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Steady-state crystallization of Rydberg excitations in an optically driven lattice gas
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We study the conditions for attaining crystalline order in the stationary state of a continuously driven, open
many-body system. Specifically, we consider resonant optical excitations of atoms in a one-dimensional lattice
to the Rydberg states interacting via the van der Waals potential. Strong blockade of excitations at neighboring
lattice sites steers the system toward a crystalline state while competing with the fluctuations associated with
relaxation. We analyze the stationary state of the many-body system and the dynamics of its buildup employing
numerically exact time-dependent density-matrix renormalization-group simulations for two- and three-level
excitation schemes. We also present an approximate rate equation model which provides qualitative conditions
for attaining crystalline order.
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The strong, long-range dipole-dipole or van der Waals
(vdW) interactions between Rydberg atoms [1] have posi-
tioned them as promising systems for quantum information
processing [2–4], which has led to considerable experimental
efforts in exploring such systems [5–12]. Coupling Rydberg
atoms to light can give rise to novel photonic states with highly
nonclassical correlations [13,14] and unusual nonlinear spec-
troscopic features [15,16]. Rydberg atoms are also interesting
for studies of many-body physics: It was predicted that long-
range interactions lead to spontaneous symmetry breaking and
crystalline order in a continuous [17,18] or lattice gas [19,20],
formation of supersolids [21], and vortex lattices [22] or
fractional quantum Hall states [23] in two-dimensional (2D)
systems. Hints of the crystalline order of Rydberg excitations
were observed in a continuous system [24], while very recently
the short-range order of Rydberg excitations was demonstrated
in an optically driven lattice gas [25].

Most of the theoretical work on many-body physics
with Rydberg atoms deals with the ground states of model
Hamiltonians and ignores dissipation and decoherence as-
sociated with the optical excitation, which become relevant
on time scales necessary for the buildup of correlations.
A more natural approach, closer to experimental reality, is
therefore to consider correlations in the stationary state of
open, continuously driven system [26–29]. Importantly, the
stationary state is an attractor of the dynamics of the system
and is immune to small perturbations. Recent work has shown
that judiciously engineered reservoirs can generate correlated
dark states or induce spatial coherence by dissipation [30–32].
In general, however, fluctuations associated with relaxation
in open systems tend to destroy order favored by the inter-
actions. Under what conditions long-range order survives the
competition between interactions and dissipation is an open
question, beyond the established theory of quantum phase
transitions in unitary systems. Here we address this question in
the context of a specific but experimentally relevant system: a
one-dimensional (1D) lattice of atoms optically excited to the
strongly interacting Rydberg states. We employ numerically
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exact time-dependent density-matrix renormalization-group
(t-DMRG) simulations and an approximate rate equations
(REs) model to derive general conditions for attaining the
crystalline order of Rydberg excitations of the system in
the stationary state and analyze the dynamics of its buildup.
The coupling to the reservoir limits entanglement within the
system, circumventing the usual bottleneck of t-DMRG, which
permits full many-body calculations beyond exact diagonaliza-
tion for a small system [29] or mean-field treatments [27,28].

We consider a chain of N atoms trapped in a 1D lattice
potential of period a [Fig. 1(a)] and examine one- and two-
photon resonant optical excitations of atoms from the ground
state |g〉 to the Rydberg state |r〉 [Fig. 1(b)]. In the two-level
scheme, the transition |g〉 → |r〉 is driven by a laser field
of (effective) Rabi frequency �gr . In the three-level scheme,
the Rydberg state |r〉 is populated from the ground state |g〉
via resonant intermediate state |e〉 in the coherent population
trapping (CPT) or dark-state resonance configuration [33] with
Rabi frequencies �ge � �er . The corresponding atom-field
interaction Hamiltonians are given, respectively, by Vj

