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Interfacing microwave qubits and optical photons via spin ensembles

Susanne Blum,1 Christopher O’Brien,2,3 Nikolai Lauk,2 Pavel Bushev,4 Michael Fleischhauer,2 and Giovanna Morigi1
1Fachrichtung 7.1: Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

2Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
3Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A & M University,

College Station, Texas 77843-4242, USA
4Fachrichtung 7.2: Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

(Received 23 January 2015; published 26 March 2015)

A protocol is discussed which allows one to realize a transducer for single photons between the optical and the
microwave frequency range. The transducer is a spin ensemble, where the individual emitters possess both an
optical and a magnetic-dipole transition. Reversible frequency conversion is realized by combining optical photon
storage, by means of electromagnetically induced transparency, with the controlled switching of the coupling
between the magnetic-dipole transition and a superconducting qubit, which is realized by means of a microwave
cavity. The efficiency is quantified by the global fidelity for coherently transferring a qubit excitation between a
single optical photon and the superconducting qubit. We test various strategies and show that the total efficiency
is essentially limited by the optical quantum memory: It can exceed 80% for ensembles of nitrogen-vacancy
centers and approaches 99% for cold atomic ensemble, assuming state-of-the-art experimental parameters. This
protocol allows one to bridge the gap between the optical and the microwave regime in order to efficiently
combine superconducting and optical components in quantum networks.
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I. INTRODUCTION

Hybrid quantum networks combine the long coherence
times of microscopic quantum systems with the strong interac-
tions and integration available in solid-state devices [1]. Their
realization requires the efficient interfacing of these constituent
systems. In most designs, information transport is realized
by means of low-loss telecom fibers [2], while promising
candidates for information processing are superconducting
quantum circuits, which work in the microwave regime [3].
One quest is to be able to reversibly convert the frequency of
a single photon from the optical to the microwave regime.

There are several proposals for optical-to-microwave trans-
ducers, which make use of different physical mechanisms.
One candidate is nanomechanical devices, which strongly
couple to both microwave and optical fields via electro- and
optomechanical forces, respectively [4–8]. Proof-of-principle
experiments were recently successfully performed [6–8]. One
drawback of nanomechanical systems is that their conversion
bandwidth is limited by the high-quality factors of the
mechanical resonances.

An alternative route to conversion could be realized by
a spin ensemble, acting as a quantum memory and pos-
sessing a magnetic-dipole transition which strongly couples
to a microwave cavity [9]. The basic idea we pursue is
the realization of a quantum memory for optical photons.
The qubit state is then reversibly transferred from the spin
ensemble to a superconducting qubit (SCQ) by controllable
switching on and off of the coupling of both systems with
a microwave resonator, as proposed in Ref. [10]. Examples
of spin ensembles are cold-atomic gases, nitrogen-vacancy
(NV) centers in diamonds, and rare-earth–doped crystals, of
which the strong coupling of a magnetic-dipole transition
with a microwave resonator has been recently experimentally
demonstrated [11–17]. Such a great variety of spin ensembles
exhibit different features, which require the application of

adequate conversion protocols [18]. Rare-earth–doped crys-
tals, for instance, are characterized by large optical depths,
which makes them an attractive platform [19]. Their in-
homogeneous broadening, on the other hand, is such that
light storage protocols based on adiabatic transfer, such as
storage based on electromagnetically induced transparency
(EIT) [20–22], become inefficient, so that a quantum memory
for optical photons shall be realized using methods based
on photon echoes [23] and atomic frequency combs [24]. In
Refs. [10,25], it was shown that control over these techniques
can lead to single-photon frequency-conversion efficiencies
that exceed 90%.

In this paper, we analyze the efficiency of frequency
conversion for other platforms, focusing in particular on cold
atomic ensemble [11,26,27] and NV centers embedded in
a diamond matrix [28–30]. These systems are characterized
by limited inhomogeneous broadening, which allows one to
implement protocols based on adiabatic transfer. On the other
hand, they also possess a low optical depth, so that the setup
shall integrate an optical element increasing their coupling
with the incident photon, such as an optical resonator.

The protocol we consider in this paper is sketched in Fig. 1.
The spin ensemble couples with the optical photon via the
dipole transition between the electronic states |b〉 → |a〉, and
stores the photon into a collective spin excitation via storage
based on EIT [21,22]. The ring resonator, within which the
spin ensemble can be confined, increases the optical depth of
the medium. Coherent transfer of a spin into a qubit excitation
is performed by means of a microwave cavity, which couples
to both systems and which can be tuned on and off resonance.
Our analysis focuses on experimentally accessible parameter
regimes and identifies the requirements in order to reversibly
transfer photonic to SCQ excitations.

This article is structured as follows. In Sec. II, the physical
model is introduced. In Sec. III, the strategies considered in this
paper for achieving the transfer from optical to microwave are
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FIG. 1. (Color online) (a) Setup of a quantum transducer based
on a spin ensemble. The optical photon (blue) and the control pulse
(red) couple with the modes of a ring resonator, which in turn
drive the �-level structure of atoms or NV centers in a diamond
matrix (b). The photon is stored into a spin excitation along the
magnetic-dipole transition |b〉 → |s〉 via EIT. The transition is then
coupled to a microwave stripline cavity, which in turn couples to a
SC qubit. The coupling with the microwave resonator is switched on
and off either adiabatically or suddenly by tuning the cavity and/or
the qubit frequency. The multiple lines of the level scheme indicate
the transitions which are inhomogeneously broadened when the spin
ensemble is composed of NV centers. Further details are given in the
text.

summarized and the efficiency is determined using parameters
that are compatible with existing experimental setups. In
Sec. IV, further remarks on the experimental feasibility are
made and the conclusions are drawn. The appendices report
details on the theoretical model which is at the basis of the
results in Sec. III.

II. MODEL

The quantum transducer is a spin ensemble of either NV
centers in diamond or cold atoms, which possess an optical
transition between the electronic states |b〉 and |a〉 coupling
with the mode of an optical ring resonator. State |a〉 also
couples via an optical dipole transition to the stable state |s〉, so
that |b〉, |a〉, and |s〉 form a � configuration of levels, shown
in Fig. 1(b). The states |b〉 and |s〉 form a magnetic-dipole
transition in the microwave regime, which couples with a
microwave cavity.

The protocol is illustrated in Fig. 1(a): a single optical
photon is coupled to a mode of the ring resonator, and the
qubit information it encodes is transferred via light storage
into a spin excitation of the transition |b〉 → |s〉. This spin
excitation is then transferred into a SCQ excitation via the
coupling with the microwave resonator, which is switched on
and off by engineering the cavity and/or the qubit frequency
as a function of time.

In this section, we introduce the Hamiltonian governing the
coherent dynamics, which is at the basis of the study presented
in this work.

A. Hamiltonian

We first focus on the coherent dynamics of the system, com-
posed of the incident photon, the optical and the microwave
cavity modes, and the collective transitions of the atoms, which

are driven by external fields. We choose the frame rotating at
the carrier frequencies of the driving fields, so that the explicit
time dependence in the terms describing the coupling with
the lasers is dropped. Details of the transformation from the
laboratory frame to this frame are provided in Appendix A.

