of �. For power-law interactions an approximate
analytical formula for the K parameter has been given in [36],
which is asymptotically correct for small and large �,

K =
(

1 + π4

45
�

)−1/2

. (34)

From this we can estimate the experimental requirements for
reaching the strongly interacting regime (K � 1) under sta-
tionary EIT conditions. An important restriction of stationary
EIT is set by the Rydberg blockade: When two excitations get
closer than the EIT blockade radius aB [Eq. (15)] they are either
absorbed or transformed into fast propagating bright-state

FIG. 5. (Color online) Plot of the K parameter as a function of
the optical depth per blockade dB for �/γ = 10. Solid curves are in-
terpolated numerical data from DMRG results and the corresponding
dashed curves are approximate values according to (34). The three
pairs of curves are for different values ρ0aB as labeled in the plot.
The dashed vertical line indicates experimental values from [11].

polaritons that escape. Thus the excitation density is limited
to values

ρ0aB � 1 (35)

and in the regime of small K we have K ∼ d−1
B , indicating that

even for a large density (ρ0aB ≈ 1) the required optical depth
per blockade is orders of magnitude higher than experimentally
feasible [11] (cf. Fig. 5). Moreover, increasing dB by changing
the blockade distance aB requires a smaller excitation density
ρ0 for fixed ρ0aB and thus limits the number of excitations
in a finite-length medium such that in the limit dB � 1 only
a single excitation would be allowed inside the medium for
stationary EIT driving.

C. Frequency pulling in the adiabatic slowdown
of Rydberg polaritons

The problem of reaching the required conditions for
quasicrystalline order of Rydberg polaritons under stationary
EIT conditions can be overcome using a dynamical protocol,
i.e., by light storage or dynamical slowdown of polaritons
inside the medium. One recognizes from (15) that during
slowdown and ultimately light storage the EIT blockade radius
aB ∝ �−1/3 diverges. Naively one would expect that as a
consequence the smallest possible distance between Rydberg
polaritons diverges as well. Remarkably this is not the case.
To see this, let us consider the dynamics of a dark-state
polariton pulse during storage with an initial fixed nonzero
two-photon detuning ωp(0) + ωc − ωrg = δ0, resulting, e.g.,
as an interaction shift from a second Rydberg polariton. As
has been shown in [37], a small two-photon detuning causes a
time-dependent phase shift (chirp) of the dark-state polariton
during slowdown:

�̂(z,t) = �̂

(
z − c

∫ t

0
dτ cos2[θ (τ )],0

)
× exp

{
iδ0

∫ t

0
dτ sin2[θ (τ )]

}
. (36)

As a consequence of this the spectrum of the probe field
Ê(z,t) = cos θ (t)�̂(z,t), assuming a slowly varying mixing
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FIG. 6. (Color online) Illustration of the transmission spectrum
T (ω) of the EIT medium (top) and normalized spectrum S(ω)/ cos2 θ

of the electromagnetic field (bottom) in arbitrary units as a function of
the normalized group velocity vg/c = cos2 θ during a dynamical light
storage protocol. Here δ denotes the detuning from the two-photon
resonance ωp + ωc = ωrg .

angle θ (t), can be expressed as

S(z,ω) =
∫ ∞

−∞
dτ e−iωτ 〈Ê †(z,t)Ê(z,t − τ )〉

= cos2 θ (t)

cos2 θ (0)
S

(
0,

1

cos2 θ (t)
[ω + δ0 sin2 θ (t)]

)
. (37)

One recognizes two effects. First, there is a spectral narrowing
proportional to cos2 θ (t), which guarantees that during light
storage the pulse spectral width remains less than the EIT
transparency window (11), if it did so at the beginning of the
storage process [38]. Second, there is a pulling of the center
frequency of the pulse towards the two-photon resonance

ωp(t) = ωp(0) − δ0 sin2 θ (t), (38)

δ(t) = ωp(t) + ωc − ωrg = δ0 cos2 θ (t) → 0. (39)

Frequency pulling and spectral narrowing are illustrated in
Fig. 6, where we have plotted schematically the transmission
spectrum T (δ) and the spectrum of the probe pulse S(δ), where
δ = δ(t) denotes the detuning from two-photon resonance, as
a function of the normalized group velocity. This effect has
been observed experimentally in [39] and is responsible for
the fact that the two-photon linewidth of EIT light storage [37]
is determined by the collective Rabi frequency �e rather than
the control-field Rabi frequency �(t): δph = �2

e/||. (Here we
have set the optical depth d = 1.)

As a consequence of this the minimum distance of two
Rydberg polaritons is not given by the EIT blockade distance
(15) but by the critical distance

ac = 6

√
|C6|/�2

e . (40)

FIG. 7. (Color online) Plot of the SS component of the two-
particle wave function during storage. (a) Spatial distribution of
the doubly excited spin component for three different times: after
an initial transient but before starting the storage protocol (blue
dashed line); at time t0, where �(t0) = 1

2 �0 (red dash-dotted line);
and at the end of the protocol (yellow solid line), where �(t) is
approximately zero as indicated by the arrows in (b). (b) Time
dependence of the control field, which is turned off according
to �(t) = �0

2 {1 − tanh[(t − t0)/τ ]}. The blockaded distance during
storage stays finite while the stationary blockade radius aB ∝ �−1/3

diverges as shown in (c).

