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Fidelity of photon propagation in electromagnetically induced transparency in the presence of
four-wave mixing
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We study the effects of four-wave mixing (4WM) in a quantum memory scheme based on electromagnetically
induced transparency (EIT). We treat the problem of field propagation on the quantum mechanical level, which
allows us to calculate the fidelity of propagation for a quantum light pulse such as a single photon. While 4WM
can be beneficial for classical, all-optical information storage, the quantum noise associated with the signal
amplification and idler generation is, in general, detrimental for a quantum memory. We identify a range of
parameters where 4WM makes a single-photon quantum memory impossible.
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I. INTRODUCTION

A reliable quantum memory (QM) for photons is one of
the essential ingredients for quantum networks and optical
quantum computing. There have been several proposals for
photon storage, which fall into three main categories: photon
echo-based techniques [1], far-detuned Raman systems [2],
and electromagnetically induced transparency (EIT) [3]. In
all these schemes the storage of single photons occurs by
mapping the quantum state of photons onto a long-lived atomic
excitation.

In this paper we focus on the EIT-based scheme, where
one uses a strong control field to couple an incoming signal
pulse to the atomic spin coherence, resulting in the common
propagation of both as a dark-state polariton. By adiabatically
switching off the control field the signal field is mapped
on the spin coherence and later, after some storage time, is
retrieved by switching on the control field. Since its theoretical
proposal [4,5] and the first experimental realizations [6,7]
there has been considerable development of EIT-based QMs,
e.g., successful implementation in hot gases [8], in cold gases
using magneto-optical traps [9] or optical lattices [10,11], and
in solid-state systems such as rare-earth doped crystals [12].
Using EIT memory, weak coherent pulses have been stored in
hot rubidium gas with storage times of Ts = 1 ms and storage
efficiencies of 45% [13], while in a cold gas system using the
dark magneto-optical trap technique one can reach a storage
efficiency of 78% with comparable storage times [14].

The storage efficiency of EIT QM is limited by two
considerations. First, the spatial pulse size Lp must fit entirely
inside of the medium Lp = Tpvg < L, where Tp is the pulse
duration and vg is the group velocity in the medium, otherwise
some of the pulse will leak out during the storage process and
be lost. Second, the spectral width of the pulse �ωp must
be well within the EIT transmission window, �ωp � ωEIT �√

Dvg/L, where D = L/Labs denotes the optical depth of the
medium, i.e., the ratio of medium length L to the absorption
length Labs in the absence of EIT. Since the spectral width and
pulse length are inversely proportional, �ωp ∼ 1/Tp, these
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two requirements compete with each other and both of them
can only be satisfied at a large optical depth,

√
D � 1 [15].

However, at a high optical depth, nonlinear processes start
to become important. In particular, a four-wave mixing process
(4WM) is possible in many of the implementations of EIT QM,
where the control field with Rabi frequency � and appropriate
polarization also acts as a far-detuned field with Rabi frequency
�′ on the signal transition, spontaneously generating a new
“idler” field. This idler field then moves the population into
the spin state, which is then pumped by the control field to
the excited state, whence it can come back to the ground state,
either by stimulated emission providing amplification to the
signal or by spontaneous decay introducing noise, as shown in
Fig. 1. The medium is still transparent to the signal pulse due
to EIT, but now the signal pulse also experiences some gain
from 4WM.

It was originally suggested that 4WM could play a positive
role in EIT QMs. An experiment [16] claimed that 4WM may
be useful due to better spatial pulse compression and pulse
gain. It also suggests that, with the help of the 4WM, one
may achieve multimode storage, storing not only the signal
mode, but also the idler mode. However, this conjecture was
disproved in a more recent experiment [17], where it was
clearly shown that multimode storage is not possible in this
system, due to the absence of significant slowing of an input
idler field, allowing it to escape the medium before storage.
On the other hand, 4WM along with other nonlinear effects
was used as an explanation of why the storage efficiency has
tended to saturate to values lower than 50% with high D in
some EIT QM experiments [18].

EIT with 4WM has the advantage of signal gain, which
could be used to compensate losses in the medium, naturally
improving the storage of classical signal pulses, and thus
should not be blamed for the saturation of memory efficiencies.
But the goal of a QM is single-photon storage, where gain
can become a liability since it is always accompanied by
additional noise. We show that any benefits of 4WM will
be overshadowed by the drawbacks from increased noise
generation: noise that will lower the storage fidelity. We
suggest that this additional noise may have already been
observed in hot Rb gas experiments such as [19] and [20].

Therefore, we address the case of a single photon propa-
gating in an EIT medium with 4WM, by developing a fully
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FIG. 1. (Color online) Level scheme for EIT memory with four-
wave mixing (4WM). A double-� scheme, with one � being the
signal field âS and strong control field � giving standard EIT, and the
second � far-detuned from resonance made up of the same control
field acting on the |g〉 − |e′〉 transition and the idler field âI generated
by 4WM.

quantum model for pulse propagation in Sec. II, which is
then solved in Sec. III. We then analyze the amplification
noise in the system in Sec. IV resulting from the spontaneous
generation of idler photons coupling to the signal field. Our
noise analysis is expanded in Sec. V to incorporate noise
associated with population decay from excited states leading to
additional fluctuations of atomic dipoles. In Sec. VI we use our
results to calculate the memory fidelity of EIT with 4WM in
an otherwise lossless medium. Finally, in Sec. VII we consider
additional linear losses and discuss the case where 4WM gain
completely compensates these losses in the medium.