The Hamilton operator is conveniently decomposed in the
terms giving rise to different elements of the protocol. We first
consider a spin ensemble composed of N atoms or NV centers,
and denote the energy of the relevant electronic transitions by

Ĥspin = �

N∑
i

(
δ

(i)
abσ̂

(i)†
ba σ̂

(i)
ba + δ

(i)
sb σ̂

(i)†
bs σ̂

(i)
bs

)
, (1)

where the subscript i = 1, . . . ,N labels the particles and σ̂
(i)
j l =

|j 〉i〈l|, such that σ̂
(i)†
lj σ̂

(i)
lj = |j 〉i〈j | is the projection operator

to state |j 〉 of atom i and σ̂
(i)†
j l = σ̂

(i)
lj . Transition |s〉 → |a〉

is optical, and the corresponding raising (lowering) operator
is given by σ̂ (i)

as = σ̂
(i)
ab σ̂

(i)
bs (σ̂ (i)

sa = σ̂
(i)†
as ). For NV centers in

diamonds, the detunings δ
(i)
ab and δ

(i)
sb depend on the position �ri

of the spin i within the sample.
In the following, we assume that the transition |b〉 → |a〉

couples with the degenerate modes of a ring resonator,
while |s〉 → |a〉 is driven by a classical laser pulse. The
corresponding Hamiltonian, describing the coupling between
spins and optical fields, reads

Ĥopt = �

N∑
i=1

(
gabe

i�k·�ri σ̂
(i)†
ba ĉR + H.c.

)

+ �

N∑
i=1

[
�(t)ei�kL·�ri σ̂ (i)†

sa + H.c.
]
.

Here, ĉR annihilates a photon of the cavity mode which propa-
gates in the clockwise direction, �k are the corresponding wave
vectors, and gab is the vacuum Rabi frequency. The laser field
drives the transition |s〉 → |a〉 with spatially homogeneous
strength �(t), which here is assumed to be slowly varying in
time and such that �(t) = �0(t)eiφ , with �0(t) = |�(t)|. We
denote the laser wave vector by �kL, with |�kL| ≈ |�k| ≡ k, which
is fulfilled considering that the frequency of the transition
|b〉 → |s〉 is in the microwave range. The Hamiltonian term for
the mode propagating in the anticlockwise direction is given
in the appendix and is included in the dynamics we evaluate.

The controlled transfer between the spin excitation and the
superconducting qubit occurs via the mode of a microwave
resonator at detuning �c, which couples with the transition
|b〉 → |s〉 of the spins and with the transition |g〉 → |e〉 of the
qubit. We introduce the operator σ̂Q = |g〉〈e| and denote by
δQ the qubit detuning. The Hamiltonian for this element of the
dynamics also includes the quantum field of the microwave
resonator and takes the form

Ĥmw = �δQσ̂
†
Qσ̂Q + ��câ

†â

+ �

[
â†

(
Gσ̂Q +

N∑
i

κi σ̂
(i)
bs

)
+ H.c.

]
, (2)

where â† is the bosonic operator that creates a photon in the
microwave cavity mode, while G and κi denote the vacuum
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Rabi coupling with the qubit and with the spin at position �ri ,
respectively.

We finally describe the incident photon and the coupling
with the resonator. The incident photon is a superposition of the
modes external to the resonator and couples with the clockwise
cavity mode via a mirror, as is assumed to propagate along the
positive direction of the x axis. The corresponding Hamil-
tonian includes the quantum electromagnetic field outside
the resonator, with frequencies ωl , detuning �l = ωl − ωco,
wave vector �kl along the positive direction in the x axis, and
corresponding annihilation and creation operators d̂

(+)
l and

d̂
(+)†
l :

Ĥin−out = �

∑
l

[�ld̂
(+)†
l d̂

(+)
l + κopt,l(ĉ

†
Rd̂

(+)
l + H.c.)],

where κopt,l is the coupling parameter between the modes of
the optical cavity and the free field, while the mirror where they
couple is at the x = 0 plane. The total Hamiltonian governing
the coherent dynamics then reads

Ĥ = Ĥspin + Ĥmw + Ĥopt + Ĥin−out. (3)

B. Target state

We analyze the dynamics of an incident photon in the
Schrödinger picture, assuming that the spins are initially
(t = 0) all in state |b〉i and the cavity modes are empty.
In the absence of other sources of excitation, the vector
|
(t)〉 describing the state of the system is composed of the
states which contain either one spin or qubit excitation, or
a (microwave or optical) cavity photon. In this regime, it is
convenient to introduce the following notation for the spin
excitations [22]:

|b〉e ≡ |b1, . . . ,bN 〉, (4a)

|ai〉e ≡ |b1, . . . ,ai, . . . ,bN 〉 = σ
(i)†
ba |b〉e, (4b)

|si〉e ≡ |b1, . . . ,si, . . . ,bN 〉 = σ
(i)†
bs |b〉e, (4c)

which compose the set of electronic states involved in the
dynamics. Further, we denote by |vac〉 the vacuum state of
the external field, such one photon excitation in the mode at
frequency ωl and propagating along the positive direction of
the x axis reads |1(p)

l 〉 = d
(p)†
l |vac〉. The cavity-mode states

which are relevant to the dynamics are |0�〉 and |1�〉, with
� = R,L,cμ for the optical clockwise, anticlockwise, and
microwave cavity modes, respectively. We then conveniently
write the state vector at time t in the form

|
(t)〉 = |
(t)〉opt|0cμ〉|g〉 + |vac〉|b〉e|0L,0R〉|
(t)〉mw, (5)

where |
(t)〉opt is defined in the Hilbert space of the external
field, optical transitions, and cavity modes, and reads

|
(t)〉opt =
∑

l

ηl(t)|1l〉|0L,0R〉|b〉e

+ |vac〉[u(t)|0L,1R〉 + v(t)|1L,0R〉]|b〉e

+
N∑
i

|vac〉|0L,0R〉[ai(t)|ai〉e + si(t)|si〉e], (6)

while |
(t)〉mw is defined in the Hilbert space of the qubit and
of the mode of the microwave cavity,

|
(t)〉mw = c(t)|1〉cμ|g〉 + q(t)|0cμ〉|e〉. (7)

We remark that since state |
(t)〉 is normalized to unity,
opt〈
(t)|
(t)〉opt +mw 〈
(t)|
(t)〉mw = 1. According to this
notation, ηl(t) is the probability amplitude of a photon in the
free-field mode l, u(t) and v(t) are the probability amplitudes
of a photon in the clockwise and anticlockwise mode of the
ring resonator, si and ai are the probability amplitudes that
the ensemble is in state |si〉e and |ai〉e, respectively, c(t) is the
probability amplitude that the excitation is a microwave cavity
photon, and finally, q(t) is the probability amplitude that the
excitation is transferred in the qubit state |e〉.