We have verified this by two-particle simulations, which are
illustrated in Fig. 7. Shown is the spin-spin component of
an initial two-photon wave packet propagating in an EIT
medium with Rydberg interactions as in Sec. IV. After an
initial transient an avoided volume is formed corresponding
to the blockade radius aB(�0) given by the initial drive-field
Rabi frequency �0 and larger than the critical distance ac

(cf. Fig. 3). When the drive field is adiabatically turned to
zero as shown in Fig. 7(b), the EIT blockade radius aB(�(t))
increases and eventually diverges [see Fig. 7(c)]. The avoided
volume, however, stays approximately constant. This shows
that an adiabatic slowdown of Rydberg polaritons allows us to
increase their effective mass and thus the ratio of the interaction
energy to kinetic energy �, without reducing the polariton
density ρ0. In this way it is possible to enter the interesting
regime of strong interactions between Rydberg dark-state
polaritons [19].

VI. SUMMARY

We derived an effective model for the interaction of photons
in a gas of Rydberg atoms under conditions of electromag-
netically induced transparency in particular in the regime of
large optical depth per blockade distance dB � 1. We showed
that under paraxial propagation conditions and for sufficiently
low densities of excitations the system can be described by an
effective model of a single species of quasiparticles, called Ry-
dberg dark-state polaritons. The model can be reduced to one
spatial dimension if the transverse beam diameter is less than
the EIT blockade radius. For sufficiently large interparticle
distances Rydberg polaritons behave as massive Schrödinger
particles with repulsive van der Waals–type interactions. For
shorter distances there is a coupling of dark-state polaritons to
decaying and fast propagating bright-state polaritons, giving
rise to an effective loss mechanism for Rydberg polaritons. For
an off-resonance excitation scheme with finite single-photon
detuning, also bound two-particle states exist. As will be
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discussed in detail elsewhere [27] these states cannot be excited
for large dB from an initial light field and thus were not
considered here. We derived conditions where the losses in
the effective Rydberg polariton model are negligible and we
can use an effective Hamiltonian. The ground-state properties
of this Hamiltonian were analyzed using numerical DMRG
simulations and in terms of a Luttinger-liquid model. We
showed that the regime of strong interactions, characterized
by a large ratio of interaction to kinetic energy � � 1,
is very difficult to reach under stationary EIT conditions.
Increasing the strength of the van der Waals interaction
between Rydberg atoms leads to an increase of the EIT
blockade distance, which prevents reaching sufficiently large
polariton densities inside the medium under stationary EIT
conditions.

However, making use of a dynamical slowdown of Rydberg
polaritons propagating inside the medium or a storage protocol
of polaritons into stationary spin excitations allows us to
decrease the kinetic energy by increasing their effective mass
without reducing the quasiparticle density. In this way it
is possible to generate a quasicrystalline or charge-density
wave state of stored photons, which is a highly nonclassical
state consisting of an ordered string of single-photon wave
packets. This state can be observed either by nonadiabatic
release of the stored excitations into a train of single pho-
tons or by direct imaging of the Rydberg ensemble as in
[40].
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APPENDIX: DERIVATION OF THE FULL
MASTER EQUATION

Here we present a brief derivation of the full version of the
master equation (27) including higher-order terms that have
been neglected in Sec. III.

In addition to the first-order correlation function (23) of two
operators the only nonvanishing correlation function arising
in evaluating Eq. (24) is the antinormal-ordered correlation

function of four bright-state polariton operators

〈�̂(x,t)�̂†(y,t − τ )〉 ≈ e−effτ δ(x − y), τ > 0, (A1)

〈�̂(x,t)�̂(x ′,t)�̂†(y,t − τ )�̂†(y ′,t − τ )〉
≈ e−2effτ [δ(x − y − vτ )δ(x ′ − y ′ − vτ )

+ δ(x ′ − y − vτ )δ(x − y ′ − vτ )], τ > 0. (A2)

The interaction Hamiltonian Ĥ�� including terms quadratic
in bright-state polaritons is given by

Ĥ��(t) =
∫

dz

(
�̂†(z)L̂(z) + L̂†�̂(z) +

∫
dz′V (z − z′)

× sin2 θ cos2 θ (�̂†(z,t)�̂†(z′,t)�̂(z′,t)�̂(z,t)

+ �̂†(z,t)�̂†(z′,t)�̂(z′,t)�̂(z,t))
)

. (A3)

The full Hamiltonian includes additional terms cubic in
bright-state polaritons. These terms are not relevant to the
time evolution of dark-state polaritons since three-particle
correlations of bright-state polaritons vanish in the vacuum.
Using the Hamiltonian (A3) in Eq. (24), we find the full master
equation

ρ̇ = i
�

�2
e

∫
dz[ρ,L̂†(z)L̂(z)] + i sin4 θ

∫
dz

∫
dz′

×V (z − z′)[ρ,�̂†(z)�̂†(z′)�̂(z′)�̂(z)]

+i
� sin4 θ cos4 θ

�2
e

∫
dz

∫
dz′V 2(z − z′)

× [ρ,�̂†(z)�̂†(z′)�̂(z′)�̂(z)]

+ γ

�2
e

∫
dz[2L̂(z)ρL̂†(z) − {ρ,L̂†(z)L̂(z)}]

+γ sin4 θ cos4 θ

�2
e

∫
dz

∫
dz′V 2(z − z′)[2�̂(z′)�̂(z)

× ρ�̂†(z)�̂†(z′) − {ρ,�̂†(z)�̂†(z′)�̂(z′)�̂(z)}], (A4)

including higher-order corrections. The additional terms com-
pared to Eq. (27) are a correction to the two-particle interaction
potential in the second line as well as a two-particle loss in the
last line of Eq. (A4). Both terms are proportional to cos4 θ and
thus are highly suppressed in the case of slow light.
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[4] S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Phys. Rev. Lett.
107, 153001 (2011).

[5] D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett.
107, 213601 (2011).

[6] B. Olmos, W. Li, S. Hofferberth, and I. Lesanovsky, Phys. Rev.
A 84, 041607(R) (2011).
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