II. MODEL

We can model the EIT 4WM system as an ensemble
of four level atoms, which interact with the strong control
field 	Ec coupling the |s〉 − |e〉 levels as well as acting as
a far-detuned field on the |g〉 − |e′〉 transition and a weak
copropagating signal field 	ES in resonance with the |g〉 − |e〉
transition (see Fig. 1), a treatment similar to that in [21].
Due to the additional coupling of the control field to the
|g〉 − |e′〉 transition a new idler field will be generated which,
because of the frequency- and phase-matching conditions,
propagates in the same directions as the other two fields.
In this approach the nature of |e′〉 depends on the field
polarizations. If the control and signal fields have the same
linear polarization, as is the case in many EIT experiments,
then both the signal and �′ couple to the same transition and
|e′〉 may be the same as |e〉; in this case � is given by the
frequency of the spin transition ωs − ωg . Otherwise, |e′〉 is
another transition that �′ couples to, and � depends on the
frequency of that transition. In either case |e′〉 will eventually
be adiabatically eliminated. If there are multiple excited states
with large but comparable detunings, � denotes an effective
detuning resulting from a properly weighted average. The
interaction Hamiltonian in the dipole, rotating wave and slowly
varying envelope approximations is given by

Ĥint = h̄N

L

∫ L

0
dz{δσ̂ee + �σ̂e′e′ − (gSâSσ̂eg + gI âI σ̂e′s

+�σ̂es + �′σ̂e′g + H.c.)}, (1)

where � is an effective detuning of the control laser from the
|e′〉 − |g〉 transition, δ is the detuning of the signal photon
from the |e〉 − |g〉 transition, � = μesEc

h̄
and �′ = μe′gEc

h̄
are

the Rabi frequencies of the control field with dipole moments
μeg , μe′g , N is the number of atoms in the medium, and L is
the length of the medium. As in [5], σ̂μν(z) are slowly varying
continuous atomic ensemble spin-flip operators corresponding
to the transition from internal state |ν〉 to internal state
|μ〉, and âS and âI are dimensionless field operators of
the signal and idler fields, which fulfill bosonic commu-

tation relations [â(z),â†(z′)] = Lδ(z − z′). gS = μeg

√
ωS

2h̄ε0V

and gI = μe′s

√
ωI

2h̄ε0V
are the coupling constants for the field

operators âS and âI , where V is the quantization volume. The
equations of motion for the atomic operators are given by the
Heisenberg-Langevin equations,

∂

∂t
σ̂ij = i

h̄
[Ĥint,σ̂ij ] − γij σ̂ij + δij

∑
l

rli σ̂ll + F̂ij , (2)

where γij are the decoherence rates, rli are the spontaneous
emission rates from |l〉 to |i〉, and F̂ij are δ-correlated
Langevin noise operators. The evolution of the fields is
governed by the following propagation equations:(

∂

∂t
+ c

∂

∂z

)
âS = igSNσ̂ge, (3)

(
∂

∂t
+ c

∂

∂z

)
âI = igINσ̂se′ . (4)

We simplify these equations by assuming that the signal
and idler fields remain weak, such that they can be treated
perturbatively in the atomic equations. This effectively fixes
all of the population in the ground state. Therefore, the strong
control field is not significantly depopulated and we can
assume that � and �′ are constant. We then adiabatically
eliminate |e′〉, leaving four coupled equations,

i∂t σ̂ge = (δs − δ − iγge)σ̂ge − gâS + i�σ̂gs + iF̂ge, (5)

i∂t σ̂gs = (δs − δ − iγgs)σ̂gs − g
�′

�
â
†
I − �∗σ̂ge + iF̂gs, (6)

(∂t + c∂z)âS = igNσ̂ge, (7)

(∂t + c∂z)â
†
I = −igN

�′∗

�
σ̂gs, (8)

where δs = |�′|2/� is the ac-Stark shift and for simplicity we
take gS = gI = g. The same equations can be derived directly
from a three-level model, as done by Phillips et al. [17], with
the only difference being an additional ac-Stark shift in Eq. (5),
(δs − δ) → (2δs − δ), which cannot be removed by the choice
of detunings. Since we are considering the far-detuned regime
with � � γge, this frequency shift δs can be neglected, as it
will be much smaller than the EIT transmission window.

III. PULSE PROPAGATION

The EIT QM process consists of a pulse propagating into
the medium while the control field is on, then adiabatically

013823-2



FIDELITY OF PHOTON PROPAGATION IN . . . PHYSICAL REVIEW A 88, 013823 (2013)

turning off the control once the pulse is centered in the medium,
storing it as a spin excitation. After some storage time, limited
by the spin decoherence rate, the control field is adiabatically
switched back on, causing the pulse to continue to propagate
to the end of the medium. Since 4WM only happens when the
control field is on, its effects can be understood by studying the
propagating portion of the process. Therefore, we assume that
the control field stays constant and study what happens to the
signal pulse as it propagates through our medium. Limiting our
consideration to propagation, however, does neglect any losses
due to pulse leakage during the storing process. These losses
contribute when the compressed pulse length is larger than the
length of the medium. We show that the pulse compression is,
to good approximation, the same for standard EIT and 4WM
EIT. Thus the compression losses will be similar for both and
we disregard them here.

In the case of a constant control field we can analytically
solve Eqs. (5)–(8). For simplicity we take the single-photon
detuning to match the ac-Stark shift, δ = δs = |�|2/�, and
set γgs = 0. The solutions in terms of the optical depth D, are
given in the frequency domain and comoving frame as

âS(D,ω) = A(D,ω) âS(0,ω) + B(D,ω) â
†
I (0,ω) + δα̂S, (9)

â
†
I (D,ω) = −B(D,ω) âS(0,ω) + C(D,ω) â

†
I (0,ω) + δα̂I .