The target is that given the initial state

|
(0)〉 =
∑

l

η
(+)
l (0)|1(+)

l 〉|b〉e|0L,0R〉|0cμ〉|g〉, (8)

with
∑

l |η(+)
l (0)|2 = 1, then at a given time t the probability

|q(t)|2 = 1. Ideally, moderate fluctuations in the time t and in
the parameters of the protocol shall not significantly affect this
probability, which is what we aim for. So far, the dynamics
governed by Hamiltonian Ĥ does not include detrimental
effects, such as decay of the electronic and of the qubit state,
dephasing of the internal coherences, and losses of the cavity
modes (including also coupling of the other mirrors to the
external electromagnetic field). All of these effects contribute
to decreasing the final probability of transfer, and are included
here as loss terms in the equations of motion of the probability
amplitudes, which are reported in Appendix B.

We observe that our analysis is sufficient to determine the
fidelity of transfer of any initial state of the external field of
the form |φf 〉 = α|�(0)〉 + β|
(0)〉 (|α|2 + |β|2 = 1), where
〈�(0)|
(0)〉 = 0 and state �(0) does not couple with the spin
ensemble. This holds as long as the transfer process is coherent,
as we assume in our model. Losses and decoherence in general
lower the probability of transfer of any initial state of this kind
into a qubit excitation, and thus the total fidelity.

III. PROTOCOLS FOR A QUANTUM TRANSDUCER

In this section, we discuss strategies for achieving the
reversible transfer of a single optical photon into a SCQ
excitation. In general, the problem can be formulated in
terms of optimization, where the various parameters such as
detunings and fields are varied as a function of time in order to
perform the coherent transfer with unit fidelity. Thus, given the
system properties, the control parameters are the shape and the
intensity of the laser pulse coupling the transition |a〉 → |s〉,
the detunings of the individual transitions of ensemble and
qubit, and the frequency of the microwave cavity mode
[31–33]. While such general analysis has a high computational
complexity and deserves a study of its own, here we focus on
the efficiency of simple protocols whose components have
been proposed in the literature and realized experimentally,
which are known to allow for a certain robustness against
parameter fluctuations and, in particular, against fluctuations
in the time needed to perform the protocol.

There are several cases that are relevant for experi-
mental realizations. Rare-earth–doped crystals exhibit large
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inhomogeneous broadening and large optical depth. For this
case in Ref. [10], we proposed a sequential protocol. There,
the incoming photon is absorbed using controlled reversible
inhomogeneous broadening (CRIB). The optical excitation is
then mapped into a spin state using a series of π pulses and
subsequently transferred to a superconducting qubit via the
microwave cavity.

In this paper, we focus on ensembles of NV centers and
of cold atoms. Ensembles of cold atoms in the gas phase [26]
are usually weakly coupled with the external environment, so
that the assumption of homogeneous broadening is justified.
The atomic motion and the collisional dephasing between the
atoms play a minor role during the interaction with the single
photon and will be neglected here. We will also assume that
the ensemble is small enough so that all atoms feel the same
coupling gab to the optical cavity. In this regime, a protocol
based on EIT is efficient. NV centers in a diamond crystal act
like a frozen gas of atoms, since the centers are embedded
in a diamond matrix and thus cannot move. The drawback is
that the NV centers are usually inhomogeneously broadened
predominantly due to crystal strain and excess nitrogen which
is not paired with a neighboring vacancy [34]. The latter is
actually a limitation to creating high optical depth for the
EIT storage because higher dopant densities lead to a higher
number of unpaired nitrogen atoms and thus to shorter pure
optical dephasing times (T ∗

2 ) [35]. A way to get rid of this
inhomogeneous broadening was proposed in Ref. [36] by
preselecting the optimal spectral portion of NV centers and
transferring the rest to an auxiliary state. This leads to a
decrease in the spectral width. At the same time, it also leads to
a decrease of about 5 × 103 in the number of spins, which can
be partially compensated by means of the amplified coupling
induced by a resonator, as we consider here.

Under these premises, we review in this section the basic
steps of an EIT-based storage protocol, followed by an
adiabatic transfer of the spin excitation to the qubit by slowly
switching the microwave cavity. The transfer is sequential and
aims at maximizing the fidelity of the individual steps. For a
sequential protocol, the total fidelity can then be written as the
product of the fidelities of the individual steps of the sequence:

F = FEITFmw, (9)

where FEIT is the fidelity of the light storage protocol and,
according to our model, it corresponds to the probability of
mapping the incident photon into a spin excitation, while Fmw

is the probability to transfer the collective spin excitation to
the qubit.

A. Light storage

Let us first consider how to map a single photonic excitation
onto a spin excitation of a medium. For this purpose, we
assume that the spin ensemble is not coupled to the microwave
cavity field, which can be achieved by setting the cavity
mode and qubit out of resonance. The storage protocol we
suggest to use is based on EIT [20], a phenomenon which
occurs in a medium consisting of three-level atoms in a �

configuration, as in Fig. 1(b). Applying a resonant control field
on the |s〉 − |a〉 transition opens a transparency window for the
propagating signal field which travels trough the medium with

a reduced group velocity. Since the group velocity depends
on the control-field Rabi frequency �(t), this propagating
field can be stored by adiabatically reducing the control-field
strength to zero [21]. A detailed analysis [22,37] shows that the
storage efficiency reaches unity in the limit of infinite optical
depth d. Unfortunately, both gas and NV center ensembles
typically have small optical depths. To circumvent this issue,
one can use an optical cavity as we consider here, which
increases the optical depth by the number of passes which a
photon makes through the cavity before leaking out. This hence
leads to an effective optical depth, which is then described by
the cooperativity parameter C = 4g2

abN/γcoγa of the cavity,
where γco and γa are the cavity and atomic decay rates,
respectively, and gab

√
N is the coupling strength between

cavity mode and atomic ensemble. The maximal efficiency
in that case is then given by ηEIT = C

1+C
[38]. Furthermore,

assuming a homogeneously broadened medium and neglecting
decay of the metastable state, it was shown in Refs. [38,39]
that in the “bad cavity” limit (γco 
 gab

√
N ), any smooth

input mode with the duration T which satisfies the adiabaticity
condition T Cγa 
 1 can be stored with maximally possible
efficiency into the target intermediate state,

|
〉opt|target = |vac〉|0L,0R〉|s〉e, (10)

by suitably shaping the control-field pulse. Details are re-
ported in Appendix C. The state |s〉e = ∑

j ei(�k− �kL)·�rj |s〉j /
√

N

describes the stored spin state. If the propagation direction
of the control laser coincides with the one of the incident
photon, i.e., �kL ≈ �k, the phase term can be neglected and the
spin state is then approximated by the symmetric Dicke state
|s〉e ≈ ∑

j |s〉j /
√

N . The discussion above implies that for
optimal transfer, the time scale of the storage process should
be faster than detrimental effects (which we neglected so far).
Among these processes is the dephasing due to inhomogeneous
broadening, which is in particular relevant for the NV center
ensembles.

Another source of losses is the coupling with the other
ring-cavity mode propagating in the counterclockwise di-
rection, which is fully included in our analysis. The rate
of losses associated with this effect is estimated to be �
| ∑j e2i�k·�rj |2g2

ab/N , as shown in Appendix C, and can be
rather small provided a sufficiently large number of atoms is
homogeneously distributed in space over several wavelengths
of light.