2 =
−h̄(�gr σ̂

j
rg + H.c.) and Vj

3 = −h̄(�geσ̂
j
eg + �er σ̂

j
re + H.c.),

where σ̂
j
μν ≡ |μ〉jj 〈ν| are the transition operators for atom

j . Spontaneous decay is described by Liouvillian terms in
the equation of motion for the density operator ρ: Lj ρ =
1
2 (2L̂jρL̂j† − {L̂j†L̂j ,ρ}), where L̂j are the Lindblad gener-

ators. For the two-level scheme, L̂
j

2 =√
�rgσ̂

j
gr , with �rg being

the (population) decay rate of Rydberg state |r〉. Although �rg

is typically small (∼104 Hz), it may be comparable to the Rabi
frequency �gr associated with either direct one-photon (UV)
transition |g〉 → |r〉 with a small dipole matrix element or
two-photon transition via far-off-resonant intermediate states.
For the three-level CPT scheme, we take into account only the
high spontaneous decay rate �eg (∼107 Hz) of the intermediate
excited state |e〉 via L̂

j

3 =√
�egσ̂

j
ge; the decay rate �re of Rydberg

state |r〉 can be neglected in comparison with the loss rate
�2

er/�eg due to the optical pumping through |e〉, which we
verified numerically. Other losses from the Rydberg state
should be small on the time scale of the buildup of correlations
in the full system (see below).

For an isolated two- or three-level atom under continuous
driving, the steady-state population of the Rydberg state is
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FIG. 1. (Color online) (a) Schematic of optically driven atoms in
a lattice. (b) Starting from the ground state |g〉, atoms are resonantly
excited to the Rydberg state |r〉 either directly (left) or via resonant
intermediate state |e〉 (right). (c) Illustration of the rate equation model
with Rydberg blockade of neighboring atoms.

given, respectively, by

〈σ̂rr〉 ≈ |�gr |2
2|�gr |2 + γ 2

rg + �2
, (1a)

〈σ̂rr〉 ≈ |�ge|2(|�ge|2 + |�er |2)

(|�ge|2 + |�er |2)2 + (
γ 2

eg + 2|�ge|2
)
�2

, (1b)

where γμν = 1
2�μν and � is the one- or two-photon detuning

of the laser frequency from the |g〉 → |r〉 transition resonance.
It follows from Eqs. (1) that the Rydberg population 〈σ̂rr〉 of
an atom is a Lorentzian function of �, with the width w =√

2|�gr |2 + γ 2
rg for the direct excitation and w = (|�ge|2 +

|�er |2)/
√

γ 2
eg + 2|�ge|2 for the CPT excitation schemes.

Finally, pairs of atoms i and j interact with each other
via the vdW potential [34] V ij

vdW = h̄σ̂ i
rr

C6

d6
ij

σ̂
j
rr , where dij =

a|i − j | is the interatomic distance. Once an atom i is excited
to the Rydberg state |r〉, it shifts the atom j out of resonance by
� = U/|i − j |6, where U ≡ C6/a

6. The excitation of atom j

to state |r〉 is then blocked if � � w, which determines the
blockade distance db 	 6

√
C6/w [3]. Throughout this paper,

we assume that a < db < 2a, so that there is a Rydberg
blockade only between neighboring atoms. Note that for
Nb > 1 atom per blockade volume, �ge is replaced by the
collective Rabi frequency

√
Nb�ge [12], with the blockade

distance determined self-consistently [4,18,26].
The density matrix ρ of the system of N atoms obeys

the master equation ρ̇ = − i
h̄

[Hl ,ρ] + Llρ, with the Hamil-

tonian Hl = ∑
j V

j

l + ∑
i<j V

ij

vdW and the Liouvillian Llρ =∑
j L

j

l ρ for l = 2- or 3-level atoms. Since the interaction of
an atom with its immediate neighbor is much stronger than
that with atoms farther apart, we truncate the vdW potential
V ij

vdW to nearest neighbor (NN):V ij

NN = h̄σ̂ i
rrUσ̂

j
rr for i = j − 1

and V ij

NN = 0 otherwise. We have performed exact numerical
integrations of density-matrix equations for small systems
of several (N � 7) atoms interacting via the VvdW and VNN

potentials and verified that they yield similar results for both
two- and three-level excitation schemes. We therefore employ
the VNN potential henceforth, returning to the corrections due
to longer-range interactions of the VvdW potential later.