(10)

The coefficients A(D,ω) and C(D,ω) describe the spectral
transmission for the input signal (Fig. 2) and idler fields and the
coefficient B(D,ω) describes the spectral coupling between
the fields. The corresponding expressions read

A(D,ω) =
[

cosh

(
DγgeU (ω)

2V (ω)

)
+ γge|ε|2 − iω − i|ε|2ω

U (ω)

× sinh

(
DγgeU (ω)

2V (ω)

)]
e
− Dγge

2V (ω) (iω−iω|ε|2+|ε|2γge)
,

(11)

B(D,ω) = −2iε�

U (ω)
sinh

(
DγgeU (ω)

2V (ω)

)
e
− Dγge

2V (ω) (iω−iω|ε|2+|ε|2γge)
,

(12)

FIG. 2. (Color online) Plot of the transmission coefficient as
a function of frequency for EIT with 4WM [solid (blue) line]
and without 4WM [dashed (red) line]. Parameters were chosen to
emphasize the spectral behavior.

C(D,ω) =
[

cosh

(
DγgeU (ω)

2V (ω)

)
− γge|ε|2 − iω − i|ε|2ω

U (ω)

× sinh

(
DγgeU (ω)

2V (ω)

)]
e
− Dγge

2V (ω) (iω−iω|ε|2+|ε|2γge)
,

(13)

where ε = �′/�, and

U (ω) =
√

[iω + |ε|2(iω − γge)]2 + 4|ε|2|�|2, (14)

V (ω) = ω(ω + iγge) − |�|2. (15)

The terms δα̂S and δα̂I represent the field fluctuations
corresponding to the Langevin noise operators. These can
be neglected in the weak-field approximation since their
normal ordered contributions are proportional to 〈σ̂ee〉 and
〈σ̂ss〉 respectively, which are second order in the signal field.
However, since these terms contribute to the noise, they are
considered in Sec. V.

Another important quantity for EIT-based QM is the matter
excitation, since the light field is mapped onto it during
the storage process. This excitation is described by the spin
operator σ̂gs , which can be found in terms of Eqs. (9) and (10):

σ̂gs(D,ω) = �∗g
V (ω)

(
âS(D,ω) − �′

�∗
ω + iγge

�
â
†
I (D,ω)

)
.

(16)

It has contributions from both the signal and the idler field, but
the idler term is proportional to the small parameter γge/� and,
therefore, can largely be ignored compared to the signal part.
We can therefore concentrate on solving for the propagation
of the signal field and our results will still be applicable to EIT
QM.

To get some intuition about what is going on in the system,
we first consider the semiclassical solution for the signal and
idler fields. Since we are mainly interested in QM applications
and it has already been shown that an input idler field is not
stored [17], we assume no input idler field, implying that we
can ignore C(D,ω). In this case, the semiclassical solution for
the fields is just

αS(D,ω) = A(D,ω) αS(0,ω), (17)

αI (D,ω) = −B∗(D,ω)α∗
S(0,ω). (18)

While the expressions for A and B are complicated, in the limit
of ε � 1 which we have already assumed in order to derive the
reduced Hamiltonian and D > 1 as is necessary for QM, both
A and B are well approximated by Gaussians for frequencies
near resonance,

A(D,ω) = A0(D)e
iτS (D)ω− ω2

�ω2
S , (19)

B(D,ω) = B0(D)e
iτI (D)ω− ω2

�ω2
I , (20)

where the τS and τI are the group delay times for the signal
and generated idler field, respectively, while �ωS and �ωI are
the frequency widths. It is clear that amplitudes A0 and B0 are
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the steady-state solutions for the fields:

A0 =
[

cosh

(
Dγgeη

�

)
− i

2

ηγge

�
sinh

(
Dγgeη

�

)]
e

Dγ 2
geη2

2�2 ,

(21)

B0 = i�′∗�∗

|�′�| sinh

(
Dγgeη

�

)
e

Dγ 2
geη2

2�2 . (22)

We introduce the ratio of the control-field Rabi frequencies
η = |�′|/|�|, which differs from unity only when the two
transitions have different dipole moments. It is convenient to
introduce a parameter to keep track of the effective 4WM
strength,

x = Dη
γge

�
. (23)

Then for field propagation, Eqs. (21) and (22) define two
distinct regimes of x. For a high 4WM strength, x > 1, both
the signal and the idler field experience exponential growth
and, except for a phase factor, are essentially the same, as
shown in Fig. 3:

A0 = 1

2
ex, (24)

B0 = i

2

�′∗�∗

|�′�| ex. (25)

At large x the 4WM process generates many more photons than
are in the initial pulse, and for every new signal-field photon
there is a corresponding idler photon generated. However, for
x � 1, there is only a weak gain for the idler and signal field,
i.e., we can treat this perturbatively:

A0 = 1 + x2

2
, (26)

B0 = i
�′∗�∗

|�′�| x. (27)

The idler field grows more rapidly than the signal, but since
it starts from vacuum, it remains much weaker than the signal
field.

FIG. 3. (Color online) Logarithmic plot of the signal [solid (blue)
line] and idler [dashed (red) line] amplitudes for parameters � =
0.1γge, �/γge = 33, and η = 1 as a function of the effective 4WM
optical depth, assuming no initial idler field and normalized to the
amplitude of the initial signal field. Note that both become equal and
grow exponentially for high optical depths. Inset: Linear plot showing
the the low-optical-depth behavior of the amplitudes.

FIG. 4. (Color online) Plot of the signal delay time, normalized
to the standard EIT delay time Dγge/|�|2 [solid (blue) line], and the
signal transmission frequency width, normalized to the standard EIT
transmission window |�|2/(γge

√
D) [dashed (red) line], as a function

of the effective 4WM optical depth, with � = 0.1γge, �/γge = 33,
and η = 1.

Since 4WM introduces gain on the signal field, which also
leads to stronger matter excitations, when present it will always
increase the classical storage and retrieval efficiencies for an
EIT memory. Therefore, in experiments that see a loss of
classical efficiencies at higher optical depths, such as [18],
the loss should not be attributed to 4WM but, rather, to other
processes that grow with optical depth such as increased
dephasing or depletion of the control field. The case of
particular interest for QM is for low 4WM strengths, x < 1,
since we show in Sec. IV that exponential growth of the signal
field is accompanied by an equally strong growth in noise.