B. Transfer from a spin to a qubit excitation
via a microwave cavity

We first consider the second part of the protocol, in which
the spin excitation is transferred into a qubit excitation via
coupling to the microwave resonator. This coupling can be
neglected during the light storage protocol assuming the
ability to tune the cavity mode and the qubit transition far-off
resonance. After storage, the coupling can be switched on
in a controlled way by setting these two systems close to
resonance with the spin transitions. Therefore, we assume
that there is an instant of time t1 > 0 at which the photon
has been absorbed. In particular, �(t1) = 0, and the sys-
tem is in state |
(t1)〉 = |
opt(t1)〉|0cμ〉|g〉, with |
opt(t1)〉 =
|vac〉|0L,0R〉|s〉e. The dynamics at times t > t1 are governed
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by the sum of Hamiltonians (1) and (2),

H ′
mw(t) = �

N∑
i

δ
(i)
sb σ̂

(i)†
bs σ̂

(i)
bs + �δQσ̂

†
Qσ̂Q + ��câ

†â

+ �

[
â†

(
Gσ̂Q +

N∑
i

κi σ̂
(i)
bs

)
+ H.c.

]
, (11)

where the qubit (or, equivalently, spin) and cavity frequency
can be tuned in time, i.e., δQ = δQ(t) and �c = �c(t),
while the coupling with the resonator is constant. This time
dependence shall be varied in order to coherently transfer
the population at time t2 > t1 to the SCQ. From the form
of Hamiltonian (11), it is immediately visible that the transfer
efficiency is limited by the overlap between the symmetric
Dicke state |s〉e obtained by light storage and the collec-
tive state |s ′〉e maximally coupled with the cavity, |s ′〉e =∑

j κj |sj 〉e/
√∑

j |κj |2. The amplitudes κj are determined

by the cavity-mode function, and thus by the structure of a
coplanar waveguide resonator mode [11,40]. The fidelity of
this transfer process has the upper bound Fmw � FS

max given
by the overlap

FS
max = |e〈s|s ′〉e|2.

For the general purpose of this discussion, we will assume
κj = κ , so that |s ′〉e = |s〉e. Our aim is to identify the temporal
variation of δQ and �c for which the equations of motion,

ṡ(t) = −iκ
√

Nc(t), (12a)

ċ(t) = −
[
i�c(t) + γcμ

2

]
c(t) − iκ

√
Ns(t) − iGq(t), (12b)

q̇(t) = −
[
iδQ(t) + γe

2

]
q(t) − iGc(t), (12c)

couple the initial state s(t1) = 1 with the target state at t2 > t1
with q(t2) = 1. In particular,

Fmw = |q(t2)|2,
under the condition that s(t1) = 1, unless otherwise stated. In
this process, we search for solutions which are robust against
time and parameter fluctuations, and still sufficiently fast to
minimize the detrimental effects, such as, for instance, qubit
and cavity decay. We will focus on two different schemes based
on (i) adiabatic transfer of the excitation by tuning the qubit
or the cavity frequency [12] and (ii) pulsed transfer by tuning
the cavity field in order to perform a dynamics which realizes
an effective π pulse. For convenience, from now on we will
restrict our analysis to the states of the restricted Hilbert space
composed of the microwave cavity, spin, and qubit states.

1. Adiabatic transfer

We now focus on adiabatic transfer mechanisms, which
are realized by changing the cavity and/or the qubit frequency
sufficiently slowly, so that the system follows the instantaneous
eigenstates of Hamiltonian H ′

mw(t), given by Eq. (11), which
we denote by |λj (t)〉 such that H ′

mw(t)|λj (t)〉 = λj (t)|λj (t)〉,
with j = 1,2,3. The adiabatic transfer corresponds to moving
along one of the paths shown in Fig. 2 by varying a
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−15
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0
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10

15

FIG. 2. (Color online) Instantaneous eigenvalues of the three-
level system as a function of (a) δQ(t) and (b) �c(t). The duration of
the adiabatic protocol is determined by the energy gap at the avoided
crossings. Insets: The time variation of (a) the qubit and (b) the cavity
detuning. In (b), the cavity frequency is swept first across the spin
and then across the qubit resonance.

transition frequency in time [41]: when the initial state is
an eigenvector at t → −∞, this is continuously transformed
into the target state, which is an eigenvector at the other
asymptotic, t → ∞. The rate of change, which warrants the
adiabatic following, must be smaller than the minimal energy
gap between the eigenvalues. Thus, if |
(t1)〉 = |λ1(t1)〉, with
|
(t1)〉 = |s〉e|0cμ〉|g〉, and |λ1(t2)〉 = |b〉e|0cμ〉|e〉, then the
adiabatic transfer is warranted provided that the condition
below is fulfilled at any instant of time t [42]:

|〈λ̇1(t)|λj (t)〉|  |λ1(t) − λj (t)|, (13)

for j = 2,3.
One simple limiting case is found by adiabatically tuning

the qubit frequency while keeping the cavity mode far-off
resonance, as illustrated in the inset of Fig. 2(a). In this
way, the cavity field is only virtually excited and the effect
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TABLE I. Parameters and their variation in time for the data
points of Fig. 10. For the resonant pulse (“stag-π”), in the first pulse
δQ = 50G and �c = 0. After the excitation has been transferred to
the cavity, the two values are swapped. In the adiabatic protocols, the
initial value of the detuning is usually taken to be at −�ck/2 (δqk/2).

Protocol
√

Nκ δQ δqk �c �ck

stag-π G, 0.2G 50G 0 stepwise 50G
c-tune G 7.4G 0 linear sweep 38G

0.2G 7.4G 0 linear sweep 26G
q-tune G linear sweep 4G 50G 0

0.2G linear sweep 0.4G 50G 0

of cavity decay on the protocol fidelity is minimized. This
can be realized when |�c| 
 G,κ

√
N, maxt |δQ(t)|: then the

dynamics can be reduced to an effective two-level system,
where qubit and spin excitations are directly coupled with rate
κ̃ = Gκ

√
N/�c, and

λ1,2(t) = κ2N

�c

+ δ̃Q(t)

2
∓

√
δ̃Q(t)2

4
+ κ̃2. (14)

Here, δ̃Q(t) = δQ(t) + G2/�c − κ2N/�c includes the dy-
namical Stark shift. The corresponding eigenvector takes
the form |λ1(t)〉 = cos �(t)|s〉e|g〉 + sin �(t)|b〉e|e〉, where
tan(�) = κ̃/λ1(t), and δQ varies from a negative to a positive
value as a function of time. Here, we assume it follows the
linear relation δQ(t) = δqk/2(2t/T − 1), with t ∈ [0,T ] and
δ

(0)
Q 
 |κ̃|. The duration T must fulfill the condition dictated

by Eq. (13), thus |κ̃|T 
 1. This condition can be optimized
choosing different types of time sweeps, which are faster where
the energy gap is larger.