We obtain the time evolution and the steady state of
the full many-body density matrix employing the t-DMRG

method [35,36]. Our implementation follows the original
proposal of [37], generalized to open quantum systems [38,39].
Simulations for up to N ∼ 102 atoms are possible, as the
relaxation keeps the entanglement inside the system small:
for our calculations, bond dimensions of χ = 20 turned out
to be sufficient in the matrix-product decomposition. As a
consequence, the usual limitations on the propagation time
do not apply and the t-DMRG integration can be performed
for, in principle, arbitrarily long times. Furthermore, since the
stationary state is an attractor of the dynamics, accumulated
errors self-correct. We verified that for small systems with the
truncated potential VNN, the exact and t-DMRG solutions are
indistinguishable.

Results of the t-DMRG simulations for two- and three-level
atoms in a realistically large lattice of length 30a with open
boundary conditions are shown in Fig. 2. Since interactions
between the atoms suppress Rydberg excitations, the atoms at
the boundaries j = 1 and j = N having only one neighbor
acquire the largest population of the Rydberg state |r〉. Next
to the boundary, we observe period 2 spatial oscillations of
excitation probabilities 〈σ̂ j

rr〉. For two-level atoms [Fig. 2(a)],
this edge effect decays within a few lattice sites. This is due to
the fact that even under strong driving �gr 
 �rg the excited-
state population of a noninteracting two-level atom saturates to
〈σ̂rr〉 → 1

2 [cf. Eq. (1a)] with large fluctuations. In contrast, for
a (noninteracting) three-level atom under the CPT excitation
scheme, the population of the Rydberg state can be very large,
〈σ̂rr〉 → 1, when �ge 
 �er [cf. Eq. (1b)]. For a chain of
strongly interacting atoms, we then observe a high amplitude
of spatial oscillations of 〈σ̂ j

rr〉 extending over many lattice sites
[Fig. 2(b)].

Atoms excited to Rydberg states are typically no longer
trapped in an optical lattice. An important question, then, is
whether the stationary state can be reached during times short

FIG. 2. (Color online) Steady-state Rydberg excitation prob-
abilities 〈σ̂ j

rr〉 of (a) two-level atoms and (b) three-level atoms
in a lattice of length 30a (N = 31 atoms). Filled (black) circles
(connected by dashed lines) show the t-DMRG solutions of the
density-matrix equation with potential V ij

NN, and (blue) asterisks are
the RE solutions for the hard-core (infinite-NN) potential. Parameters
are (a) U = 2�gr and �rg = 1

4 �gr [〈σ̂rr〉 	 0.496] and (b) U = 2�ge,
�eg = 4�ge, and �er = 1

5 �ge [〈σ̂rr〉 	 0.961].
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FIG. 3. (Color online) Time evolution of Rydberg excitation
probabilities for simultaneous application of driving lasers at time
t = 0 to all atoms [dashed (red) lines] and for sequential application—
“sweep”—of the lasers to atoms j = 1,2, . . . ,15 at times tj =
2.4(j − 1)T [thick solid (black) lines]. All parameters are as in
Fig. 2(b) and time is in units of T = �eg

�ge�er
.

enough for the center-of-mass motion of the excited atoms
to be negligible. In Fig. 3 we show the time evolution of
Rydberg-state populations of individual atoms in a lattice with
open boundary conditions. Initially, the atoms are in the ground
state |g〉. Applying the driving lasers to all atoms at once
[dashed (red) lines] yields the global stationary state of the
system after times two to three orders of magnitude longer
than the steady-state equilibration time T = �eg/(�ge�er ) of
an isolated atom (note the logarithmic scale of the time axis).
The reason for this is the initial formation of small crystalline
domains with dislocation defects in between, which require
excessive healing times. In the present system, the steady state
is unique and therefore independent of the initial conditions
and the details of preparation [40], such as, e.g., the way the
light fields are switched on. This permits faster preparation
of the global stationary state. Similarly to classical crystals, it
is indeed much faster to “grow” the Rydberg quasicrystal by
first applying the lasers to the atoms at the lattice boundary
(j = 1) and then successively extending the irradiated region
(j = 2,3, . . .) until the full Hamiltonian is realized. In Fig. 3
we verify this intuitive approach [solid (black) lines for atoms
j = 1,2, . . . ,15]. Since the crystalline order is rooted in the
Rydberg blockade of the NN sites, a “sweep” velocity as fast
as one lattice period a per single-atom equilibration time T