The group delay time for the fields is given by τS and τI ,
where a field traveling at the speed of light is taken not to have
a time delay. In the low-optical-depth case,

τS � Dγge

|�|2 , (28)

τI � Dγge

2|�|2 , (29)

such that τS is essentially the standard EIT delay time, see
Fig. 4. As a consequence, the spatial pulse compression with
4WM is the same as for standard EIT. The delay time for
the generated idler τI is approximately half that for the signal
field. This can be understood as a consequence of the idler field
being generated from the signal field. While the idler field is
essentially moving at the speed of light and therefore is not
delayed, it is also constantly being generated by the slow signal
field. The total delay time is then the average of delay for the
idler photons generated near the beginning of the medium and
the idler photons generated at the end of the medium after the
slower signal field has traversed the medium length. A similar
effect is seen at a high optical depth,

τS � τI � Dγge

2|�|2 , (30)

where there is now a locking of the velocities for both fields to
the average. We note that τS is now a factor of 2 smaller than in
the ideal EIT case and the pulse compression is even reduced.
Both fields are growing exponentially and travel together; the
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faster idler field generates a new, slower signal field, which
leads to less signal delay.

The spectral behavior of the fields is described by the
frequency widths �ωS and �ωI , and we can again distinguish
between two different regimes (Fig. 4). For a low optical depth,

�ωS � |�|2
γge

√
D

, (31)

�ωI � |�|2
γge

√
D

√
2

1 + D/12
, (32)

where �ωS defines the usual EIT transmission window, and
�ωI defines the transparency window of the idler field. At a
high optical depth the widths are given by

�ωS � �ωI � |�|2
γge

√
D

√
8γgeη

�
. (33)

The fields are now propagating together with a similar
transmission window that is narrower than the original EIT
transmission window by a factor of

√
8γgeη/�. This narrowing

is due to preferential gain of the signal near resonance, where
it does not experience absorption, rather than at frequencies
near the edge of the EIT transmission window that see some
absorption.

We have shown that for low 4WM strengths, x < 1, the
signal field propagates similarly to normal EIT (Fig. 5), with
a small gain due to 4WM from the newly generated idler
field, which remains weak compared to the signal field and
propagates through the medium as if it was transparent.
However, the propagation is dramatically different at high
4WM strengths, x > 1, where exponential growth of the signal
and idler field locks the fields together such that they have equal
amplitudes, experience less group delay, and have a narrower
transmission window.

IV. SIGNAL INTENSITY AND ADDITIVE PHOTON NOISE

As an indicative measure for the effect of 4WM on light
storage in an EIT medium we now consider the number of

FIG. 5. (Color online) Plot of the signal field at the beginning of
the medium [dot-dashed (black) line], after an effective optical depth
of x = 0.75 [solid (blue) line], and after x = 3 [dashed (red) line],
normalized to the initial pulse amplitude. Parameters are � = 0.1γge,
�/γge = 33, and η = 1.

signal photons at the end of the medium at some time τ using
Eqs. (9) and (10):

〈â†
S(D,τ )âS(D,τ )〉
=

∫∫
dω′dω e−i(ω′−ω)τ [A∗(D,ω′)A(D,ω)〈â†

S(0,ω′)âS(0,ω)〉

+B∗(D,ω′)B(D,ω)〈âI (0,ω′)â†
I (0,ω)〉] (34)

=
∫∫

dω′dωe−i(ω′−ω)τ A∗(D,ω′)A(D,ω)〈â†
S(0,ω′)âS(0,ω)〉

+
∫

dω|B(D,ω)|2, (35)

where the first part corresponds to the semiclassical solution,
which one would obtain by treating the fields classically with
no input idler field. The second term contains anti-normally
ordered products of the field operators, so we used the
commutator relation for the field operators [âI (ω′),â†

I (ω)] =
δ(ω − ω′) to bring it back to normal order; i.e., this part is a
pure quantum mechanical effect. Since the value of the second
part is equal for all time τ it describes the generation rate of
the incoherent signal photons. This contribution exists even
when there is no signal input and, therefore, is important for
few photon input fields; consequently, we refer to this as the
vacuum noise contribution. It does not grow with signal-field
strength, so it is much less important for fields with a large
photon number. With this we are able to estimate the number
of noise photons by multiplying the generation rate by the
propagation time of the signal field (Fig. 6). As noted in
Sec. III, at a high optical depth, x > 1, A0 and B0 are equal,
which implies that for a single-photon input, the vacuum noise
contribution will be as strong as the output of the signal field.
Therefore in the regime of x > 1, a QM is impossible. And
as shown in Fig. 6 there will already be an additional noise
photon generated for 4WM strengths near x = 0.5.

V. NOISE DUE TO FINITE EXCITED-STATE POPULATION

Additionally to the vacuum noise, there will also be noise
contributions due to spontaneous emission. In the following we

FIG. 6. (Color online) Plot of the number of noise photons
produced as a function of the effective 4WM optical depth for
� = 0.1γge, �/γge = 33, and η = 1. Note that it becomes larger
than 1 slightly before when x > 1/2.
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calculate these noise contributions directly from the Langevin
noise operators, which are second order in the signal and idler
fields. The noise operators introduced in Eqs. (9) and (10) read
explicitly

δα̂S(ξ,ω) =
∫ ξ

0
dξ ′A(ξ − ξ ′,ω)F̂S +

∫ ξ

0
dξ ′B(ξ − ξ ′,ω)F̂I ,

(36)