We first analyze with Eqs. (12) the fidelity of the protocol
based on sweeping the frequency of the SCQ through the
resonance frequency of the symmetric spin state, while keeping
the cavity off resonance, as illustrated in Fig. 2(a). This requires
one to sweep the detuning δQ sufficiently slowly across the
resonance, so that the system remains in the state whose energy
is given by the upper red line of Fig. 2(a) and the spin excitation
is ideally adiabatically transformed into the qubit excitation at
the end of the sweep. In Ref. [43], the frequency of a phase
qubit can be tuned between 6 and 9 GHz, and here we assume
a tuning range δqk = 3 GHz. The duration of the protocol T

is chosen to be shorter than 10 μs, which corresponds to the
lifetime of the SCQ [44]. We further take the qubit-cavity
coupling to be G/2π = 50 MHz [45,46] and set it, for later
convenience, equal to the superradiant coupling of the cavity
with the spins, κ

√
N = G.

Figure 3 displays the fidelity Fmw as a function of the
cavity detuning �c and of the range δqk over which the qubit
detuning is swept. Note that since the transfer time here is kept
constant, larger values of δqk imply faster sweeps, so there is an
optimal parameter regime for which the protocol is efficient.
The parameter region with best fidelity corresponds to finite
values of �c (namely, finite gaps) and sufficiently small values
of δqk: in this regime, in fact, one has slow quench rates
and sufficiently large tuning ranges of the qubit detuning, in
order to allow one to perform adiabatic sweeping. We observe

FIG. 3. (Color online) Fidelity Fmw of transferring the spin into
the SCQ excitation for the protocol based on sweeping the qubit
detuning across the spin resonance. The fidelity is reported as a
function of the cavity detuning �c and of the range δqk over which
the qubit detuning is linearly swept and is obtained by numerically
integrating Eqs. (12). The transfer time is T = 100G−1 and G =√

Nκ = 2π × 50 MHz.

that average transfer fidelities over 0.9 can be reached in a
sufficiently broad region of parameter centered at δqk ∼ 3G

and �c ∼ 8G. The values for the fidelity in Fig. 3 correspond
to the occupation of the SCQ excited state at the end of the
sweep, which is obtained by averaging over the oscillations
observed at the asymptotics. These oscillations are visible in
the qubit population shown in Fig. 4(a), which displays the
dynamics of spin, cavity, and qubit excitation as a function of
time, while the detuning is swept across the spin resonance.
They are due to the fact that for the chosen values of δqk , the
protocol does not start sufficiently far away from the avoided
crossing, so that in the final state both cavity and qubit are
populated. Suppression of these oscillations, leading to larger
fidelities, can be reached for larger values of δqk and/or of the
detuning �c, provided that the transfer times are scaled up, as
shown in Fig. 4(b). Here, we took δqk = 4G and �c = 50G.
The final occupation is about 99%, but the time required for
the transfer is one order of magnitude larger, T = 7650G−1,
and the system suffers from spontaneous decay.

The fidelity of this protocol is sensitive to imbalances in the
values of the coupling constants, and requires that the coupling
strength G and κ

√
N are of the same order of magnitude. An

example of the transfer fidelity for κ
√

N = 0.2G is reported
in Fig. 5 and shows a severe reduction of the parameter region
where the protocol is efficient.

Another simple type of adiabatic protocol is depicted in
Fig. 2(b). It sequentially transfers population (i) from spin to
cavity, by keeping the qubit far-off resonance and sweeping
the cavity frequency across the spin resonance, and then (ii)
from cavity to qubit, by sweeping the cavity frequency through
the qubit resonance. It thus combines a sweep of the cavity
detuning �c and/or of the qubit detuning δQ. This sequential
transfer requires the excitation of the microwave resonator
and is thus sensitive to cavity losses. In order to preserve
adiabaticity, the transfer time T must be larger than 1/κ

√
N for

the first part and larger than 1/G for the second part. Figure 6

033834-6



INTERFACING MICROWAVE QUBITS AND OPTICAL . . . PHYSICAL REVIEW A 91, 033834 (2015)

FIG. 4. (Color online) Dynamics of the spin (blue line), cavity
(green line), and qubit (red line) populations as a function of time
(in units of G−1) during the linear sweep of the qubit detuning
as δQ(t) = δqk/2(2t/T − 1) for G = √

Nκ = 2π × 50 MHz. The
other parameters are (a) δqk = 3G, �ck = 8G for a transfer time
T = 100G−1. Here the averaged qubit population at the end of the
sweep is approximately 94%. In (b), δqk = 4G and �ck = 50G for
T = 7650G−1. The average qubit population at the end of the sweep
is 99.05%.

displays the fidelity of the protocol, performed by sweeping
�c while keeping δQ and T constant. This corresponds to
ideally following the middle curve in Fig. 2(b) in the limit
of sufficiently large �ck , under the assumption that the cavity
frequency sweeps through the qubit frequency, as shown in
the inset of Fig. 2(b). We expect then that higher fidelities are
found for large �ck and small δQ. The results we found in
Fig. 6 agree with this expectation. As in the previous case,
we set T = 100G−1 with G = κ

√
N = 2π × 50 MHz. The

detuning �c is swept linearly with time, and the maximum
range is denoted by �ck . The region of parameters at fidelity
above 0.99 is manifestly larger. Figure 7 displays the time
evolution of the occupation probability for a particular choice
of the parameters warranting a fidelity of 0.99.

FIG. 5. (Color online) Same as in Fig. 3, but for
√

Nκ = 0.2G.

Figure 8 displays the fidelity of the protocol for the same
transfer time as in Fig. 6, but when the strength of the collective
coupling of spins with the resonator is reduced by a factor 5,
namely, for

√
Nκ = 0.2G. The parameter regions of fidelities

above 0.9 are drastically reduced, due to the fact that the
gap at the avoided crossing [Fig. 2(b)] is reduced and thus
strict adiabaticity would now require longer transfer times.
Nevertheless, this parameter region is still substantially larger
than the one found for the protocol, where the qubit detuning
is swept across resonance (compare with Fig. 5).

We note that the tuning range of a superconducting cavity is
to a maximum of 1 GHz [47,48] for the coupling strength G we
considered here. This protocol seems thus more efficient than
the one based on sweeping the qubit frequency keeping the
cavity far-off resonance. Its drawback is that the probability
that one photon is in the cavity during the protocol is
appreciable, hence cavity decay (which was not accounted for

FIG. 6. (Color online) Fidelity of transferring the spin into the
qubit excitation for the protocol based on sequentially sweep-
ing the cavity detuning across the spin and then the qubit resonance.
The fidelity is reported as a function of the qubit detuning δQ and of the
frequency range �ck over which the cavity detuning is linearly swept
and is obtained by numerically integrating Eqs. (12). The transfer
time is T = 100G−1 and G = √

Nκ = 2π × 50 MHz.
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FIG. 7. (Color online) Dynamics of the spin (blue line), cavity
(green line), and qubit (red line) populations as a function of time
(in units of G−1) during the linear sweep of the cavity detuning
as �c(t) = �ck/2(2t/T − 1) for G = √

Nκ = 2π × 50 MHz, δQ =
7.4G, and �ck = 38G. At the time t = 60G−1, the SCQ excited-state
population is slightly above 0.99.

in this calculation) can affect its efficiency. Before concluding
this section, we note that we just focused on linear sweeps.
Further optimization can be performed in shaping the time
variation of the detuning, which for the case of the cavity
sweep can lead to better fidelities for the same transfer times.