can be applied.
We now describe an effective REs model, which yields

an analytic solution for the stationary state of the system.
We are interested in the Rydberg excitation probabilities
〈σ̂ j

rr〉 of atoms and their steady-state correlations 〈σ̂ j
rr σ̂

k
rr〉,

which allows us to disregard the coherences between the
atoms. We restrict the interatomic interactions to the complete
blockade of Rydberg excitations of NNs, assuming the
potential V ij

NN with U → ∞. At each lattice site, we then
have two incoherent processes: a state-dependent pump with
rate P and a de-excitation with rate D; the corresponding
Lindblad generators are L̂

j
p = √

P (σ̂ j−1
rr − 1)σ̂ j

rg(σ̂ j+1
rr − 1)

and L̂
j

d = √
Dσ̂

j
gr . The ratios of the two rates κl ≡ P

D
= 〈σ̂rr 〉

1−〈σ̂rr 〉

for the l = 2- and 3-level atoms are obtained from Eqs. (1) as

κ2 = |�gr |2
|�gr |2 + γ 2

rg

, κ3 = |�ge|2
|�er |2 . (2)

In this model, the equation of motion for the density matrix
is ρ̇ = ∑

j

∑
μ=p,d(2L̂

j
μρL̂

j†
μ − {L̂j†

μ L̂
j
μ,ρ}). After sufficient

relaxation time, the density matrix attains an essentially
classical form ρ = ∑

{nj } p({nj })|{nj }〉〈{nj }| , where p({nj })
is the probability of configuration {nj } ∈ (0,1)N (0 ≡ g,

1 ≡ e). Classical state-space dimension grows exponentially
with N , precluding numeric integration for large systems.
However, the steady state of the REs fulfills the detailed
balance relation,

p({mj })
p({nj }) = κ

∑
j (mj −nj )

l . (3)

States with the same number of excitations have equal
weight and the partition function is given by ZN =∑N

M=0 �(M,N )κM
l , where �(M,N ) is the number of possible

arrangements of M excitations on a lattice of N sites. In
one dimension, we have the analytic expression �(M,N ) =
( N − M + 1

M ), which enables efficient calculation of all the
steady-state probabilities p({nj }).

In Fig. 2 we compare the solutions of the REs model with the
t-DMRG results, observing reasonable agreement, especially
for the three-level excitation scheme. In all cases, however, the
decay of correlations is correctly captured by the REs model.
This means that, in the present system, the main features of
local quantities are essentially classical.

For a large lattice N 
 1, the partition function converges
to ZN = cosh ((2 + N )

√
κl

2 ), with which the Rydberg excita-
tion probabilities at odd sites j (the boundary being at j = 1)
are given by 〈σ̂ j

rr〉 = e−1/(2
√

κl )[1 + e−(j−1)/
√

κl ]/2. The decay
of spatial oscillations of probabilities 〈σ̂ j

rr〉 is characterized by
the correlation length,

ξ (κl) = √
κla. (4)

Note that in a translationally invariant system (i.e., in the
bulk), the excitation probability is uniform in space, but the
onset of crystallization is revealed by the density-density
correlations; the corresponding correlation length is again
ξ (κ). Long-range correlations can only exist if the fluctuations
(�Nr )2 ≡ 〈N̂2

r 〉 − 〈N̂r〉2 of the total number of Rydberg
excitations N̂r = ∑N

j=1 σ̂
j
rr in the system are suppressed.