δα̂I (ξ,ω) =
∫ ξ

0
dξ ′C(ξ − ξ ′,ω)F̂I −

∫ ξ

0
dξ ′B(ξ − ξ ′,ω)F̂S,

(37)

where A, B, and C are given by Eqs. (11)–(13), and the new
F̂ operators are defined in terms of the atomic Langevin noise
operators:

F̂S = gN�

(ω + iγgs)(ω + iγge) − |�|2 F̂gs

− gN (ω + iγgs)

(ω + iγgs)(ω + iγge) − |�|2 F̂ge, (38)

F̂I = gN�′∗(ω + iγge)/�

(ω + iγgs)(ω + iγge) − |�|2 F̂gs

− gN�∗�′∗/�
(ω + iγgs)(ω + iγge) − |�|2 F̂ge. (39)

The rate of generation for extra amplitude noise due to
spontaneous emission is given by the expectation value
〈δα̂†

Sδα̂S〉, which, to the first nonzero order in �′/�, is

〈δα̂†
Sδα̂S〉 = 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

∫ D

0
dξ

×
∫ D

0
dξ ′A∗(D − ξ,ω)A(D − ξ ′,ω′)

×〈F̂ †
S (ξ,ω)F̂S(ξ ′,ω′)〉ei(ω−ω′)t . (40)

While the form of the F̂ are unknown, their correlations can
be calculated using the fluctuation dissipation theorem [22],
but we need to consider the full set of equations from the
reduced Hamiltonian given in Eq. (1), not just the σge and σgs

equations [Eqs. (5) and (6)]. The full equations, neglecting
detunings, letting γgs = 0, and dropping terms that are third
power in the fields, are

˙̂σge = iωσ̂ge − γgeσ̂ge + igâS + i�σ̂gs + F̂ge, (41)

˙̂σse = −γseσ̂se + i�(σ̂ss − σ̂ee) − i
�′∗gâI

�
σ̂ge

+ igâSσ̂
†
gs + F̂se, (42)

˙̂σgs = iωσ̂gs + i
�′gâ∗

I

�
+ i�∗σ̂ge + F̂gs, (43)

˙̂σee = −res σ̂ee − regσ̂ee − igâ
†
Sσ̂ge + igâSσ̂

†
ge

− i�∗σ̂se + i�σ̂ †
se + F̂ee, (44)

˙̂σss = res σ̂ee − rsgσ̂ss − i
�′∗

�
gâ

†∗
I σ̂gs + i

�′

�
gâ∗

I σ̂
†
gs

+ i�∗σ̂se − i�σ̂ †
se + F̂ss . (45)

Note that the equations are no longer linear, but we
expect the noise terms to be second order in the fields. From
Eqs. (42)–(45) we can find the correlations of the Langevin
noise operators:

〈F̂ †
geF̂ge〉 = (2γge − res − reg)〈σ̂ee〉, (46)

〈F̂ †
gsF̂gs〉 = res〈σ̂ee〉, (47)

〈F̂ †
geF̂gs〉 = (γge − γse)〈σ̂ †

se〉, (48)

〈F̂ †
gsF̂ge〉 = (γge − γse)〈σ̂se〉. (49)

With these values we can calculate 〈F̂ †
S F̂S〉:

〈F̂ †
S (ξ,ω)F̂S(ξ ′,ω′)〉

= g2N2δ(ω − ω′)δ(ξ − ξ ′)
|ω(ω − iγge) − |�|2|2 [res |�|2〈σ̂ee〉

+ (γse − γge)〈σ̂se〉ω�∗ + (γse − γge)〈σ̂ †
se〉ω�

+ω2(2γge − res − reg)〈σ̂ee〉)]. (50)

In Eq. (50) we can neglect the contributions from 〈σ̂se〉
under the reasonable assumption that |γse − γge| � γse; i.e.,
only the excited-state population is important. Then the
average excited-state population can be found by solving the
semiclassical form of Eqs. (42)–(45),

〈σ̂ee〉 = 2g2γgeω
2|αS |2

reg|V (ω)|2 − 2g2γgeω(|�′�|/�)
√|αSαI |

reg|V (ω)|2

+ 2g2γge|�|2(|�′|2/�2)|αI |2
reg|V (ω)|2 , (51)

where αS and αI are the semiclassical field solutions given by
Eqs. (17) and (18). Assuming that the initial field is given by
a Gaussian distribution,

|f (ω)|2 = 1√
π�ω0

e
−( ω

�ω0
)2

, (52)

where �ω0 is the frequency width of the incoming pulse, and
then multiplying by the delay time of the signal field, τD ,
yields the number of noise photons affected by dephasing due
to spontaneous emission:

NSE = τD〈δα̂†
Sδα̂S〉

= τD

∫ ∞

−∞
dω

∫ D

0
dξ |A(D − ξ,ω)|2|f (ω)|2

× g4N2[(2γge − res − reg)ω2 + res |�|2]

reg

[
γ 2

geω
2 + |�|4]2

×
[

2γgeω
2|A(ξ,ω)|2 − 2γgeω

|�′�|
�

|A(ξ,ω)||B(ξ,ω)|

+ 2γge|�|2 |�′|2
�2

|B(ξ,ω)|2
]
. (53)

The integral over ξ is straightforward when we use the
Gaussian approximation developed in Sec. III for A(ξ,ω)
and B(ξ,ω). Approximating |A0(ξ )| = cosh(γgeηξ/�) and
|B0(ξ )| = sinh(γgeηξ/�) and performing the ξ integral leaves
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us with

NSE = τD

∫ ∞

−∞
dωe−2(ω/�ωS )2 |f (ω)|2 g2N2[(2γge − res − reg)ω2 + res |�|2]

reg

[
γ 2

geω
2 + |�|4]2

×
[

2γgeω
2e−2(ω/�ωS )2

(
−D

4
+ D

8
cosh(x) + 5D

16x
sinh(2x)

)