2. π -pulse transfer

We now turn to a protocol based on setting spin, qubit,
and cavity frequencies on resonance for a time duration
corresponding to an effective π pulse, which ideally transfers
the population from the spin to the qubit. This means that over
an interval of time to be identified, one has δsb = δQ = �c =
0. With this assumption, Eqs. (12) can be simply solved analyt-
ically and, after assuming s(0) = 1, c(0) = q(0) = 0 (t1 = 0),
one finds that the probability amplitude that the qubit is in the
excited state at t > 0 is

q(t) = −2κ
√

NG

�2
sin2

(
�t

2

)
, (15)

FIG. 8. (Color online) Same as in Fig. 6, but for
√

Nκ = 0.2G.

FIG. 9. (Color online) Dynamics of the populations as a function
of time during the protocol, realizing sequential π pulses from spin
to cavity, and then from cavity to qubit. The parameters are

√
Nκ =

0.2G, δQ = 50G, and �c = 0 in the first part of the sequence, then
�c = 50G in the second part.

where � = √
G2 + κ2N . The frequency � thus determines the

duration of the transfer pulse, which here means that after the
time interval T = π/�, the qubit and the cavity field are set off
resonance. This condition [as well as Eq. (15)] is specifically
valid for a rapid change of the detunings, so that in a very short
time they are set on or off resonance, and is clearly modified
if one assumes a smooth time variation.

Equation (15) shows that perfect transfer to the qubit
excitation occurs provided that the couplings are matched,
G = κ

√
N . Mismatching will provide another boundary to

the maximal fidelity. For instance, let ε = |G − κ
√

N |/�

be a relative measure of the mismatch; then the maximal
qubit excitation will be maxt |q(t)|2 = (1 − ε2)2. The final
fidelity of the protocol will thus be limited by the upper
value Fmw � FS

max(1 − ε2)2. This problem can be solved by
performing two subsequent π pulses: the first transfers the
excitation to the cavity, while the qubit is decoupled, and
the second transfers the excitation from the cavity to the
qubit. In this case, the time required is π

2 (1/G + 1/κ
√

N ) (for
square pulses). Taking G = 2π × 50 MHz and

√
Nκ = 0.2G,

ideally perfect transfer is achieved over a time of the order of
T ∼ 10G. The corresponding dynamics is shown in Fig. 9 and
achieves fidelities above 0.999 for T < 10G.

These results show that transfer based on π pulses is
generally faster than adiabatic protocols. We compare the
transfer time required by each type of protocol analyzed so
far under the requirement that a final fidelity Fmw � 0.99
is achieved. In Fig. 10(a), we take

√
Nκ = G, while in

Fig. 10(b), the coupling strength is
√

Nκ = 0.2G (with G =
2π × 50 MHz), further parameters are given in Table I. Here,
it is evident that the protocol based on resonant pulses is
two orders of magnitude faster than the protocol based on
adiabatically sweeping the cavity detuning, and four orders of
magnitude faster than the protocol based on sweeping the qubit
detuning. The multiple data points for each protocol represent
the maximal, minimal, and mean fidelity. This is extracted in
different ways depending on the considered protocol. For the
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FIG. 10. (Color online) Comparison of the three protocols: adia-
batic sweep of the qubit frequency (“q-tune,” black points), adiabatic
sweep of the cavity frequency (“c-tune,” red points), and resonant
transfer (“stag-π ,” blue points). The maximal and minimal values of
the fidelity for the protocols based on adiabatic transfer are plotted
as a function of the transfer time required for achieving an average
fidelity equal to 0.99. For the adiabatic protocols, the finite variance is
due to oscillations in the qubit population for the chosen parameters,
and for the resonant transfer, it is due to an uncertainty of 1% in the
determination of the pulse area. (a)

√
Nκ = G; (b)

√
Nκ = 0.2G.

Further parameters are given in Table I.

protocol based on adiabatic sweeping of the frequencies, the
population of the qubit exhibits oscillations at the asymptotics,
due to the fact that the initial state is not a perfect eigenstate of
the instantaneous Hamiltonian. Therefore, the mean value is
the average value, while the maximal and minimal values cor-
respond to the corresponding maximum and minimum of the
oscillation. For the resonant pulse, on the other hand, the final
fidelity is affected by the pulse area, which is taken into account
here by introducing an uncertainty in the pulse duration by 1%.

C. Effect of inhomogeneous broadening

We now analyze how the fidelity F of the whole transfer
protocol, including EIT storage, is affected by inhomogeneous
broadening. For this purpose, we take a medium composed
by NV centers in diamond, and assume inhomogeneous
broadening of the |s〉 state of the order of 6 MHz [35] and

FIG. 11. (Color online) Time evolution of the probability of spin
and qubit excitation for a protocol combining EIT storage and
adiabatic sweeping of the cavity frequency. We also report the
excitation of the optical field as a function of time (see text). The
parameters are �ck = 10G, δQ = 1.1G. The total transfer duration
is about Ttot = 568 ns, while EIT storage is performed over a time
TEIT ≈ g−1

ab = 5.68 ns. The curves are determined by numerically
integrating Eqs. (B1). The inhomogeneous broadening was simulated
by distributing the spins in 300 frequency values and the spectral
width of the incident photon assumed to be �ω = 0.028G.

of the order of 10 MHz of the |a〉 state [49]. The incident
photon has a hyperbolic secant shape. The control pulse
necessary for EIT storage is identified by solving Eq. (C9);
see, for instance, Ref. [39]. The other parameters are the
coupling strength between optical transition and ring resonator,
gab = 2π × 28 MHz [50], the decay of the upper level of
the NV center, γa = 2π × 0.5 MHz [50], the microwave-
collective spin coupling strength is taken to be κ

√
N = 2π ×

17 MHz [51], and the microwave-SCQ coupling strength is
G = 2π × 50 MHz [45,46], while the linewidth of the ring
resonator is fixed to the value γco = 2π × 140 MHz, which
is consistent with the value of existing resonators [49,50].
Figure 11 displays the dynamics of spin and qubit excitations
as a function of time for a protocol combining EIT storage with
adiabatic sweeping of the cavity detuning. We also report the
excitation of the optical field, which comprises the field modes
outside the resonator and the ring-cavity modes. We evaluate
a total fidelity of about 0.75, while the transfer protocol is
performed over a time of the order of Ttot = 568 ns.

Fidelities of about 0.8 are found by combining EIT storage
with a staggered π pulse on times of the order of Ttot = 25 ns,
as shown in Fig. 12.

These calculations did not include the losses of microwave
cavity and qubit, nor a possible optimization of the time
variation of the parameter. The inhomogeneous broadening
was simulated by distributing the spins in 300 frequency
values. The parameters we took are not ideal, but are of existing
experiments. These results thus demonstrate the viability of the
protocol.