In the thermodynamic limit N → ∞ of the REs model
we obtain

(�Nr )2

〈N̂r〉
= 1

4
√

κ
+ O(κ−1). (5)

For the two-level excitation scheme of the atoms, κ2 < 1,
we then have the correlation length shorter than the lattice
spacing, ξ < a, and large fluctuations. For the same system,
Lee et al. [27] predicted a phase transition to a period 2 density
wave using a mean-field approximation, which is, however,
inadequate in one dimension. It is interesting to note that the
same correlation properties with κ = 1 arise in the coherently
driven ensemble after thermalization [41]. We note that even in
a 2D square lattice the crystalline state cannot be reached with
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the two-level atoms; the 2D extension of the REs approach
leads to the classical hard-square model, for which a phase
transition to the Néel ordered (checkerboard) phase occurs at
the critical value of κ2D

crit ≈ 3.7965 [42]
For the CPT excitation of three-level atoms, one can tune

κ3 by the Rabi frequencies �ge and �er , attaining large
correlation lengths ξ > a. Further increase in ξ is, however,
constrained by the validity of the NN interaction approxima-
tion. We therefore consider the corrections originating from
the hitherto neglected interactions of the atom with the next-
nearest neighbors (NNNs). To estimate its maximal effect, let
us assume a strong driving, resulting in Rydberg excitations
at every other lattice site (half-filling). A nonblocked atom is
then likely to be detuned by �′ = �/26 due to the interaction
with the NNN Rydberg atoms. Expressing the NN detuning
� = βw in terms of the excitation line width w and using
Eq. (1b), we obtain a modified

κ ′
3 = |�ge|2

|�er |2 + (|�ge|2 + |�er |2)
(

β

64

)2 �
(

64

β

)2

. (6)

To ensure almost-perfect NN blockade, it is reasonable to
take β ≈ 10 and ∼1% excitation probability for the blocked
atom. In one dimension, the correlation length is therefore
limited to ξ � 7a, due to the softness of the vdW potential
and the long wings of the Lorentzian excitation profile. In two
dimensions, the phase transition to Néel order may occur for
three-level atoms, κ3 > κ2D

crit . But since the effects of the NNN
interactions (along the diagonals of the square lattice) will
be more pronounced, precluding a soluble hard-square REs
model, the existence of a phase transition in two dimensions
remains an open question. We, finally, note that for the dipole-
dipole interaction V ij

DD ∝ C3

d3
ij

, Eq. (6) reduces to κ ′
3 � (8/β)2,

leading to a short correlation length, ξ < a.
In summary, we have studied the competition between

interactions and fluctuations in an open many-body quantum
system represented by a 1D lattice of atoms optically excited

to the strongly interacting Rydberg states. Although there is
no true phase transition in this system, we have shown that the
steady state of an ensemble of three-level atoms can exhibit
quasicrystallization of Rydberg excitations with a correlation
length extending over many lattice periods. In contrast, for
two-level atoms even under strong driving, the correlations are
only between the neighboring atoms. We have found that in 2D
a transition to Néel order may occur for the three-level driving
but not the two-level driving. Using the t-DMRG simulations
for several tens of atoms in one dimension, we have shown that
for uniform optical driving of all the atoms, the steady state is
attained only after very long times. A sequential excitation of
neighboring atoms by dynamically “sweeping” the lattice with
the driving lasers can result in the same state in a much shorter
time. We have derived an effective REs model whose exact
steady-state solution, being in good agreement with numeric
results, yields explicit analytic expressions for the excitation
probabilities and the correlation length.

To conclude, optically driven Rydberg gases are convenient
model systems to study many-body correlations and phase
transitions in open systems. Apart from their relevance to
quantum-optical implementations, open (dissipative) systems
have the advantage of possessing robust steady states. An
important question is how the transition to an ordered state in
a dissipative many-body system is reflected in the (complex)
spectrum of the corresponding Liouvillian. For example, in
a unitary Rydberg lattice gas, the transition to the crystalline
phase is associated with the opening of a gap in the energy
spectrum; yet, for open, free-fermion models it was shown
in [32] that a transition to long-range order is accompanied
by a critical slow-down, i.e., closing the gap in the decay
spectrum.
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hospitality and support. Financial support from the Deutsche
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