− 2γgeω
|�′�|

�
e−(ω/�ωS )2

e−(ω/�ωI )2
sinh(x)

(
D

4
cosh(x) + 1

4
sinh(x)

)

+ 2γge|�|2 |�′|2
�2

e−2(ω/�ωI )2

(
−D

4
+ D

8
cosh(2x) + D

16x
sinh(2x)

)]
. (54)

Now consider that the spectral window of A(D,ω) will ensure that the main contribution of the integral comes for small ω, so
we can take ω < |�|2/γge. This allows us to approximate by replacing γ 2

geω
2 + |�|4 with |�|4 and perform the ω integral:

NSE � g4N2resτD

reg|�|6
D

4

[
�ω2

0γge

(
1

2
cosh(x) − 1 + 5

4x
sinh(2x)

)
+ γge|�|2 |�′|2

�2

(
cosh(2x) − 2 + 1

2x
sinh(2x)

)]
. (55)

This can be simplified by taking res = reg and by noticing
that the square of the group index n2

g = g4N2/|�|2 is approx-
imately equal to 1/(γgeτD). We can now estimate the number
of dephased photons due to spontaneous emission in our two
limits. First, in the small-optical-depth regime, where x < 1,
we can simplify further:

NSE � D

2

[
�ω2

0

|�|2
(

1 + x2

8

)
+ |�′|2

�2

(
1

2
+ x2

)]
. (56)

Then for a large optical depth, x � 1, we have

NSE � D

16
e2x

[
�ω2

0

|�|2
5

2x
+ 2

|�′|2
�2

]
, (57)

which, like the vacuum noise, is exponentially growing. Note
that the noise induced by spontaneous emission is proportional
to the number of photons in the initial signal field, thus for a
small number of initial photons its contribution will be much
weaker than the vacuum noise contribution derived in Sec. IV,
as illustrated in Fig. 7. Therefore, we can neglect this effect in
the single-photon fidelity calculation in Sec. VI. Of course, for
a classical field with a large number of photons, dephasing due
to spontaneous emission will be the dominant contribution to
the noise.

VI. FIDELITY OF PROPAGATION

The figure of merit for a QM is the fidelity. For a wave
propagating through the medium, we can calculate the fidelity
for a particular input field in a pure state |�in〉 by finding
the overlap of the wave function well before the medium and
the wave function well after the medium. The fidelity is then
defined as the infimum of the square root of the overlap over
the set of all possible input functions:

F |�in〉 = inf
|�in〉

√
〈�in| ρout |�in〉. (58)

To be able to calculate this overlap we need to know the state
of the output field described by ρ̂out. To extract the output state
from our field operator solutions given by Eqs. (9) and (10) we
first write the density matrix in the Glauber P representation.

Then, using the operator solutions, we calculate the normally
ordered characteristic function, which is in turn the Fourier
transform of the Glauber P function. The operator solutions are
given in the frequency domain, and to facilitate the calculation
we discretize the frequency space into 2M + 1 modes centered
at the resonance frequencies.

We know that outside of the medium the fields obey free
evolution, therefore we can separate space into three regions:
the region before the medium, the region after the medium,
and the region inside the medium. Then for the signal field in
the first region we can write

âin
S (τ ) = �ω

2π

∑
n

ĉin,ne
−iτωn , (59)

where �ω = c
LQ

1
2M+1 is the frequency spacing for some

quantization length LQ and ĉin,n is an annihilation operator,
which destroys a photon with frequency ωn = ωS + n�ω in
the region before the medium. For the signal field in the region

FIG. 7. (Color online) Number of photons affected by sponta-
neous emission [solid (red) line] showing at what effective 4WM
optical depth it becomes larger than 1, assuming a single-photon input.
For comparison the number of vacuum noise photons [dashed (blue)
line] is also plotted. In both cases the parameters are � = 0.1γge,
�/γge = 33, and η = 1.
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after the medium we have a similar expression,

âout
S (τ ) = �ω

2π

∑
n

ĉout,ne
−iτωn , (60)

where ĉout,n is now the operator which annihilates the photon
with frequency ωn = ωS + n�ω in the region after the
medium. The same argumentation holds for the idler field
with corresponding idler operators b̂in,n and b̂out,n. Now the
mapping between the “in” and the “out” operators is given by

ĉout,n = Anĉin,n + Bnb̂
†
in,n, (61)

where An = A(ωn,D)/
√

2M + 1 and Bn = B(ωn,D)/√
2M + 1.
We are primarily interested in the fidelity for an input state

that is a superposition of states containing either zero photons
or a single photon,

|�SP〉 = C0 |{0}〉 + C1|{1}〉
= C0 |{0}S〉 |{0}I 〉 + C1

∑
n

fn ĉ†n |{0}S〉 |{0}I 〉, (62)

where C0 and C1 are constants with |C0|2 + |C1|2 = 1, and fn

is a distribution function that represents the photons frequency
envelope and is normalized to produce a single photon by∑

n

|fn|2 = 1, (63)

while |{0}S〉 = ∏
n |0n〉S and |{0}I 〉 = ∏

n |0n〉I are the
vacuum product states for the signal and idler fields. Our
calculations show that the fidelity is always lower when the
incoming state is purely a single photon, due to any noise that
is detrimental to the vacuum input being equally detrimental to
the single-photon state. Therefore, the infimum is attained for
C1 = 1 and C0 = 0, which we use in all further calculations.