IV. DISCUSSION AND CONCLUSIONS

We proposed a protocol for transferring in a reversible way
a single optical photon into the excitation of a superconducting
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FIG. 12. (Color online) Same as in Fig. 11, but for a protocol
combining EIT storage and resonant transfer of the spin excitation to
the qubit excitation. The parameters are δQ = 28G and �ck = 28G.
The total transfer time is of the order of 25 ns.

qubit. This is realized by means of a transducer from optical to
microwave regime constituted by a spin ensemble. Depending
on the nature of the spin ensemble, different strategies are
appropriate. Here we considered a homogeneously broadened
ensemble of cold atoms or NV centers in diamonds, which
shall exhibit coupled electronic transitions either interfacing
with the optical or with the microwave fields. We analyzed the
fidelity of the transfer for different strategies, which employ
EIT storage of the photon in the ensemble followed by either
adiabatic or resonant transfer to the qubit excitation, mediated
by the coupling with a microwave cavity. We searched for
solutions that maximize the fidelity over times which are
sufficiently short, to minimize the influence of detrimental
effects, such as cavity decay, the dephasing of the spins,
and decay processes of the qubit. The fidelity we find is
essentially limited by EIT storage and, without performing
a systematic optimization, results are of the order of 0.8. It is
essentially limited by the inhomogeneous broadening of the
NV centers ensemble and by the parameter ranges allowing
for the coherent transfer of the spin ensemble excitation
to the SC qubit via the resonator. For a spin ensemble
composed of cold atoms, on the other hand, the fidelity could
reach 0.99.

We remark that this protocol requires one to combine
optical and microwave cavities in the same setup, which can
be experimentally realized on a chip, as in Ref. [52], or
in a three-dimensional (3D) cavity setup, as is discussed in
Ref. [53]. Nevertheless, the cavity must be well shielded from
fields when the SCQ or the cavity are tuned, otherwise there
will be trapped vortices in the cavity which results in a decrease
of its quality factor [54]. Moreover, the SCQ must be shielded
from stray optical photons, whose absorption will break up
the Cooper pairs. For the implementation of the protocol, a
charge-type SCQ such as Cooper pair box or transmon can
be used if high coupling strengths between the qubit and the
microwave cavity are needed.

The transfer protocols from the collective spin of the
ensemble to the SCQ are based on the ability to tune the qubit
and cavity frequency in time. In the setups of Ref. [52], the

cavity frequency can tuned by about ∼0.5 GHz. Theoretically,
a flux qubit can be tuned from its maximal frequency ωmax

all the way down to a minimal frequency ωmin = 0. However,
flux fluctuations become more and more relevant at the steep
slopes of the frequency function, leading to shorter T2 times.
This, of course, limits the real tuning range of the qubits to a
very limited region. A possibility to overcome this issue has
been proposed in Ref. [55], where it is suggested to tailor
the frequency spectrum of the qubit so that ωmin is no longer
zero and there are now an upper and a lower region where
the slope goes to zero. In this way, one can start in a region
of a long T2 time and stop in another region of stability.
Alternatively, one could tune the spin transition, as done for a
single NV center in Ref. [56], even though this procedure is
not simple to scale to the whole ensemble. When the transfer
protocol is based on resonant pulses, on the other hand, one
can avoid tuning the qubit. This latter protocol is by far the
most efficient, even though it is more sensitive to parameter
fluctuations.
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APPENDIX A: HAMILTONIAN IN LABORATORY FRAME

We report here the Hamiltonian in the laboratory frame and
the transformation which allows us to write the Hamiltonian
terms in Sec. II. For the spin ensemble,

Ĥ (L)
spin = �

N∑
i

(
ω

(i)
abσ̂

(i)†
ba σ̂

(i)
ba + ω

(i)
sb σ̂

(i)†
bs σ̂

(i)
bs

)
, (A1)

where the frequency ω
(i)
ab (ω(i)

sb ) of the transition |b〉 →
|a〉 (|b〉 → |s〉) in general depends on the position �ri of the
spin i within the sample. The Hamiltonian for the coupling
with the optical fields reads

Ĥ
(L)
opt = �ωco(ĉ†RĉR + ĉ

†
LĉL)

+ �

N∑
i=1

[
gab(ĉRei�k·�ri + ĉLe−i�k·�ri )σ̂ (i)†

ba + H.c.
]

+ �

N∑
i=1

[
�(t)e−i(νd t−�kL·�ri )σ̂ (i)†

sa + H.c.
]
. (A2)

Here, ĉR and ĉL annihilate a photon of the cavity modes at
frequency ωco which propagates in the clockwise and anti-
clockwise direction, respectively, ±�k are the corresponding
wave vectors, and gab is the vacuum Rabi frequency. The
laser field at carrier frequency νd couples with the transition
|s〉 → |a〉 with spatially homogeneous strength �(t).

The controlled transfer between the spin excitation and the
superconducting qubit at transition frequency ωQ is described
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by the Hamiltonian operator,

Ĥ (L)
mw = �ωQσ̂

†
Qσ̂Q + �ωcμâ†â

+ �

[
â†

(
Gσ̂Q +

N∑
i

κi σ̂
(i)
bs

)
+ H.c.

]
, (A3)

where ωcμ denotes the frequency of the microwave resonator.
Finally, the Hamiltonian for the dynamics of the coupling

between the cavity modes and the external quantum electro-
magnetic field outside the resonator takes the form

Ĥ
(L)
in−out =

∑
l

∑
p=±

�ωld̂
(p)†
l d̂

(p)
l

+ �

∑
l

κopt,l(ĉ
†
Rd̂

(+)
l + ĉ

†
Ld̂

(−)
l + H.c.), (A4)

where the modes have frequencies ωl , wave vector �kl (−�kl)
along the positive (negative) direction in the x axis, and
corresponding annihilation and creation operators d̂

(+)
l and

d̂
(+)†
l (d̂ (−)

l and d̂
(−)†
l ), respectively.

It is convenient to move to the reference frame defined by
the unitary transformation Û = Û0 ⊗ Û1 ⊗ Û2 ⊗ Û3, where
the individual unitary transformations of the tensor product
commute and take the form

Û0 = exp

[
itωco

(
ĉ
†
RĉR + ĉ

†
LĉL −

∑
i

|b〉i〈b|
)]

,

Û1 = exp

[
−itνd

∑
i

|s〉i〈s|
]

,

Û2 = exp
[
it�(|e〉〈e| + â†â)

]
,

with � = ωco − νd the detuning between cavity and laser
fields coupling the states |b〉 → |s〉 via Raman scattering
through state |a〉, while Û3 = exp[itωco

∑
l,p d̂

(p)†
l d̂

(p)
l ]. The

transformed Hamiltonian is Ĥ = ÛĤ (L)Û † − i�Û∂t Û
† and

the explicit time dependence of the classical fields disappears.
In this reference frame, the other relevant frequency shifts are
the detunings with respect to the reference fields of the external
modes, �l = ωl − ωco, the optical transition δ

(i)
ab = ω

(i)
ab − ωco,

the magnetic dipole transition δ
(i)
sb = ω

(i)
sb − �, the microwave

cavity �c = ωcμ − �, and the qubit transition δQ = ωQ − �.