In order to calculate the fidelity we first write the overlap
of the single-photon input from Eq. (58) in terms of the
multimode Glauber P representation, P (βn), i.e., basically
using an expansion of the density matrix in coherent states
|βn〉:

〈�SP| ρ̂out |�SP〉 =
∏
n

∫ ∞

−∞
d2βn|〈{1}|{β}〉|2P (βn). (64)

Here |〈{1}|{β}〉|2 is the overlap of the single-photon state
with the multimode coherent state, which can be found by
expanding the coherent states as an infinite sum of Fock states:

|〈{1}|{β}〉|2 =
(∏

n

e−|βn|2
)⎛

⎝∑
j,k

f ∗
j fkβjβ

∗
k

⎞
⎠ . (65)

The Glauber P function in turn is the inverse Fourier transform
of the normally ordered characteristic function:

P (βn) =
∏
n

1

π2

∫ ∞

−∞
d2φne

φ∗
nβn−φnβ

∗
n χN . (66)

The multimode characteristic function [23] can be found
from the trace over the density matrix using the operator

input-output relations given in Eq. (61):

χN = 〈�SP| exp

(
+

∑
n

φnĉ
†
out,n

)
exp

(
−

∑
m

φ∗
mĉout,m

)
|�SP〉.

(67)

Putting it all together reduces the fidelity calculation to finding
the normally ordered characteristic function and performing
integrals over it:

(FSP)2 =
∏
n

1

π2

∫ ∞

−∞
d2βn

∫ ∞

−∞
d2φn|〈{1}|{β}〉|2eφ∗

nβn−φnβ
∗
n χN .

(68)

Using Eq. (61) in Eq. (67) and taking the expectation value
over the single-photon state given by Eq. (62), we can calculate
the characteristic function. The problem nicely breaks up into
finding the expectation of the operators associated with the
signal field and the expectation of the operators associated
with the idler field; thus we can take

χN = χ
sig
N χvac

N , (69)

where we find that

χ
sig
N = 1 −

∑
n,m

f ∗
n fmφnA

∗
nφ

∗
mAm, (70)

χvac
N = exp

(
−

∑
n

|φn|2|Bn|2
)

. (71)

Performing the integrals of Eq. (68) while being careful with
the sums gives the single-photon fidelity as

(FSP)2 =
(

M∏
n=−M

1

1 + |Bn|2
)⎡

⎣∑
i,j

|fi |2|fj |2A∗
i Aj

(1 + |Bi |2)(1 + |Bj |2)

+
∑

i

|fi |2|Bi |2
(1 + |Bi |2)

−
∑
i,j

|fi |2|fj |2|Ai |2|Bj |2
(1 + |Bi |2)(1 + |Bj |2)

⎤
⎦ .

(72)

Equation (72) has two parts: a product multiplied by a sum.
The product can be interpreted as the vacuum contribution;
it is the same as would be calculated for a vacuum state.
It always converges and depends on the spectral width of the
coupling coefficient. In the continuous limit it can be explicitly
calculated:

M∏
n=−M

1

1 + |Bn|2 → exp

(
−τS

2

∫ ∞

−∞
dω|B(D,ω)|2

)
. (73)

For large optical depths, |B0|2 � 1, this term dominates the
single-photon fidelity, quickly dropping it to 0, at a rate that
is at least exponential in optical depth. The second part is
given by the sums in Eq. (72) and is due to the gain in
the signal, which is also detrimental for our definition of
fidelity if it leads to having more than a single photon. In the
continuum limit M → ∞ the sums can be converted back into
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integrals:∑
i

|fi |2A∗
i

(1 + |Bi |2)
→

∫ +∞

−∞
dω|f (ω)|2 A∗(ω)

(1 + |B(ω)|2)

� A∗
0

1 + |B0|2
√√√√ 1

1 + �ω2
0

�ω2
S

− 2 |B0|2
1+|B0|2

�ω2
0

�ω2
I

× exp

⎛
⎝−τ 2

S �ω2
0

4

1

1 + |B0|2
1+|B0|2

�ω2
0

�ω2
I

⎞
⎠ ,

(74)

∑
i

|fi |2|Ai |2
(1 + |Bi |2)

→
∫ +∞

−∞
dω|f (ω)|2 |A(ω)|2

(1 + |B(ω)|2)

� |A0|2
1 + |B0|2

√√√√ 1

1 + 2 �ω2
0

�ω2
S

− 2 |B0|2
1+|B0|2

�ω2
0

�ω2
I

,

(75)

∑
j

|fj |2|Bj |2
(1 + |Bj |2)

→
∫ +∞

−∞
dω|f (ω)|2 |B(ω)|2

(1 + |B(ω)|2)

� |B0|2
1 + |B0|2

√√√√ 1

1 + 1−|B0|2
1+|B0|2

�ω2
0

�ω2
I

, (76)

where we have assumed that A(ω) and B(ω) are Gaussians
given by Eqs. (19) and (20) and that our initial distribution is
Gaussian and given by Eq. (52).

Now let us consider the ideal EIT regime, where the
frequency width of the incoming pulse fits well inside the
transmission window:

�ω0

�ωS

�
√

2

D
, (77)

where we have chosen this limit such that the exponential term
in Eq. (74) can be dropped. Then consider two limits for the
4WM strength; for x > 1 the fidelity exponentially decreases,
while for small x and keeping only the first-order terms, we
can express the fidelity as

FSP = exp

(
−

√
3D

|�′|2
�2

)√
1 − �ω2

0

�ω2
S

− x2. (78)

This shows that 4WM will always degrade single-photon
fidelity (Fig. 8), although this is the expected result since,
without 4WM, we have standard EIT propagation, which, for
a narrow pulse spectrum, has a fidelity close to 1.

Therefore when 4WM is unavoidable, it would be best to
implement QM in the regime x = Dηγge/� < 1. Even for
the very large optical depths required by EIT QM, this can
be accomplished by choosing the field polarizations such that
�′ couples only to transitions that have a small η or a very
large �. In the case where �′ couples to the signal transition,
such that η ≈ 1 and � is fixed, it is still possible to lower
the effects of 4WM by minimizing the optical decoherence
rate γge to decrease the γge/� ratio. For example, experiments
in cold Rb gas trapped in a magneto-optical trap where γge

is just half of the spontaneous emission rate have a ratio of

FIG. 8. (Color online) Plot of fidelity for the single-photon case
as a function of the effective 4WM optical depth for � = 0.1γge,
�/γge = 30, and η = 1. In the limit �ω0/�ωS , �ω0/�ωI → 0.

�/γge = 500 for 85Rb and �/γge = 1000 for 87Rb, making it
possible to reach very large optical depths while maintaining a
small x. This is supported by experiments such as those in [14],
which saw no signs of 4WM even at a large optical depth,
D ≈ 150. 4WM does become important for experiments in
warm gases, especially when a buffer gas is used to lower
the spin decoherence time, since then at high densities the
self-broadening and buffer gas broadening due to collisions
can make γge significantly larger than the spontaneous decay
rate, leading to low ratios of �/γge ≈ 50. In this case the
noise due to 4WM will have a significant effect on the fidelity,
which has likely been observed in warm Rb gas experiments
that measure the fidelity rather then just the storage efficiency
such as those in [19] and [20].

VII. FIDELITY OF PROPAGATION WITH LOSSES

As we have seen in the previous section, the presence of gain
due to 4WM leads to a fast reduction in fidelity in otherwise
lossless propagation. We now analyze whether 4WM could be
beneficial when there are some linear losses due to scattering
in the medium. In particular, we consider the case where the
4WM gain exactly compensates the linear loss, for which we
compare the EIT and 4WM single-photon fidelities.

Our analysis in Sec.VI also applies to EIT in the limit
of A0 → 1 and B0 → 0. In order to model linear losses in
EIT with the spatial loss coefficient λ we just need to take
the expression for the single-photon fidelity and replace the
coefficients with A0 = exp(−λD/2) and B0 = 0. In that limit
the only integral needed is much simpler with

∫ ∞

−∞
dω|f (ω)|2A(ω) = A0

√
�ω2

S

�ω2
0 + �ω2

S

× exp

(
− �ω2

0�ω2
S

4
(
�ω2

0 + �ω2
S

)τ 2
S

)
,

(79)

which, in the limit of �ω0/�ωS � √
2/D, collapses the

fidelity of EIT, with losses to the expected result of

F EIT
SP � |A0| = e−λD/2. (80)
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FIG. 9. (Color online) Plot of the fidelity of four-wave mixing
[FWM; solid (blue) line] and standard EIT [dashed (red) line]
fidelities as a function of the effective optical depth in the presence
of linear losses, under the assumption that the signal field is always
well within the transmission window. The losses are taken to match
the 4WM gain present at the effective optical depth of x = 2. The
remaining parameters are �/γge = 30, � = 0.1γge, and η = 1.

The same loss can be added to the 4WM fidelity by taking
A0 → A0 exp(−λD/2) and B0 → B0 exp(−λD/2).

We pose the question, When does the 4WM single-photon
fidelity surpass that of the the EIT, assuming that both systems
experience linear loss? In the limit of �ω0/�ωS → 0, we can
approximate the fidelity as

FSP =
√

|A0|2(1 − |B0|2)

(1 + |B0|2)2
+ |B0|2

1 + |B0|2 e− τS
4 �ωI |B0|2 . (81)

Now we can take the steady-state solution |A0| = q cosh(x)
and |B0| = q sinh(x), with the EIT fidelity given by q =
exp(−λD/2). In this case it is fairly simple to calculate when
4WM can improve over EIT; it is possible when q � 1/

√
2,

i.e., the EIT fidelity is already less than 0.7, as illustrated in
Fig. 9. So while 4WM can be an improvement, it only helps
in cases where the fidelity is already too low to use as a QM.

VIII. CONCLUSION

We developed a model for a field propagating inside an
EIT medium that has 4WM. We found that there are limits on
the use of 4WM EIT as a single-photon QM based just on the
propagation fidelity. We studied the two main sources of noise.
The first is due to extra photons generated directly from the

vacuum due to 4WM gain. The second source comes from the
finite population that 4WM adds to the excited state, leading
to dephasing of the dipoles due to spontaneous emission.
Together, both sources of noise become exponentially large for
optical depths D > �|�′|/(γge|�|). This gives a natural limit
on how large the optical depth can be in EIT-based QMs when
4WM is present. In particular, the use of linearly polarized
fields in hot gas EIT QM experiments may create difficulties,
since the limit can be lower than the optical depth required for
high-fidelity QM.

By calculating the fidelity for single-photon propagation we
can quantitatively describe the degradative effects of 4WM on
EIT QM. We further show that, even in the best-case scenario,
where the gain from 4WM compensates some natural losses
in the system, for example, due to scattering, the propagation
fidelity of 4WM EIT is still worse than that for standard EIT
unless the EIT fidelity is below 1/

√
2. Therefore for an EIT

QM, it is always preferential to avoid 4WM. This can be
accomplished either by choosing field polarizations such that
the control field cannot couple to any nearby transitions or by
working to keep the optical decoherence low to minimize the
ratio of γge/�, which is easier to achieve in low-temperature
systems.

Our model so far only considers propagation of the fields
through the medium. Since we do not consider the storage
process where the control field is turned off and on, we neglect
two considerations. First, it is actually the collective spin
excitation that gets stored in an EIT memory, which, in addition
to the signal-field contribution, contains a small admixture of
the idler field as well. Second, we neglect the limits imposed
by the requirement for the field to be wholly within the EIT
medium at the time when the control field is turned off for
storage, i.e., neglecting any field leakage. While considering
these effects would not improve the limit that 4WM imposes
on the optical depth, it is possible that when considering them,
there are scenarios for smaller optical depths where 4WM
could be made useful. We plan to further investigate the effect
of 4WM on QM, in particular, by finding the effect of 4WM
on the collective spin state and considering the entire storage
process.
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