APPENDIX B: BASIC EQUATIONS

The equations of motion of the probability amplitudes take
the form

η̇
(+)
l (t) = −i�lη

(+)
l (t) − iκopt,lu(t), (B1a)

η̇
(−)
l (t) = −i�lη

(−)
l (t) − iκopt,lv(t), (B1b)

u̇(t) = −i

N∑
i

gabai(t)e
−i�k·�ri − i

∑
l

κopt,lη
(+)
l (t) − γco

2
u(t),

(B1c)

ȧi(t) = −
(

iδ
(i)
ab + γa

2

)
ai(t) − i�(t)si(t)e

i�kL·�ri

− igab[u(t)ei�k·�ri + v(t)e−i�k·�ri ], (B1d)

v̇(t) = −i

N∑
i

gabai(t)e
+i�k·�ri − i

∑
l

κopt,lη
(−)
l (t) − γco

2
v(t),

(B1e)

ṡi(t) = −
(

iδ
(i)
sb + γs

2

)
si(t) − i�(t)∗e−i�kL·�ri ai(t) − iκic(t),

(B1f)

ċ(t) = −
[
i�c(t) + γcμ

2

]
c(t) − i

N∑
i

κisi(t) − iGq(t),

(B1g)

q̇(t) = −i

[
δQq(t) + γe

2

]
q(t) − iGc(t), (B1h)

where γ� is the decay of the |�〉 state, with � = a,s,e, while γco

and γcμ are the decay rates of the optical ring and microwave
cavity modes, respectively. The norm of the state vector is thus
not conserved assuming that irreversible processes can couple
the considered set of states to other states.

APPENDIX C: EIT STORAGE

We review the basic steps in order to warrant that a single
incident photon is adiabatically transferred to a spin excitation
of the medium, closely following the treatment in Ref. [39].
Our goal is to maximize the efficiency of transferring the initial
state, given by Eq. (8), into the target intermediate state,

|
〉opt|target = |vac〉|0L,0R〉|s〉e,
with |s〉e = ∑

j |s〉j /
√

N the symmetric Dicke state. For this
purpose, we first assume that the spin ensemble is not coupled
to the microwave cavity field, which can be achieved by setting
the cavity mode and the qubit out of resonance. We assume a
homogeneously broadened atomic ensemble and neglect decay
of the metastable states, which corresponds to setting γs = 0 in
Eqs. (B1). The laser propagation direction is parallel to the one
of the incident photon, so that �kL = �k. Furthermore, we assume
that the frequency width of the incident photon is much smaller
than the cavity linewidth, which allows us to take κopt,l �
κopt. Under these assumptions, it is convenient to introduce

a(t) = ∑
j e−i�k·�rj aj (t)/

√
N and s(t) = ∑

j sj (t)/
√

N , which
are the amplitudes of the collective electronic excitations due
to the coupling with the clockwise cavity mode and the laser.
The equations of motion can then be cast in the form

u̇(t) = −i
√

Ngaba(t) − iκopt

∑
l

η
(+)
l − γco

2
u(t), (C1a)

ṡ(t) = −i�(t)∗a(t), (C1b)

ȧ(t) = −γa

2
a(t) − i[�(t)s(t) +

√
Ngabu(t)]

− igab

√
Nv(t)

(∑
i

e−2i�k·�ri /N

)
, (C1c)

v̇(t) = −igab

√
N

[
N∑
i

ai(t)e
+2i�k·�ri /N

]

− i
∑

l

κopt,lη
(−)
l (t) − γco

2
v(t), (C1d)
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where the equations for the amplitudes of the incoming
and outcoming photons are given by Eqs. (B1a) and (B1b).
Insight can be gained by moving to the basis of the dark and
bright states |D〉 and |B〉 for the internal and optical cavity
excitations, defined as [22]

|D〉 = −e−iφ cos �(t)|b〉e|1R〉 + sin �(t)|s〉e|0R〉, (C2)

|B〉 = sin �(t)|b〉e|1R〉 + eiφ cos �(t)|s〉e|0R〉, (C3)

where tan �(t) = gab

√
N/�0(t). The corresponding proba-

bility amplitudes take the form D(t) = −e−iφ cos �(t)u(t) +
sin �(t)s(t) and B(t) = sin �(t)u(t) + eiφ cos �(t)s(t). The
dynamics can be reduced to coupling the dark state with the
incident photon for | tan �|  1 and assuming that the time
scale over which � varies is sufficiently long, namely, |�̇| 
γa . In addition, the coupling with the other mode of the ring
resonator can be neglected when |〈∑N

i ai(t)e+2i�kco·�ri 〉|  N ,
which is satisfied for a sufficiently disordered medium. In this
limit, Eqs. (C1), together with Eqs. (B1a) and (B1b), can be
reduced to the coupled equations [39],

η̇l(t) = −i�lηl(t) − iκopt cos �(t)D(t), (C4a)

Ḋ(t) = −iκopt cos �(t)
∑

l

ηl(t)

� −i

√
γco

c

L
cos �(t)�in(0,t) − γco

2
cos2 �(t)D(t),

(C4b)

where the coupling to the other states is negligible in the
adiabatic limit and we applied the Markov approximation.
In writing Eq. (C4b), we have denoted by �in(0,t) =∑

l e
−i�l t η

(+)
l (0) the envelope of the input photon at the cavity

mirror, z = 0, and introduced γco = κ2
optL/c as the cavity

decay rate, with L the cavity length. Perfect transfer of the
photonic excitation into a spin excitation of the medium is

reached by requiring that each component η
(+)
l (t) vanishes,

such that the output field �out(0,t) = ∑
l η

(+)
l (t), namely, the

field at z = 0 and at the instants of time in which the excitation
shall be absorbed, is zero. The output field is found by solving
Eqs. (C4), assuming that D(t) = 0 for all times t � 0, and
reads [after setting D(t) → iD(t)] [39]

�out(0,t) = �in(0,t) −
√

γco

L

c
cos �(t)D(t), (C5)

with

D(t) =
√

γco

c

L

∫ t

t0

dτ cos �(τ )�in(0,τ )

× exp

[
−γco

2

∫ t

τ

dτ ′ cos2 �(τ ′)
]

. (C6)

Impedance matching, corresponding here to the destructive
interference of the directly reflected and the circulating
components, requires �out = �̇out = 0, which is found when
the fields satisfy the equation

− d

dt
ln cos �(t) + d

dt
ln �in(t) = γco

2
cos2 �(t). (C7)

For an incident photon envelope given by a normalized
hyperbolic secant form,

�in(z = 0,t) =
√

L

cT
sech

[
2t

T

]
, (C8)

Eq. (C7) can be simply solved (assuming the asymptotic
behavior cos � → 0 for t → ∞) by

cos �(t) =
√

2

γcoT

sech(2t/T )√
1 + tanh[2t/T ]

. (C9)

This formula delivers the ideal time shape of the pump-laser
field �0(t) which warrants a perfect transfer of the single
incident photon to an ensemble spin excitation.
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